-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by RERO DOC Digital Library

The Quarterly Journal of Mathematics Advance Access published on November 7, 2005
Quart. J. Math. 57 (2006), 139-142; doi:10.1093/qmath/hai010

NOTE ON CROSSING CHANGES
by S. BAADER'

(Mathematisches Institut der Universitit Basel, Rheinsprung 21, CH-4051 Basel, Schweiz)

[Received 2 February 2005]

Abstract

For any pair of knots of Gordian distance two, we construct an infinite family of knots which are
‘between’ these two knots, that is, which differ from the given two knots by one crossing change.
In particular, we prove that every knot of unknotting number two can be unknotted via infinitely
many different knots of unknotting number one.

1. Introduction and main result

It is an elementary fact that every tame knot in S* can be unknotted by a finite sequence of crossing
changes. Here, a crossing change is a strand passage operation along an embedded disc (see Fig. 1
for an illustration).

The Gordian unknotting number u#(K) of a knot K is the minimal number of crossing changes
needed to transform K into the trivial knot [8]. More generally, the Gordian distance between two
knots is the minimal number of crossing changes needed to transform one knot into the other [1, 4].
However, this process is by far not unique.

THEOREM 1.1 For every pair of knots K and K of Gordian distance two, there exist infinitely many
non-equivalent knots whose Gordian distance to K and K is one.

Theorem 1.1 has an interesting special case.

COROLLARY 1.2 Every knot of unknotting number two can be unknotted via infinitely many different
knots of unknotting number one.

Proof of Theorem 1.1. If two knots K and K have Gordian distance two, then there exists a knot
Ko which differs from K and K by one crossing change. The knot K has a diagram with two
distinguished spots where crossing changes should take place to obtain K or K, respectively. This
set-up is shown in Fig. 2, where the two spots are labelled A and B; a crossing change at A or B
transforms Ky into K or K, respectively.

Moreover, we may assume that the two spots A and B are neighbouring, as shown in Fig. 3,
because we can slide the clasp of one spot, say B, along the knot K.

Now we are ready to define a family of knots { K, },cn diagrammatically. A diagram of the knot K,
is shown in Fig. 4. It is understood that it coincides with the diagram of Fig. 3 outside the indicated
section.
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Figure 1. A crossing change along a disc.

Figure 2. A diagram of K.

The horizontal band is twisted —n times, in a manner that gives rise to 2n negative crossings. The
two vertical bands are twisted n times. We observe that all the knots K, have the two required prop-
erties: changing a crossing at A transforms K, into K. Similarly, a crossing change at B transforms
K, into K.

However, we have to prove that the family { K}, },,cn contains infinitely many different knots. For this
purpose, we consider the Alexander polynomial written in Conway’s notation [2]. This polynomial
in one variable z is normalized to one for the trivial knot and satisfies the following relation:

Py (@) = Py (@) = 2Py ().

As we shall apply this skein relation several times, it is convenient to introduce a concise notation
for the knots arising from crossing changes and smoothings at different spots.

RO

Figure 3. A section of a diagram of K.
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Figure 4. A family of knots {K, },eN.

Notation. For x,y,z € ZU {oo}, K, , , denotes the knot with x full twists in the horizontal band
at the top left of the section as shown in Figs 3 and 4, y full twists in the left vertical band and z full
twists in the right vertical band. The special case where x (y or z) is oo means that we have to smooth
the diagram (in an oriented manner) at the corresponding place. As an example, K o o0 1S Shown in
Fig. 5.

In particular, K_,, , , denotes K, (n € N).

LEMMmA 1.3 .
lim — P(K,:2) = —2°P(Koo0oo; 2)-

n—o0o n2
Before we prove Lemma 1.3, let us complete the proof of Theorem 1.1. Suppose the family
{K, }nen contained only finitely many different knots, then the limit of Lemma 1.3 would be clearly
zero. However, this is not the case because P (K ¢ oo; 2) 18 not zero. Indeed, K, ¢ «o 1S a connected
sum of a knot and two Hopf links. Therefore, its Conway polynomial P (K« o oo} 2) 1 a product of a
Conway polynomial of a knot and £z, which can certainly not be zero.

Proof of Lemma 1.3. Applying the skein relation of the Conway polynomial n times at the crossings
of the left vertical band of K_,, ,, ,,, we get

P(K—nnn;z) = P(K—IIOn;Z)+nZP(KOOOO;Z)'

|
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Figure 5. Koo 0o0-
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Continuing at the crossings of the right vertical band of P(K_, ¢ ,; z), we get
P(K_pnni2)=P(K_,00:2) +nzP(K_;000:2) + 12P (Ko 00 2)-

Finally, we apply the skein relation at the crossings of the horizontal bands of K_, g and K_,, ¢
to obtain

P(K_pnn;2) =P(Kooo; 2) —nzP(Kso0; 2)
+nz(P(Ko0oo; 2) — 2P (Koo 0005 7))
+nzP(Koxo0; 2).

We conclude with some remarks and problems about unknotting operations.

Given a knot K of unknotting number two, let U (K) be the set of all knots which lie between K
and the trivial knot, that is, knots which can be transformed into K and the trivial knot by one crossing
change. According to Theorem 1.1, the set U (K) has infinite (countable) cardinality. In particular,
U (K) contains knots of arbitrarily high crossing number. Recently, Uchida found that the set U (5)
associated with the torus knot 5; (in Rolfsen’s notation [7]) contains knots of arbitrary high bridge
number. In contrast, the signature and the four-dimensional genus of all knots in U (51) equal one. It
might be interesting to study the range of possible values of numerical invariants on the set U (K).
We may also ask how much information on a knot K is encoded in the corresponding set U (K).

So far, it seems very hard to compute the unknotting number of knots. A complete list of unknotting
numbers exists for knots up to seven crossings only. In the last decade, there has been considerable
progress on unknotting numbers of positive knots ([3] or [6]; see also [S] for recent results on
unknotting numbers of prime knots). In contrast, very little is known about unknotting numbers of
connected sums of positive and negative knots. For example, the unknotting number of the knot
3,#15, is still unknown. Here ‘#’ stands for the connected sum operation and !’ denotes the mirror
image operation.
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