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Manin’s conjecture for the asymptotic behavior of the number of rational points of

bounded height on del Pezzo surfaces can be approached through universal torsors. We

prove several auxiliary results for the estimation of the number of integral points in

certain regions on universal torsors. As an application, we prove Manin’s conjecture for

a singular quartic del Pezzo surface.

1 Introduction

The distribution of rational points on smooth and singular del Pezzo surfaces is pre-

dicted by a conjecture of Manin [10]. For a del Pezzo surface S of degree d ≥ 3 defined

over the field Q of rational numbers, we consider a height function H induced by an an-

ticanonical embedding of S into Pd , where H (x) = max{|x0|, . . . , |xd |} for x ∈ S(Q) ⊂ Pd (Q)

represented by coprime integral coordinates x0, . . . , xd . Manin’s conjecture makes the fol-

lowing prediction for the asymptotic behavior of the number of rational points of height

at most B on the complement U of the lines on S. As B → ∞,

NU ,H (B) = #{x ∈ U (Q) | H (x) ≤ B} ∼ cB(log B)k−1,

where k is the rank of the Picard group of S (resp. of its minimal desingularization if S is

a singular del Pezzo surface), and the leading constant c has a conjectural interpretation

due to Peyre [13].
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One approach to Manin’s conjecture for del Pezzo surfaces uses universal torsors.

This approach was introduced by Salberger [14] in the case of toric varieties. It also led

to the proof of Manin’s conjecture for some nontoric del Pezzo surfaces that are split,

i.e., all of whose lines are defined over Q: quartic del Pezzo surfaces with a singularity

of type D5 [1], D4 [9] resp. A4 [3], and a cubic surface with E6 singularity [2].

These proofs of Manin’s conjecture for a split del Pezzo surface S consist of three

main steps.

(1) One constructs an explicit bijection between rational points of bounded height

on S and integral points in a region on a universal torsor TS.

(2) Using methods of analytic number theory, one estimates the number of inte-

gral points in this region on the torsor by its volume.

(3) One shows that the volume of this region grows asymptotically as predicted

by Manin and Peyre.

Step 1 is the focus of joint work with Tschinkel [9, Section 4], giving a geometri-

cally motivated approach to determine a parameterization of the rational points on S by

integral points on a universal torsor explicitly.

For step 2, we estimate the number of integral points on the (k + 2)-dimensional

variety TS by performing k + 2 summations over one torsor variable after the other; the

remaining torsor variables are determined by the torsor equations defining TS as an affine

variety. In each summation, the main problem is to show that an error term summed over

the remaining variables gives a negligible contribution (see Section 2 for the error term

of the first summation in a certain setting).

For these summations, the previous papers rely on some auxiliary analytic results

dealing with the average order of certain arithmetic functions over intervals that are

proved in a specific setting. In this paper, we harmonize and generalize many of the

analytic tools that have been brought to bear so far (see Figure 2 for an overview of

the sets of arithmetic functions that we introduce). We expect that our results can be

applied to many different del Pezzo surfaces, at least to cover the more standard bits of

the argument. This will allow future work on Manin’s conjecture for del Pezzo surfaces

to concentrate on the essential difficulties in the estimation of some of the error terms,

without having to reimplement the routine parts.

As an application of our general techniques, we prove Manin’s conjecture in a

new case: a quartic del Pezzo surface with singularity type A3 + A1 (Section 8). This

example also demonstrates how we can deal with a new geometric feature. In the final k

summations, the previous proofs of Manin’s conjecture for split del Pezzo surfaces made
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crucial use of the fact that the nef cone (the dual of the effective cone with respect to the

intersection form) is simplicial (in the quartic D5 and D4 cases and in the cubic E6 case)

or at least the difference of two simplicial cones (in the quartic A4 case). The nef cone

of the quartic surface treated here has neither of these shapes. However, the techniques

introduced in Section 4 are not sensitive to the shape of the nef cone. In our example,

they allow us to handle the final k + 1 = 7 summations at the same time.

In fact, we expect that the techniques of Section 4 will cover the final k sum-

mations for any del Pezzo surface. This would narrow down the main difficulty of the

universal torsor strategy to the estimation of the error term in the first and second sum-

mations of step 2. For example, in recent joint work with Browning, a proof of Manin’s

conjecture for a cubic surface with D5 singularity [4], we make extensive use of the re-

sults in this paper to handle the final seven of nine summations, so that we can focus on

the considerable additional technical effort that is needed to estimate the first two error

terms.

Step 3 is mixed with the second step in the basic examples of the quartic D5 [1],

D4 [9], and cubic E6 [2] surfaces. However, it seems more natural to treat the third step

separately in more complicated cases, motivated by the shape of the polytope whose

volume appears in the leading constant. First examples of this can be found in the

treatment of the quartic A4 [3] and cubic D5 [4] surfaces, and we take the same approach

in our example in Section 8.

2 The First Summation

Let S ⊂ Pd be an anticanonically embedded singular del Pezzo surface of degree d ≥ 3,

with minimal desingularization S̃. The first step of the universal torsor approach is

to translate the counting problem from rational points on S to integral points on a

universal torsor TS̃. Then the number NU ,H (B) of rational points of height at most B on

the complement U of the lines on S is the number of integral solutions to the equations

defining TS̃ that satisfy certain explicit coprimality conditions and height conditions.

In several cases (see Remark 2.1), the counting problem on TS̃ has the following

special form: NU ,H (B) equals the number of (α0, β0, γ0, α, β, γ , δ) satisfying

• (α0, β0, γ0) ∈ Z∗ × Z × Z, where Z∗ is Z or Z�=0, α = (α1, . . . , αr) ∈ Zr
>0, β =

(β1, . . . , βs) ∈ Zs
>0, γ = (γ1, . . . , γt ) ∈ Zt

>0, δ ∈ Z>0;

• one torsor equation of the form

α
a0
0 α

a1
1 · · ·αar

r + β
b0
0 β

b1
1 · · ·βbs

s + γ0γ
c1
1 · · · γ ct

t = 0, (2.1)
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A0 Ar Ar−1 ... A1

B0 Bs
... B1 D

C0 Ct Ct−1 ... C1

Fig. 1. Extended Dynkin diagram.

with (a0, . . . , ar) ∈ Zr+1
>0 , (b0, . . . , bs) ∈ Zs+1

>0 , (c1, . . . , ct ) ∈ Zt
>0. In particular, γ0 ap-

pears linearly in the torsor equation, while δ does not appear;

• height conditions that are written independently of γ0 (which can be achieved

using (2.1)) as

h(α0, β0, α, β, γ , δ; B) ≤ 1, (2.2)

for some function h : Rr+s+t+3 × R≥3 → R. We assume that

h(α0, β0, α, β, γ , δ; B) ≤ 1 if and only if β0 is in a union of finitely many

intervals I1, . . . , In whose number n = n(α0, α, β, γ , δ; B) is bounded indepen-

dently of α0, α, β, γ , δ, and B. By adding some empty intervals if necessary, we

may assume that n does not depend on α0, α, β, γ , δ, and B. For j = 1, . . . , n,

let t0, j, t1, j be the start and end point of I j;

• coprimality conditions that are described by Figure 1 in the following sense.

Let Ai (resp. Bi, Ci, D) correspond to αi (resp. βi, γi, δ). Then two coordinates are

required to be coprime if and only if the corresponding vertices in Figure 1 are

not connected by an edge. For variables corresponding to triples of pairwise

connected symbols (besides A0, B0, C0, this happens for triples consisting of D

and two of A0, B0, C0 if at least two of r, s, t vanish), we assume that α0, β0, γ0

are allowed to have any common factor, while each prime dividing δ may

divide at most one of α0, β0, γ0.

Remark 2.1. The geometric background of this special form is as follows. A natural

realization of a universal torsor TS̃ as an open subset of an affine variety is provided by

TS̃ ↪→ Spec(Cox(S̃))

[11, Theorem 5.6]. The coordinates of the affine variety Spec(Cox(S̃)) correspond to gener-

ators of the Cox ring of S̃.



2652 U. Derenthal

Table 1 Extended Dynkin diagrams in [6].

Degree Shape of Figure 1 Different shape

6 A1, A2 −
5 A2, A3, A4 A1

4 A3, A3 + A1, A4, D4, D5 3 A1, A2 + A1

3 A4 + A1, A5 + A1, D4, D5, E6 A3 + 2A1, 2A2 + A1

In [6], we have classified singular del Pezzo surfaces S of degree d ≥ 3 where

Spec(Cox(S̃)) is defined by precisely one torsor equation. It includes the extended Dynkin

diagrams describing the configuration of the divisors on S̃ that correspond to the gen-

erators of Cox(S̃). In many cases, the extended Dynkin diagram has the special shape

of Figure 1 (see Table 1 for their singularity types). In all cases, besides one of the two

isomorphy classes of cubic surfaces of type D4, the torsor equation has the form of

equation (2.1).

If we construct the bijection between rational points on S and integral points on

TS̃ using the geometrically motivated approach of [9, Section 4], then we expect to obtain

coprimality conditions that are encoded in the extended Dynkin diagram.

Indeed, in the quartic D4 [9], A4 [3], and the cubic D5 [4] cases, both the extended

Dynkin diagram and the counting problem have the special form. In the quartic D5 [1]

and cubic E6 [2] cases, the extended Dynkin diagram has the shape of Figure 1, but the

coprimality conditions are different. The reason is that the bijection between rational

points on the del Pezzo surface and integral points on a universal torsor is constructed

by ad hoc manipulations of the defining equations. If one uses the method of [9, Section 4]

instead, the coprimality conditions turn out in the expected shape. �

Given a counting problem of the special form above, we show in the remainder

of this section how to perform a first step toward estimating NU ,H (B). This will result in

Proposition 2.4.

Our first step can be described as follows, ignoring the coprimality conditions

for the moment. We determine the number of β0, γ0 satisfying the torsor equation (2.1),

while the other coordinates are fixed. For any β0 satisfying

α
a0
0 α

a1
1 · · · αar

r ≡ −β
b0
0 β

b1
1 · · · βbs

s

(
mod γ

c1
1 · · · γ ct

t

)
,

there is a unique γ0 such that (2.1) holds. Our assumption that the height conditions

are written as h(α0, β0, α, β, γ , δ; B) ≤ 1 (independently of γ0) has the advantage that the

number of β0, γ0 subject to (2.1) and (2.2) is the number of integers β0 that lie in a
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certain subset I of the real numbers described by this height condition and satisfy the

congruence above. If b0 = 1, one expects that this number is the measure of I divided by

the modulus γ
c1
1 · · · γ ct

t , with an error of O(1).

Before coming to the details of this argument, we reformulate the coprimality

conditions.

Definition 2.2. Let

�(α) = α
a1
1 · · · αar

r , �′(δ, α) =
⎧⎨⎩δα1 · · ·αr−1, r ≥ 1,

1, r = 0,

and we define �(β), �′(δ, β), �(γ ), �′(δ, γ ) analogously. �

Lemma 2.3. Assume that (α0, β0, γ0, α, β, γ , δ) ∈ Zr+s+t+4 satisfies the torsor equation

(2.1).

The coprimality conditions described by Figure 1 hold if and only if

gcd(α0, �′(δ, α)�(β)�(γ )) = 1, (2.3)

gcd(β0, �′(δ, β)�(α)) = 1, (2.4)

gcd(γ0, �′(δ, γ )) = 1, (2.5)

coprimality conditions for α, β, γ , δ as in Figure 1 hold. (2.6)

�

Proof. We must show that conditions (2.3)–(2.6) together with (2.1) imply

gcd(β0, �(γ )) = 1 and gcd(γ0, �(α)�(β)) = 1.

Suppose a prime p divides γ0, �(α), i.e., p divides the first and third terms of

(2.1). Then p also divides the second term, β
b0
0 �(β). However, by (2.4) and (2.6), we have

gcd(βb0
0 �(β), �(α)) = 1. The remaining statements are proved analogously. �

For fixed B ∈ R≥3 and (α0, α, β, γ , δ) ∈ Z∗ × Zr+s+t+1
>0 subject to (2.3) and (2.6), let

N1 = N1(α0, α, β, γ , δ; B) be the number of β0, γ0 subject to the torsor equation (2.1), the

coprimality conditions (2.4) and (2.5), and the height condition h(α0, β0, α, β, γ , δ; B) ≤ 1.

Then

NU ,H (B) =
∑

(α0,α,β,γ ,δ)∈Z∗×Zr+s+t+1
>0

(2.3), (2.6) hold

N1(α0, α, β, γ , δ; B).
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Our goal is to find an estimation for N1, with an error term whose sum over α0, α, β, γ , δ

is small.

First, we remove (2.5) by a Möbius inversion to obtain that

N1 =
∑

kc|�′(δ,γ )

μ(kc)#

⎧⎨⎩β0, γ ′
0 ∈ Z

∣∣∣∣∣∣α
a0
0 �(α) + β

b0
0 �(β) + kcγ

′
0�(γ ) = 0,

(2.4), h(α0, β0, α, β, γ , δ; B) ≤ 1

⎫⎬⎭ .

The torsor equation determines γ ′
0 uniquely if a congruence is fulfilled, so

N1 =
∑

kc|�′(δ,γ )

μ(kc)#

⎧⎨⎩β0 ∈ Z

∣∣∣∣∣∣α
a0
0 �(α) ≡ −β

b0
0 �(β) (mod kc�(γ )),

(2.4), h(α0, β0, α, β, γ , δ; B) ≤ 1

⎫⎬⎭ .

This congruence cannot be fulfilled unless gcd(kc, α0�(α)�(β)) = 1. Indeed, if a prime p

divides kc and α
a0
0 �(α), then it divides also β

b0
0 �(β), but gcd(�(α), βb0

0 �(β)) = 1 by (2.4) and

(2.6), while gcd(α0, �(β)) = 1 by (2.3), and p | kc, α0, β0 is impossible because of (2.3) and

since p | δ, α0, β0 is not allowed by assumption; p dividing kc and �(β) can be excluded

similarly. Therefore, we may add the restriction gcd(kc, α0�(α)�(β)) = 1 to the summation

over kc without changing the result, so that

N1 =
∑

kc|�′(δ,γ )
gcd(kc,α0�(α)�(β))=1

μ(kc)N1(kc),

where

N1(kc) = #

⎧⎨⎩β0 ∈ Z

∣∣∣∣∣∣α
a0
0 �(α) ≡ −β

b0
0 �(β) (mod kc�(γ ))

(2.4), h(α0, β0, α, β, γ , δ; B) ≤ 1

⎫⎬⎭ .

We note that both α
a0
0 �(α) and �(β) are coprime to kc�(γ ). Indeed, we

have gcd(kc, α0�(α)�(β)) = 1 by the restriction on kc just introduced, and gcd(�(γ )),

α0�(α)�(β)) = 1 by (2.3) and (2.6).

We choose integers A1, A2 resp. B1, B2 depending only on α0, α resp. β, such that

A1 Ab0
2 = α

a0
0 �(α), B1 Bb0

2 = �(β). (2.7)
For example,

A1 = α
a0
0 �(α), A2 = 1, B1 = �(β), B2 = 1
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is one valid choice. Often it turns out to be convenient to move coordinates to A2 that

occur to a power of b0 in α
a0
0 �(α); similarly for B2.

Then A1, A2, B1, B2 are coprime to kc�(γ ). For each β0 satisfying

α
a0
0 �(α) ≡ −β

b0
0 �(β) (mod kc�(γ )),

there is a unique � ∈ {1, . . . , kc�(γ )} satisfying

gcd(�, kc�(γ )) = 1, A1 ≡ −�b0 B1 (mod kc�(γ )) (2.8)

and

β0 B2 ≡ �A2 (mod kc�(γ )).

This shows that

N1(kc) =
∑

1≤�≤kc�(γ )
(2.8) holds

#

⎧⎨⎩β0 ∈ Z

∣∣∣∣∣∣β0 B2 ≡ �A2 (mod kc�(γ ))

(2.4), h(α0, β0, α, β, γ , δ; B) ≤ 1

⎫⎬⎭ .

We remove the coprimality condition (2.4) on β0 by another Möbius inversion;

writing β0 = kbβ
′
0, we get

N1(kc) =
∑

1≤�≤kc�(γ )
(2.8) holds

∑
kb|�′(δ,β)�(α)

μ(kb)N1(�, kb, kc),

with

N1(�, kb, kc) = #

⎧⎨⎩β ′
0 ∈ Z

∣∣∣∣∣∣ kbβ
′
0 B2 ≡ �A2 (mod kc�(γ ))

h(α0, kbβ
′
0, α, β, γ , δ; B) ≤ 1

⎫⎬⎭ .

Here, we may restrict to kb satisfying gcd(kb, kc�(γ )) = 1 because otherwise

gcd(�A2, kc�(γ )) = 1 implies that N1(�, kb, kc) = 0. We note that we have gcd(kbB2, kc�(γ )) =
1 after this restriction.

We recall that {t ∈ R | h(α0, t , α, β, γ , δ; B) ≤ 1} is assumed to consist of intervals

I1, . . . , In, with I j starting at t0, j and ending at t1, j. Let ψ (t ) = {t} − 1/2, where {t} is the
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fractional part of t ∈ R. For j = 1, . . . , n, by [1, Lemma 3],

#

⎧⎨⎩β ′
0 ∈ Z

∣∣∣∣∣∣ kbβ
′
0 B2 ≡ �A2 (mod kc�(γ )),

kbβ
′
0 ∈ I j

⎫⎬⎭
= t1, j − t0, j

kbkc�(γ )
+ ψ

(
k−1

b t0, j − �A2kbB2

kc�(γ )

)
− ψ

(
k−1

b t1, j − �A2kbB2

kc�(γ )

)
,

where t0, j, t1, j (depending on α0, α, β, γ , δ, and B) are the start and end points of I j, and x

is the multiplicative inverse modulo kc�(γ ) of an integer x coprime to kc�(γ ).

We define

V1(α0, α, β, γ , δ; B) =
∫

h(α0,t ,α,β,γ ,δ;B)≤1

1

�(γ )
dt. (2.9)

The sum of the lengths of the intervals I1, . . . , In is �(γ )V1(α0, α, β, γ , δ; B), so

N1(�, kb, kc) = 1

kbkc
V1(α0, α, β, γ , δ; B) + R1(�, kb, kc),

with

R1(�, kb, kc) =
n∑

j=1

∑
i∈{0,1}

(−1)iψ

(
k−1

b ti, j − �A2kbB2

kc�(γ )

)
.

Tracing through the argument gives the following estimation for NU ,H (B), where,

for any n ∈ Z>0, φ∗(n) = φ(n)
n = ∏

p|n (1 − 1/p) and ω(n) is the number of distinct prime

factors of n.

Proposition 2.4. If the counting problem has the special form described at the beginning

of this section, then

NU ,H (B) =
∑

(α0,α,β,γ ,δ)∈Z∗×Zr+s+t+1
>0

(2.3), (2.6) holds

N1,

with

N1 = ϑ1(α0, α, β, γ , δ)V1(α0, α, β, γ , δ; B) + R1(α0, α, β, γ , δ; B),
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where V1 is defined by (2.9) and, with A1, A2, B1, B2 as in (2.7),

ϑ1(α0, α, β, γ , δ) =
∑

kc|�′(δ,γ )
gcd(kc,α0�(α)�(β))=1

μ(kc)φ∗(�′(δ, β)�(α))

kcφ∗(gcd(�′(δ, β), kc�(γ )))

∑
1≤�≤kc�(γ )
(2.8) holds

1

and

R1(α0, α, β, γ , δ; B) =
∑

kc|�′(δ,γ )
gcd(kc,α0�(α)�(β))=1

μ(kc)
∑

kb|�′(δ,β)�(α)
gcd(kb,kc�(γ ))=1

μ(kb)

×
∑

1≤�≤kc�(γ )
(2.8) holds

n∑
j=1

∑
i∈{0,1}

(−1)iψ

(
k−1

b ti, j − �A2kbB2

kc�(γ )

)
.

We have R1(α0, α, β, γ , δ; B) = 0 if h(α0, t , α, β, γ , δ; B) > 1 for all t ∈ R, while

R1(α0, α, β, γ , δ; B) � 2ω(�′(δ,γ ))2ω(�′(δ,β)�(α))bω(δ�(γ ))
0

otherwise. �

Proof. For the main term, we note that ϑ1 is

∑
kc|�′(δ,γ )

gcd(kc,α0�(α)�(β))=1

μ(kc)

kc

∑
1≤�≤kc�(γ )
(2.8) holds

∑
kb|�′(δ,β)�(α)

gcd(kb,kc�(γ ))=1

μ(kb)

kb

=
∑

kc|�′(δ,γ )
gcd(kc,α0�(α)�(β))=1

μ(kc)φ∗(�′(δ, β)�(α))

kcφ∗(gcd(�′(δ, β)�(α), kc�(γ )))

∑
1≤�≤kc�(γ )
(2.8) holds

1

and use gcd(�(α), kc�(γ )) = 1 by (2.6) and the assumption on kc.

Our discussion before the statement of this result immediately gives the ex-

plicit formula for the error term R1. Additionally, we note that both N1 and V1 vanish if

h(α0, t , α, β, γ , δ) > 1 for all t ∈ R. Otherwise, we estimate the inner sums over j, i by O(1).

The total error is

�
∑

kc|�′(δ,γ )

|μ(kc)|
∑

kb|�′(δ,β)�(α)

|μ(kb)|bω(kc�(γ ))
0

� 2ω(�′(δ,γ ))2ω(�′(δ,β)�(α))bω(δ�(γ ))
0 ,

since (2.8) has at most bω(kc�(γ ))
0 solutions � with 1 ≤ � ≤ kc�(γ ). �
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In this estimation of N1, we expect that ϑ1V1 is the main term and R1 is the error

term. It is sometimes possible (see Lemma 8.4 for an example) to show that the crude

bound for R1 at the end of Proposition 2.4 summed over all α0, α, β, γ , δ for which there

is a t ∈ R with h(α0, t , α, β, γ , δ; B) ≤ 1 gives a total contribution of o(B(log B)k−1). In other

cases, this is impossible, and one has to show that there is additional cancellation when

summing the precise expression for R1 of Proposition 2.4 over the remaining variables

(see [4], for example).

3 Another Summation

As the main result of this section, we show under certain conditions how to sum an

expression such as the main term of Proposition 2.4 over another coordinate (Proposi-

tion 3.9 and Proposition 3.10).

In this section, we will start to define several sets 
i of real-valued functions in

one variable and, for any r ∈ Z>0, several sets 
 j,r and 
′
j,r of real-valued functions in r

variables. We will be interested in the average order of these functions when summed

over intervals.

Figure 2 gives an overview of the relations between these sets of functions, for

appropriate constants C , C ′, C ′′, C1, C2, C3 ∈ R≥0, and b ∈ Z>0, where each arrow denotes

an inclusion. In case of an arrow from a set 
 j,r to a set 
i, we regard the functions in

the first set as functions in one of the variables.

Lemma 3.1. Let ϑ : Z → R be any function for which there exist c ∈ R≥0 and a function

E : R → R such that, for all t ∈ R≥0,

∑
0<n≤t

ϑ (n) = ct + E (t ).

Let t1, t2 ∈ R≥0, with t1 ≤ t2. Let g : [t1, t2] → R be a function that has a continuous deriva-

tive whose sign changes only R(g) times on [t1, t2]. Then

∑
t1<n≤t2

ϑ (n)g(n) = c
∫ t2

t1

g(t ) dt + O
(

(R(g) + 1)
(

sup
t1≤t≤t2

|E (t )|
)(

sup
t1≤t≤t2

|g(t )|
))

. �

Proof. The proof is similar to [3, Lemma 2]. For any t ∈ R≥0, let

M(t ) =
∑

0<n≤t

ϑ (n), S(t1, t2) =
∑

t1≤n≤t2

ϑ (n)g(n).
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Θ0,r(0)
Definition 3.2

Θ1,r(C, ηr)
Definition 3.8

Def. 3.8

Def. 3.8

Θ3,r

Definition 7.1

Def. 7.1

Θ3,r

Definition 7.7
Def. 7.7

Θ2,r(C)
Definition 4.2

Def. 4.2

Θ4,r(C )
Definition 7.2

Cor. 7.5

Def. 7.2

Lem. 7.3

Θ4,r(C )
Definition 7.8

Cor. 7.9

Def. 7.8

Θ0(C2)
Definition 3.7

Θ2(b, C1, C2, C3)
Definition 6.6

Def. 6.6Cor. 6.9 Θ1

Definition 6.4

Fig. 2. Relations between our sets of functions.

Using partial summation, the estimate for M(t ) and integration by parts, S(t1, t2) is

M(t2)g(t2) − M(t1)g(t1) −
∫ t2

t1

M(t )g′(t ) dt

= c
∫ t2

t1

g(t ) dt + E (t2)g(t2) − E (t1)g(t1) −
∫ t2

t1

E (t )g′(t ) dt

= c
∫ t2

t1

g(t ) dt + O
((

sup
t1≤t≤t2

|E (t )|
)(

|g(t1)| + |g(t2)| +
∫ t2

t1

|g′(t )| dt
))

.

The result follows once we split [t1, t2] into R(g) + 1 intervals where the sign of g′ does

not change. �

Definition 3.2. Let C ∈ R≥0. Let 
0,0(C ) be the set R of real numbers. For any r ∈ Z>0,

we define 
0,r(C ) recursively as the set of all nonnegative functions ϑ : Zr
>0 → R with the

following property. For any i ∈ {1, . . . , r}, there is ϑi ∈ 
0,r−1(C ) such that, for any t ∈ R≥0,

∑
0<ηi≤t

ϑ (η1, . . . , ηr) ≤ ϑi(η1, . . . , ηi−1, ηi+1, . . . , ηr) · t (log(t + 2))C .

For any ϑ ∈ 
0,r(C ) and i = 1, . . . , r, we fix a function ϑi ∈ 
0,r−1(C ) as above and

denote it by M(ϑ (η1, . . . , ηr), ηi). For any pairwise distinct i1, . . . , in ∈ {1, . . . , r}, let

M
(
ϑ (η1, . . . , ηr), ηi1 , . . . , ηin

) = M
( · · ·M(

ϑ (η1, · · · , ηr), ηi1

) · · · , ηin

) ∈ 
0,r−n(C ).
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For any t ∈ R≥0, we have∑
0<ηi1 ,...,ηin ≤t

ϑ (η1, . . . , ηr) ≤ M
(
ϑ (η1, . . . , ηr), ηi1 , . . . , ηin

)
tn(log(t + 2))nC . �

Example 3.3. For any n ∈ Z>0, let

φ∗(n) = φ(n)

n
=
∏
p|n

(
1 − 1

p

)
, φ†(n) =

∏
p|n

(
1 + 1

p

)
.

Let C ∈ Z≥0. For any t ∈ R≥0, we have

∑
0<n≤t

(φ∗(n))C ≤
∑

0<n≤t

(φ†(n))C �C t ,

(see [3, Equation 3.1]) and

∑
0<n≤t

(1 + C )ω(n) �C t (log(t + 2))C

(see [1, Section 5.1]).

Therefore, for any C ∈ Z≥0 and r ∈ Z>0,

r∏
i=1

(φ∗(ηi))
C ∈ 
0,r(0),

r∏
i=1

(φ†(ηi))
C ∈ 
0,r(0),

r∏
i=1

(1 + C )ω(ηi ) ∈ 
0,r(C ).
�

Lemma 3.4. Let C ∈ R≥0. Let ϑ : Z → R be a nonnegative function such that, for any

t ∈ R≥0, we have
∑

0<n≤t ϑ (n) ≤ t (log(t + 2))C .

Let t1 ≤ t2 ∈ R≥0, κ ∈ R. Then

∑
t1<n≤t2

ϑ (n)

nκ
�C ,κ

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
t1−κ

2 (log(t2 + 2))C , κ < 1,

(log(t2 + 2))C+1, κ = 1,

min
(

(log(t1+2))C

tκ−1
1

, 1
)

� C ,κ1, κ > 1. �

Proof. Let S be the sum that we want to estimate. Let M(t ) = ∑
0<n≤t ϑ (n).

By partial summation,

S = M(t2)

tκ
2

− M(t1)

tκ
1

−
∫ t2

t1

(−κ)
M(t )

tκ+1
dt

�κ

(log(t2 + 2))C

tκ−1
2

+ (log(t1 + 2))C

tκ−1
1

+
∫ t2

t1

(log(t + 2))C

tκ
dt.
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If κ = 1, the result follows from

∫ t2

t1

(log(t + 2))C

t + 2
dt = (log(t2 + 2))C+1 − (log(t1 + 2))C+1

C + 1
.

For κ �= 1, the result follows by induction over C from

∫ t2

t1

(log(t + 2))C

(t + 2)κ
dt �C ,κ

(log(t2 + 2))C

(t2 + 2)κ−1
+ (log(t1 + 2))C−1

(t1 + 2)κ−1
+
∫ t2

t1

(log(t + 2))C−1

(t + 2)κ
dt ,

which is obtained using integration by parts. Depending on whether κ < 1 or κ > 1, the

first or second term gives the main contribution. �

Now we come to the setup for the main result of this section. Let r, s ∈ Z≥0. We

consider a nonnegative function V : Rr+s+1
≥0 × R≥3 → R with the following properties. We

assume that, for j = 1, . . . , s, there are

k0, j, . . . , kr+ j−1, j ∈ R, kr+ j, j ∈ R�=0, kr+ j+1, j, . . . , kr+s, j = 0, aj ∈ R>0,

such that

V (η0, . . . , ηr+s; B) � B1−A

η
1−A0
0 · · · η1−Ar+s

r+s

, (3.1)

where we define, for i = 0, . . . , r + s,

A =
s∑

j=1

aj, Ai =
s∑

j=1

ajki, j.

We also assume that V (η0, . . . , ηr+s; B) = 0 unless both

η
k0, j

0 · · · ηkr+s, j
r+s = η

k0, j

0 · · · ηkr+ j, j

r+ j ≤ B, (3.2)

for j = 1, . . . , s, and

1 ≤ ηi ≤ B, (3.3)

for i = 1, . . . , r + s.
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Remark 3.5. In (3.1) and for the remainder of this section, we use the convention that

all implied constants (in the notation � and O(· · · )) are independent of η0, . . . , ηr+s and

B, but may depend on all other parameters, in particular on V and ϑ . �

Lemma 3.6. In the situation described above, let ϑ ∈ 
0,r+s+1(C ) for some C ∈ R≥0. Then

∑
η1,...,ηr+s

ϑ (η0, . . . , ηr+s)V (η0, . . . , ηr+s; B) � η−1
0 M(ϑ (η0, . . . , ηr+s), ηr+s, . . . , η1)B(log B)r+(r+s)C . �

Proof. For any � ∈ {0, . . . , r + s − 1}, let

ϑ�(η0, . . . , η�) = M(ϑ (η0, . . . , ηr+s), ηr+s, . . . , η�+1) ∈ 
0,�+1(C ).

For � = s, . . . , 0, we claim that

∑
ηr+�+1,...,ηr+s

ϑ (η0, . . . , ηr+s)V (η0, . . . , ηr+s; B) � ϑr+�(η0, . . . , ηr+�)B1−A(�)
(log B)(s−�)C

η
1−A(�)

0
0 · · · η1−A(�)

r+�

r+�

,

where

A(�) =
�∑

j=1

aj, A(�)
i =

�∑
j=1

ajki, j.

For � = s, this is true by (3.1). To prove the claim in the other cases by induction, we must

estimate

∑
ηr+�

ϑr+�(η0, . . . , ηr+�)B1−A(�)
(log B)(s−�)C

η
1−A(�)

0
0 · · · η1−A(�)

r+�

r+�

, (3.4)

for � = s, . . . , 1. Since V (η0, . . . , ηr+s; B) = 0 unless (3.2), the summation can be re-

stricted to ηr+� satisfying ηr+� ≤ T if kr+�,� > 0 resp. ηr+� ≥ T if kr+�,� < 0, with T =
(B/(ηk0,�

0 · · · ηkr+�−1,�

r+�−1 ))1/kr+�,� . An application of Lemma 3.4 (with κ = 1 − A(�)
r+� = 1 − a�kr+�,�)

shows that (3.4) is

� ϑr+�−1(η0, . . . , ηr+�−1)B1−A(�)+a� (log B)(s−(�−1))C

η
1−A(�)

0 +a�k0,�

0 · · · η1−A(�)
r+�−1+a�kr+�−1,�

r+�−1

.

The induction step is completed by observing A(�) − a� = A(�−1) and A(�)
i − a�ki,� = A(�−1)

i ,

for i = 0, . . . , r + � − 1.
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For � = r, . . . , 0, we claim that

∑
η�+1,...,ηr+s

ϑ (η0, . . . , ηr+s)V (η0, . . . , ηr+s; B) � ϑ�(η0, . . . , η�)B(log B)r−�+(r+s−�)C

η0 · · · η�

.

This is also proved by induction. The case � = r is the ending of our first induction. From

here, we apply Lemma 3.4 (with κ = 1) for the summation over η� subject to (3.3). �

Definition 3.7. For any C ∈ R≥0, let 
0(C ) be the set of all nonnegative functions ϑ :

Z>0 → R such that there is a c0 ∈ R≥0 and a bounded function E : R≥0 → R such that, for

any t ∈ R≥0,

∑
0<n≤t

ϑ (n) = c0t + E (t )(log(t + 2))C .

If ϑ ∈ 
0(C ), the corresponding c0, E (t ) are unique since t grows faster than any

power of log(t + 2) for large t ; we introduce the notation

A(ϑ (n), n) = c0, E (ϑ (n), n) = sup
t∈R≥0

{|E (t )|}. �

Definition 3.8. For any C ∈ R≥0 and r ∈ Z>0, let 
1,r(C , ηr) be the set of all functions

ϑ : Zr
>0 → R in the variables η1, . . . , ηr such that

(1) ϑ (η1, . . . , ηr) as a function in η1, . . . , ηr lies in 
0,r(0).

(2) ϑ (η1, . . . , ηr) as a function in ηr lies in 
0(C ) for any η1, . . . , ηr−1 ∈ Z, so that we

have corresponding

A(ϑ (η1, . . . , ηr), ηr) : Zr−1
>0 → R, E (ϑ (η1, . . . , ηr), ηr) : Zr−1

>0 → R

as functions in η1, . . . , ηr−1.

(3) A(ϑ (η1, . . . , ηr), ηr) lies in 
0,r−1(0).

(4) E (ϑ (η1, . . . , ηr), ηr) lies in 
0,r−1(C ).

We define 
1,r(C , ηi) for any other variable ηi analogously. �

We want to estimate

∑
η0

ϑ (η0, . . . , ηr+s)V (η0, . . . , ηr+s; B).
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We assume that V is as described before Lemma 3.6 with the additional property that

V as a function in the first variable η0 has a continuous derivative whose sign changes

only finitely often on the interval [1, B] and vanishes outside this interval.

Proposition 3.9. Let V be as above, and let ϑ ∈ 
1,r+s+1(C , η0) for some C ∈ R≥0. Then

∑
η0

ϑ (η0, . . . , ηr+s)V (η0, . . . , ηr+s; B)

= A(ϑ (η0, . . . , ηr+s), η0)
∫

t0≥1
V (t0, η1, . . . , ηr+s; B) dt0 + R(η1, . . . , ηr+s; B),

where ∑
η1,...,ηr+s

R(η1, . . . , ηr+s; B) � B(log B)r(log log B)max{1,s}. �

Proof. We note that we may always assume that 1 ≤ η0, . . . , ηr ≤ B since all terms and

error terms vanish otherwise. Let ϑ ′ ∈ 
0,r+s(0) and ϑ ′′ ∈ 
0,r+s(C ) be defined as

ϑ ′(η1, . . . , ηr+s) = A(ϑ (η0, . . . , ηr+s), η0),

ϑ ′′(η1, . . . , ηr+s) = E (ϑ (η0, . . . , ηr+s), η0).

We proceed in three steps. Let T = (log B)s+(r+s+1)C .

(1) We show that

∑
η0,...,ηr+s

η0<T

ϑ (η0, . . . , ηr+s)V (η0, . . . , ηr+s; B) � B(log B)r(log log B).

(2) Combining ϑ ∈ 
0(C ) as a function in η0 with Lemma 3.1, we have

∑
η0≥T

ϑ (η0, . . . , ηr+s)V (η0, . . . , ηr+s; B)=ϑ ′(η1, . . . , ηr+s)
∫

t0≥T
V (t0, η1, . . . , ηr+s; B) dt0

+O
(

ϑ ′′(η1, . . . , ηr+s)(log B)Csup
t0≥T

V (t0, η1, . . . , ηr+s; B)
)

.

Here, we show that summing the error term over η1, . . . , ηr+s gives O(B(log B)r).

(3) To complete the proof, we must estimate

∑
η1,...,ηr+s

ϑ ′(η1, . . . , ηr+s)
∫ T

1
V (t0, η1, . . . , ηr+s; B) dt0.
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If s = 1 and k0,1 > 0, we consider the case Tk0,1η
k1,1

1 · · · ηkr+1,1

r+1 ≤ B and its opposite

separately. If s > 1, we distinguish 2s cases.

For (1), we use ϑ ∈ 
0,r+s+1(0) and Lemma 3.6 for the summation over η1, . . . , ηr+s

and Lemma 3.4 for the summation over η0 to compute

∑
η0,...,ηr+s

ϑ (η0, . . . , ηr+s)V (η0, . . . , ηr+s; B) �
∑

1≤η0<T

η−1
0 M(ϑ (η0, . . . , ηr+s), ηr+s, . . . , η1)B(log B)r

� B(log B)r(log log B).

For (2), we note that (3.1) and (3.2) imply

V (t0, η1, . . . , ηr+s; B) � B

t0η1 · · · ηr+s
.

Combining ϑ ′′ ∈ 
0,r+s(C ) and (3.3) with Lemma 3.4 in the second step,

∑
η1,...,ηr+s

ϑ ′′(η1, . . . , ηr+s)(log B)C sup
t0≥T

V (t0, η1, . . . , ηr+s; B)

�
∑

η1,...,ηr+s

ϑ ′′(η1, . . . , ηr+s)B(log B)C

Tη1 · · · ηr+s

� T−1 B(log B)r+s+(r+s+1)C

� B(log B)r.

For (3), we assume A0 = 0 first. We use ϑ ′ ∈ 
0,r+s(0) and Lemma 3.6 (with η0 = 1)

to compute

∑
η1,...,ηr+s

ϑ ′(η1, . . . , ηr+s)
∫ T

1
V (t0, η1, . . . , ηr+s; B) dt0

�
∑

η1,...,ηr+s

ϑ ′(η1, . . . , ηr+s)B1−A

η
1−A1
1 · · · η1−Ar+s

r+s

∫ T

1

1

t0
dt0

� B(log B)r(log log B).

Now, we suppose A0 �= 0. Let

X j = η
k1, j

1 · · · ηkr+s, j
r+s = η

k1, j

1 · · · ηkr+ j, j

r+ j ,
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for j = 1, . . . , s. We distinguish 2s cases, labeled by the subsets J of {1, . . . , s}. In case J,

we assume X j ≤ min{BT−k0, j , B} for each j ∈ J, and X j > min{BT−k0, j , B} for each j /∈ J.

By (3.2), V (t0, η1, . . . , ηr+s; B) = 0 unless t
k0, j

0 X j ≤ B. Therefore, we may restrict to X j ≤
max1≤t0≤T {Bt

−k0, j

0 }.
In total, in case J, we may restrict the summation over η1, . . . , ηr+s to

X j ∈

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[0, BT−k0, j ], j ∈ J, k0, j ≥ 0,

(BT−k0, j , B], j /∈ J, k0, j ≥ 0,

[0, B], j ∈ J, k0, j < 0,

(B, BT−k0, j ], j /∈ J, k0, j < 0;

in particular, the summation is trivial if k0, j = 0 for some j /∈ J, so we assume there is no

such j. Furthermore, we may restrict the integration over t0 to the interval [T1, T2] where

T1 = max
j∈{1,...,s},

k0, j<0

{
1,
(
B X−1

j

)1/k0, j
}
, T2 = min

j∈{1,...,s}
k0, j>0

{
T ,
(
B X−1

j

)1/k0, j
}
;

we may assume that T1 ≤ T2 since the integral vanishes otherwise. We note that 1 ≤
(B X−1

j )1/k0, j ≤ T if and only if j /∈ J.

We define

A′ =
∑
j∈J

a j, A′
0 =

∑
j∈J

k0, j>0

ajk0, j, A′
i =

∑
j∈J

a jki, j,

for i = 1, . . . , r + s.

Combining (3.1) with

∫ T2

T1

1

t1−A0
0

dt0 � T A0
1 + T A0

2 �
∏
j∈J

k0, j>0

Ta jk0, j
∏
j /∈J

(
B X−1

j

)a j = B A−A′
T A′

0

η
A1−A′

1
1 · · · ηAr+s−A′

r+s
r+s

,

we obtain as the contribution of case J to the error term of (3)

∑
η1,...,ηr+s

ϑ ′(η1, . . . , ηr+s)
∫ T

1
V (t0, η1, . . . ηr+s; B) dt0 �

∑
η1,...,ηr+s

ϑ ′(η1, . . . , ηr+s)B1−A

η
1−A1
1 · · · η1−Ar+s

r+s

∫ T2

T1

1

t1−A0
0

dt0

�
∑

η1,...,ηr+s

ϑ ′(η1, . . . , ηr+s)B1−A′
T A′

0

η
1−A′

1
1 · · · η1−A′

r+s
r+s

.
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For j = s, . . . , 1, we handle the summation over ηr+ j using ϑ ′ ∈ 
0,r+s(0) and Lemma 3.4.

After the summations over ηr+s, . . . , ηr+ j+1 are done, the exponent of ηr+ j in the denomina-

tor is 1 − ajkr+ j, j if j ∈ J and it is 1 otherwise. For j ∈ J and k0, j ≥ 0, we use X j ≤ BT−k0, j ,

i.e.,

η
a jkr+ j, j

r+ j ≤ Ba j T−a jk0, j

η
a jk1, j

1 · · · ηa jkr+ j−1, j

r+ j−1

.

For j ∈ J and k0, j < 0, we use X j ≤ B, i.e.,

η
a jkr+ j, j

r+ j ≤ Ba j

η
a jk1, j

1 · · · ηa jkr+ j−1, j

r+ j−1

.

For j /∈ J, we use that BT−k0, j < X j ≤ B, for k0, j > 0, resp. B < X j ≤ BT−k0, j , for k0, j < 0,

implies that, for η1, . . . , ηr+ j−1 fixed, there are � T |k0, j | possibilities for ηr+ j, which shows

that we pick up a factor (log log B).

It follows that we can continue our estimation as

�
∑

η1,...,ηr

M(ϑ ′(η1, . . . , ηr+s), ηr+s, . . . , ηr+1)B(log log B)s−#J

η1 · · · ηr

� B(log B)r(log log B)s

since 0 ≤ #J ≤ s. �

The next result is concerned with a similar situation as in Proposition 3.9, with

r ∈ Z>0 and s = 1.

Let V : Rr+2 × R≥3 → R be a nonnegative function, and

k0, . . . , kr ∈ R, kr+1 ∈ R�=0, a, b ∈ R>0

such that

V (η0, . . . , ηr+1; B) � min

{
B1−a

η
1−ak0
0 · · · η1−akr+1

r+1

,
B1+b

η
1+bk0
0 · · · η1+bkr+1

r+1

}
. (3.5)

We assume that V (η0, . . . , ηr+1; B) = 0 unless, for i = 0, . . . , r + 1,

1 ≤ ηi ≤ B. (3.6)
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We assume that V as a function in the first variable η0 has a continuous derivative whose

sign changes only finitely often on the interval [1, B].

Proposition 3.10. For some C ∈ R≥0, let ϑ ∈ 
1,r+2(C , η0). Let V be as above. Then

∑
η0

ϑ (η0, . . . , ηr+1)V (η0, . . . , ηr+1; B)

= A(ϑ (η0, . . . , ηr+1), η0)
∫

t0≥1
V (t0, η1, . . . , ηr+s; B) dt0 + R(η1, . . . , ηr+1; B),

where ∑
η1,...,ηr+1

R(η1, . . . , ηr+1; B) � B(log B)r(log log B). �

Proof. We define ϑ ′ ∈ 
0,r+1(0) and ϑ ′′ ∈ 
0,r+1(C ) as in the proof of Proposition 3.9. Let

M = M(η0, . . . , ηr+1; B) = ϑ (η0, . . . , ηr+1)V (η0, . . . , ηr+1; B)

and

M′(t ) = M′(t , η1 . . . , ηr+1; B) = ϑ ′(η1, . . . , ηr+1)
∫

t0≥t
V (t0, η1, . . . , ηr+1; B) dt0.

We want to show that M summed over all η0 ∈ Z>0 agrees with M′(1) up to an acceptable

error. We do this in three steps, where T = (log B)1+(r+2)C .

(1) We show that M summed over all η0 agrees with M summed over η0 ≥ T up to

an acceptable error, by proving that

∑
η0,...,ηr+1

η0<T

M � B(log B)r(log log B).

(2) We show that M summed over η0 ≥ T gives M′(T ) up to an error of R′ =
R′(η1, . . . , ηr+1; B) with

∑
η1,...,ηr+1

R′ � B(log B)r.

(3) We show that M′(T ) summed over η1, . . . , ηr+1 agrees with M′(1) up to an ac-

ceptable error, by proving that

∑
η1,...,ηr+1

(M′(1) − M′(T )) � B(log B)r(log log B).
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If k0 < 0, we distinguish three cases, where η
k1
1 · · · ηkr+1

r+1 is at most B, or at least

BT−k0 , or between these two numbers.

For (1), we use (3.5), ϑ ∈ 
0,r+2(0), and (3.6). For η
k0
0 · · · ηkr+1

r+1 ≤ B, we apply

Lemma 3.6 to compute

∑
η0,...,ηr+1

M �
∑

η0,...,ηr+1

ϑ (η0, . . . , ηr+1)B1−a

η
1−ak0
0 · · · η1−akr+1

r+1

�
∑
η0

η−1
0 M(ϑ (η0, . . . , ηr+1), ηr+1, . . . , η1)B(log B)r

� B(log B)r(log log B).

In the opposite case, by Lemma 3.4, we have

∑
η0,...,ηr+1

M �
∑

η0,...,ηr+1

ϑ (η0, . . . , ηr+1)B1+b

η
1+bk0
0 · · · η1+bkr+1

r+1

�
∑

η0,...,ηr

M(ϑ (η0, . . . , ηr+1), ηr+1)B

η0 · · · ηr

� B(log B)r(log log B).

For (2), we combine ϑ ∈ 
0(C ) as a function in η0 with Lemma 3.1. This shows

that M summed over η0 ≥ T gives the main term M′(T ) as above and an error term

which can be estimated (using V (η0, . . . , ηr+1; B) � B
η0···ηr+1

by (3.5), ϑ ′′ ∈ 
0,r+1(C ), (3.6), and

Lemma 3.4) as

�
∑

η1,...,ηr+1

(log B)C ϑ ′′(η1, . . . , ηr+1) sup
t0≥T

V (t0, η1, . . . , ηr+1; B)

�
∑

η1,...,ηr+1

(log B)C ϑ ′′(η1, . . . , ηr+1)B

Tη1 · · · ηr+1

� T−1 B(log B)r+1+(r+2)C = B(log B)r.

For (3), we suppose kr+1 > 0; the case kr+1 < 0 is similar. In the following compu-

tations, we use (3.5), ϑ ′ ∈ 
0,r+1(0), (3.6), and Lemma 3.4.

If k0 < 0, we split the summation over η1, . . . , ηr+1 and integration over t0 into three

parts, the first defined by the condition η
k1
1 · · · ηkr+1

r+1 ≤ B. We estimate using Lemma 3.6
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(with η0 = 1)

�
∑

η1,...,ηr+1

ϑ ′(η1, . . . , ηr+1)
∫ T

1
V (t0, η1, . . . , ηr+1; B) dt0

�
∑

η1,...,ηr+1

ϑ ′(η1, . . . , ηr+1)
∫ T

1

B1−a

t1−ak0
0 η

1−ak1
1 · · · η1−akr+1

r+1

dt0

�
∑

η1,...,ηr+1

ϑ ′(η1, . . . , ηr+1)B1−a

η
1−ak1
1 · · · η1−akr+1

r+1

� B(log B)r.

For the second subset defined by B < η
k1
1 · · · ηkr+1

r+1 ≤ BT−k0 , we get

�
∑

η1,...,ηr+1

ϑ ′(η1, . . . , ηr+1) ×
(∫

t0≤
(
η

k1
1 ···ηkr+1

r+1

/
B
)−1/k0

B1+b

t1+bk0
0 η

1+bk1
1 · · · η1+bkr+1

r+1

dt0

+
∫

t0≥
(
η

k1
1 ···ηkr+1

r+1

/
B
)−1/k0

B1−a

t1−ak0
0 η

1−ak1
1 · · · η1−akr+1

r+1

dt0

)

�
∑

η1,...,ηr+1

ϑ ′(η1, . . . , ηr+1)B

η1 · · · ηr+1

� B(log B)r(log log B).

For the third subset defined by η
k1
1 · · · ηkr+1

r+1 > BT−k0 , we get

�
∑

η1,...,ηr+1

∫ T

1

ϑ ′(η1, . . . , ηr+1)B1+b

t1+bk0
0 η

1+bk1
1 · · · η1+bkr+1

r+1

dt0

�
∑

η1,...,ηr+1

ϑ ′(η1, . . . , ηr+1)B1+bT−bk0

η
1+bk1
1 · · · η1+bkr+1

r+1

�
∑

η1,...,ηr

M(ϑ ′(η1, . . . , ηr+1), ηr+1)B

η1 · · · ηr

� B(log B)r.

If k0 > 0, the computations are similar.

If k0 = 0, we split the summation over η1, . . . , ηr+1 into two subsets, the first

defined by η
k1
1 · · · ηkr+1

r+1 ≤ B.
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Here, we compute

�
∑

η1,...,ηr+1

ϑ ′(η1, . . . , ηr+1)
∫ T

1

B1−a

t0η
1−ak1
1 · · · η1−akr+1

r+1

dt0

�
∑

η1,...,ηr+1

ϑ ′(η1, . . . , ηr+1)B1−a (log log B)

η
1−ak1
1 · · · η1−akr+1

r+1

� B(log B)r(log log B).

For the subset defined by η
k1
1 · · · ηkr+1

r+1 > B, the computation is similar. �

4 Completion of Summations

Let r, s ∈ Z≥0 with r ≥ s. In this section, we consider functions

ϑr+s : Zr+s
≥0 → R, Vr+s : Rr+s

≥0 × R≥3 → R.

In the previous section, we summed the product of such functions over one variable;

here, we sum over all variables and therefore want to estimate

∑
η1,...,ηr+s

ϑr+s(η1, . . . , ηr+s)Vr+s(η1, . . . , ηr+s; B).

This will be done in the case that ϑr+s and Vr+s fulfill certain conditions described in the

following that allow us to apply Proposition 3.9 repeatedly.

For the implied constants in this section, we use a similar convention as described

in Remark 3.5, i.e., the implied constants are meant to be independent of η1, . . . , ηr+s and

B, but may depend on everything else, in particular on Vr+s and ϑr+s.

For Vr+s : Rr+s
≥0 × R≥3 → R, a nonnegative function, we require the following, sim-

ilar to Section 3. We assume that, for j = 1, . . . , s, we have aj ∈ R>0 and

k1, j, . . . , kr−s+ j−1, j ∈ R, kr−s+ j, j ∈ R�=0, kr−s+ j+1, j , . . . , kr, j = 0,

kr+1, j, . . . , kr+ j−1, j ∈ R, kr+ j, j ∈ R�=0, kr+ j+1, j, . . . , kr+s, j = 0.
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For � = 1, . . . , s and i = 1, . . . , r + s, we define

A(�) =
�∑

j=1

aj, A(�)
i =

�∑
j=1

ajki, j.

We assume that

Vr+s(η1, . . . , ηr+s; B) � B1−A(s)

η
1−A(s)

1
1 · · · η1−A(s)

r+s
r+s

, (4.1)

and that Vr+s(η1, . . . , ηr+s; B) = 0 unless both

η
k1, j

1 · · · ηkr+s, j
r+s = η

k1, j

1 · · · ηkr+ j, j

r+ j ≤ B, (4.2)

for j = 1, . . . , s, and

1 ≤ ηi ≤ B, (4.3)

for i = 1, . . . , r + s.

For � = r + s − 1, . . . , 0, we define recursively

V�(η1, . . . , η�; B) =
∫

η�+1

V�+1(η1, . . . , η�+1; B) dη�+1

=
∫

η�+1,...,ηr+s

Vr+s(η1, . . . , ηr+s) dηr+s · · · dη�+1,
(4.4)

and assume that V� as a function in η� has a continuous derivative whose sign changes

only finitely often.

Lemma 4.1. In the situation described above, we have, for � ∈ {1, . . . , s},

Vr+�(η1, . . . , ηr+�; B) � B1−A(�)

η
1−A(�)

1
1 · · · η1−A(�)

r+�

r+�

and, for � ∈ {1, . . . , r},

V�(η1, . . . , η�; B) � B(log B)r−�

η1 · · · η�

. �
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Proof. The proof is analogous to the proof of Lemma 3.6, skipping the step of replacing

sums by integrals via Lemma 3.4. �

Recall the notation of Definition 3.7 and Definition 3.8.

Definition 4.2. Let C ∈ R≥0. Let 
2,0(C ) be the set R of real numbers. For any r ∈ Z>0, we

define 
2,r(C ) recursively as the set of all functions ϑ : Zr
>0 → R in the variables η1, . . . , ηr

such that ϑ ∈ 
1,r(C , ηr) and ϑ ′ ∈ 
2,r−1(C ), where ϑ ′(η1, . . . , ηr−1) = A(ϑ (η1, . . . , ηr), ηr).

For ϑ ∈ 
2,r(C ) and any pairwise distinct i1, . . . , in ∈ {1, . . . , r}, we define

A
(
ϑ (η1, . . . , ηr), ηi1 , . . . , ηin

) = A
(
. . .A

(
ϑ (η1, . . . , ηr), ηi1

)
. . . , ηin

)
;

it is a function in 
2,r−n(C ). �

Proposition 4.3. Let Vr+s be as described before Lemma 4.1, and let ϑr+s ∈ 
2,r+s(C ) for

some C ∈ R≥0. Then

∑
η1,...,ηr+s

ϑr+s(η1, . . . , ηr+s)Vr+s(η1, . . . , ηr+s; B) = c0

∫
η1,...,ηr+s

Vr+s(η1, . . . , ηr+s; B) dηr+s · · · dη1

+ O
(
B(log B)r−1(log log B)max{1,s}) ,

where c0 = A(ϑr+s(η1, . . . , ηr+s), ηr+s, . . . , η1). �

Proof. We proceed by induction as follows, for � = r + s, . . . , 1. Given ϑ� ∈ 
2,�(C ), we

define ϑ�−1 ∈ 
2,�−1(C ) by

ϑ�−1(η1, . . . , η�−1) = A(ϑ�(η1, . . . , η�), η�)

= A(ϑr+s(η1, . . . , ηr+s), ηr+s, . . . , η�).

With V�, V�−1 as in (4.4), we apply Proposition 3.9 to show that

∑
η�

ϑ�(η1, . . . , η�)V�(η1, . . . , η�; B) = ϑ�−1(η1, . . . , η�−1)V�−1(η1, . . . , η�−1; B) + R(η1, . . . , η�−1; B),

where

∑
η1,...,η�−1

R(η1, . . . , η�−1; B) � B(log B)r−1(log log B)max{1,�−r}.
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Table 2 Application of Proposition 3.9.

Proposition 3.9 � ∈ {1, . . . , r} � ∈ {r + 1, . . . , r + s}

(r,s) (� − 1, 0) (r − 1, � − r)

η0 η� η�

η1, . . . , ηr η1, . . . , η�−1 η1, . . . , η�−s−1, η�−s+1, . . . , ηr

ηr+s, . . . , ηr+s − ηr+1, . . . , η�−1, η�−s

ϑ ∈ 
1,r+s+1(C , η0) ϑ� ∈ 
2,�(C ) ϑ� ∈ 
2,�(C )

A(ϑ (η0, . . . , ηr+s), η0) ϑ�−1 ∈ 
2,�−1(C ) ϑ�−1 ∈ 
2,�−1(C )

V V�/(log B)r−� V�

V ′ V�−1/(log B)r−� V�−1

k0, j, k1, j , . . . , kr+s, j – k1, j , . . . , k�, j

arranged as η1, . . . , η�

A; A0, A1, . . . , Ar+s − A(�−r); A(�−r)
1 , . . . , A(�−r)

�

arranged as η1, . . . , η�

(3.1) Lemma 4.1 Lemma 4.1

(3.2) – (4.2)

(3.3) (4.3) (4.3)

How to apply Proposition 3.9 (especially with respect to the order of the variables

η1, . . . , η�) depends on whether 1 ≤ � ≤ r or r + 1 ≤ � ≤ r + s; furthermore, there are many

prerequisites to check. Therefore, we have listed the details for the application of Propo-

sition 3.9 in Table 2. �

Remark 4.4. An analogous result to Proposition 4.3 holds if we want to estimate

ϑr+1(η1, . . . , ηr+1)Vr+1(η1, . . . , ηr+1; B) summed over η1, . . . , ηr+1, but with (4.1) and (4.2) re-

placed by a bound analogous to (3.5). In the proof, we apply Proposition 3.10 instead of

Proposition 3.9 in the first summation over ηr+1. �

5 Real-Valued Functions

The following result is often useful to derive bounds such as (3.1), (3.5), and (4.1) for real-

valued functions defined through certain integrals; for example, we recover the bounds

of [3, Lemma 8].
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Lemma 5.1. Let a, b ∈ R�=0. Then we have the following bounds:

(1)
∫
|at2+b|≤1 dt � min{|a|−1/2, |ab|−1/2}.

(2)
∫
|at2u+buk |≤1 dt du � |ab1/k|−1/2, for k > 1.

(3)
∫
|at2+buk |≤1 dt du � |a|−1/2|b|−1/k, for k > 2.

(4)
∫
|at2+bt |≤1 dt � min{|a|−1/2, |b|−1}.

(5)
∫
|at2u+btu2|≤1 dt du � |ab|−1/3.

(6)
∫
|at2+btuk |≤1 dt du � |a|−(k−1)/(2k)|b|−1/k, for k > 1. �

Proof. We treat only the case a > 0; its opposite is essentially the same.

For (1), we consider t such that |at2 + b| ≤ 1; if there is no such t , the claim is

obvious. Otherwise, suppose first |b| ≤ 2. Then |at2 + b| ≤ 1 implies |at2| ≤ 3, i.e., t �
|a|−1/2 � |ab|−1/2. Next, suppose |b| > 2. Obviously b > 2 is impossible, so we assume

b < −2. Then |at2 + b| ≤ 1 implies

√
−b − 1

a
≤ t ≤

√
−b + 1

a
.

We note that the condition
√

x ≤ t ≤ √
x + y for x, y > 0 describes an interval of length

� x−1/2y. Here, x = (|b| − 1)/a > |b|/(2a) and y = 2/a, so the interval for t has length

� |ab|−1/2 � |a|−1/2.

For (2), we apply (1) and obtain

∫
|at2u+bu2|≤1

dt du �
∫ ∞

0
min

{|au|−1/2, |abuk+1|−1/2} du

�
∫ |b|−1/k

0
|au|−1/2 du +

∫ ∞

|b|−1/k
|abuk+1|−1/2 du � 1

|ab1/k|1/2
.

Similarly, for (3), we get

∫
|at2+buk |≤1

dt du �
∫ ∞

0
min

{|a|−1/2, |abuk|−1/2} du

�
∫ |b|−1/k

0
|a|−1/2 du +

∫ ∞

|b|−1/k
|abuk|−1/2 du � 1

|a|1/2|b|1/k
.

For (4), we transform |at2 + bt | ≤ 1 to

√
max

{
0,

b2 − 4a

4a2

}
≤ |t + b/(2a)| ≤

√
b2 + 4a

4a2
.
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If b2 ≤ 8a then ((b2 + 4a)/(4a2))1/2 � |a|−1/2 � |b|−1, which is also a bound for the length

of the interval of allowed values of t . If b2 > 8a, then we apply the above bound for

x = (b2 − 4a)/(4a2) > b2/(8a2) and y = 2/a to conclude that the interval for t has length

� |b|−1 � |a|−1/2.

For (5), we apply (4) to conclude

∫
|at2u+btu2|≤1

dt du �
∫ ∞

0
min{|au|−1/2, |bu2|−1} du

�
∫ |a/b2|1/3

0
|au|−1/2 du +

∫ ∞

|a/b2|1/3
|bu2|−1 du � 1

|ab|1/3
.

For (6), we have

∫
|at2+btuk |≤1

dt du �
∫ ∞

0
min{|a|−1/2, |buk|−1} du

�
∫ |a1/2/b|1/k

0
|a|−1/2 du +

∫ ∞

|a1/2/b|1/k
|buk|−1 du � 1

|a|(k−1)/(2k)|b|1/k
.

This completes the proof. �

6 Arithmetic Functions in One Variable

In Sections 3 and 4, we were interested in the average size of arithmetic functions on

intervals, with certain bounds on the error term.

In this section, we describe a set of functions in one variable (Definition 6.6)

for which this information is computable explicitly (by Corollary 6.9). This includes the

functions fa,b treated in [3, Lemma 1] (see Example 6.10).

Lemma 6.1. Let ϑ : Z>0 → R be a function, and let t , y ∈ R≥0, with y ≤ t . Let a, q ∈ Z>0,

with gcd(a, q) = 1. If the infinite sum

∑
d>0

gcd(d,q)=1

(ϑ ∗ μ)(d)

d
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converges to c0 ∈ R, we have

∑
0<n≤t

n≡a (mod q)

ϑ (n) = c0t

q
+ O

⎛⎜⎜⎝ ∑
0<d≤y

gcd(d,q)=1

|(ϑ ∗ μ)(d)| + t

q
·

∣∣∣∣∣∣∣∣
∑
d>y

gcd(d,q)=1

(ϑ ∗ μ)(d)

d

∣∣∣∣∣∣∣∣
+

∑
0<n<t/y

gcd(n,q)=1

∣∣∣∣∣∣∣∣
∑

y<d≤t/n
nd≡a (mod q)

(ϑ ∗ μ)(d)

∣∣∣∣∣∣∣∣
⎞⎟⎟⎠ . �

Proof. Since ϑ = (ϑ ∗ μ) ∗ 1, we have

∑
0<n≤t

n≡a (mod q)

ϑ (n) =
∑

0<n≤t
n≡a (mod q)

∑
d|n

(ϑ ∗ μ)(d) =
∑

0<d≤t
gcd(d,q)=1

∑
0<n′≤t/d

n′d≡a (mod q)

(ϑ ∗ μ)(d).

Splitting this sum into the cases d ≤ y and its opposite, we get

=
∑

0<d≤y
gcd(d,q)=1

(ϑ ∗ μ)(d) ·
(

t

qd
+ O(1)

)
+

∑
0<n′<t/y

gcd(n′,q)=1

∑
y<d≤t/n′

n′d≡a (mod q)

(ϑ ∗ μ)(d),

and the result follows. �

Lemma 6.2. Let C ∈ R≥1. Let ϑ : Z>0 → R be such that, for any t ∈ R≥0,

∑
0<n≤t

|(ϑ ∗ μ)(n)| · n ≤ t (log(t + 2))C−1.

Then, for any q ∈ Z>0 and a ∈ Z with gcd(a, q) = 1, the real number c0 as in Lemma 6.1

exists, and ∑
0<n≤t

n≡a (mod q)

ϑ (n) = c0t

q
+ OC ((log(t + 2))C ). �

Proof. We apply Lemma 6.1, with y = t . It remains to handle the error term, whose third

part clearly vanishes. By Lemma 3.4 and our assumption on ϑ , the first part of the error

term is

∑
0<n≤t

|(ϑ ∗ μ)(n)| �C (log(t + 2))C ,
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and the second part of the error term is

t

q

∑
n>t

|(ϑ ∗ μ)(n)|
n

�C q−1(log(t + 2))C−1.

This completes the proof. �

Remark 6.3. For infinite products, we use the following convention. We require that

the partial products of all nonvanishing factors of an infinite product converge to a

nonzero number. If there are any vanishing factors, the value of the infinite product is

zero. Otherwise, the infinite product cannot converge to zero. �

Let P denote the set of all primes.

Definition 6.4. Let 
1 be the set of all nonnegative functions ϑ : Z>0 → R such that

there is a c ∈ R and a system of nonnegative functions Ap : Z≥0 → R for p ∈ P satisfying

ϑ (n) = c
∏
pν‖n

Ap(ν)
∏
p�n

Ap(0)

for all n ∈ Z (where the first product is over all p ∈ P and ν ∈ Z>0 such that pν | n but

pν+1 � n). In this situation, we say that ϑ ∈ 
1 corresponds to c, Ap. �

Lemma 6.5. Suppose ϑ ∈ 
1 is not identically zero and corresponds to c, Ap and c′, A′
p.

Then there are unique bp ∈ R>0, for p ∈ P, such that
∏

p bp converges to a number b0 ∈ R>0,

A′
p(ν) = bpAp(ν) for all p ∈ P, ν ∈ Z≥0, and c′ = c/b0.

Conversely, given ϑ ∈ 
1 corresponding to c, Ap, and bp ∈ R>0, for p ∈ P, such

that b0 = ∏
p bp ∈ R>0 exists. Then ϑ also corresponds to c′, A′

p defined as c′ = c/b0 and

A′
p(ν) = bpAp(ν) for all p ∈ P, ν ≥ 0. �

Proof. Fix n = ∏
p pk(p) ∈ Z>0 such that ϑ (n) �= 0. Then Ap(k(p)) and A′

p(k(p)) are nonzero,

so bp ∈ R>0 is uniquely defined as A′
p(k(p))/Ap(k(p)). Since

Ap(ν)

Ap(k(p))
= ϑ

(
pν−k(p)n

)
ϑ (n)

= A′
p(ν)

A′
p(k(p))

,

we have A′
p(ν) = bpAp(ν) for all ν ∈ Z≥0.
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Since
∏

p�n Ap(0) and
∏

p�n A′
p(0) are well-defined nonzero numbers, also

∏
p�n bp ∈

R>0 and therefore b0 ∈ R>0 exist. Since

ϑ (n) = c′ ∏
pν‖n

A′
p(ν)

∏
p�n

A′
p(0) = c′b0

∏
pν‖n

Ap(ν)
∏
p�n

Ap(0),

we conclude that c = c′b0.

It is straightforward to check the converse statement. �

Definition 6.6. For any b ∈ Z>0, C1, C2, C3 ∈ R≥1, let 
2(b, C1, C2, C3) be the set of all

functions ϑ ∈ 
1 for which there exist corresponding c, Ap satisfying the following con-

ditions:

(1) For all p ∈ P and ν ≥ 1,

|Ap(ν) − Ap(ν − 1)| ≤
{

C1, pν | b,

C2 p−ν , pν � b.

(2) For all k ∈ Z>0, we have |c∏p�k Ap(0)| ≤ C3.

Given ϑ ∈ 
2(b, C1, C2, C3), we will see in Proposition 6.8 that, for any q ∈ Z>0, the

infinite product

c
∏
p�q

((
1 − 1

p

) ∞∑
ν=0

Ap(ν)

pν

)∏
p|q

Ap(0)

converges to a real number, which we denote by A(ϑ (n), n, q). �

If Ap(ν) = Ap(ν + 1) for all primes p and all ν ≥ 1, then the formula is simplified

to

A(ϑ (n), n, q) = c
∏
p�q

((
1 − 1

p

)
Ap(0) + 1

p
Ap(1)

)∏
p|q

Ap(0).

We will see in Corollary 6.9 how the notation A(ϑ (n), n, q) of Definition 6.6 is

related to the notation A(ϑ (n), n) of Definition 3.7.

Remark 6.7. If ϑ ∈ 
2(b, C1, C2, C3) corresponds to c, Ap and c′, A′
p, where c, Ap sat-

isfy conditions (1) and (2) of Definition 6.6, then c′, A′
p do not necessarily satisfy these
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conditions. However, with bp ∈ R>0 as in Lemma 6.5, if we replace C1, C2, C3 by

C1 max
p|b

{bp}, C2 sup
p

{bp}, C3

∏
p

|bp|>1

bp,

then c′, A′
p satisfy conditions (1) and (2). �

In all statements regarding ϑ ∈ 
2(b, C1, C2, C3), we will mark explicitly by sub-

scripts if an implied constant in the notation � and O(· · · ) depends on any of b, C1, C2, C3,

or ϑ . The reason is that we will apply the results of this section in Section 7 to functions

in several variables η1, . . . , ηr. As functions in ηr, they will lie in 
2(b, C1, C2, C3), but (some

of) b, C1, C2, C3 will depend on η1, . . . , ηr−1.

Proposition 6.8. Let ϑ ∈ 
1 be nontrivial, with corresponding c, Ap.

(1) For any n ∈ Z>0,

(ϑ ∗ μ)(n) = c
∏
p�n

Ap(0)
∏
pν‖n

(Ap(ν) − Ap(ν − 1)).

(2) We assume ϑ ∈ 
2(b, C1, C2, C3). For any t ∈ R≥0,

∑
0<n≤t

|(ϑ ∗ μ)(n)| · n �C2 τ (b)(C1C2)ω(b)C3t (log(t + 2))C2−1,

where τ (n) = ∑
d|n 1 is the divisor function.

(3) We assume ϑ ∈ 
2(b, C1, C2, C3). For any q ∈ Z>0, the infinite sum and the infi-

nite product

∑
n>0

gcd(n,q)=1

(ϑ ∗ μ)(n)

n
, c

∏
p�q

((
1 − 1

p

) ∞∑
ν=0

Ap(ν)

pν

)∏
p|q

Ap(0)

converge to the same real number. �
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Proof. Up to the converging product
∏

p�n Ap(0), claim (1) is an identity of finite algebraic

expressions

c
∏
p�n

Ap(0)
∏
pν‖n

(Ap(ν) − Ap(ν − 1)) =
∑
d|n

|μ(d)=1|

c
∏
p�n

Ap(0)
∏
pν‖n
p�d

Ap(ν)
∏
pν‖n
p|d

(−Ap(ν − 1))

=
∑
d|n

μ(d)c
∏
p� n

d

Ap(0)
∏
pν‖ n

d

Ap(ν)

=
∑
d|n

μ(d)ϑ (n/d)

= (ϑ ∗ μ)(n).

For (2), it follows from (1) that

|(ϑ ∗ μ)(n)| ≤ C ω(gcd(b,n))
1 C ω(n)

2 C3 gcd(b, n)n−1.

Therefore,

∑
0<n≤t

|(ϑ ∗ μ)(n)| · n �
∑

0<n≤t

C ω(gcd(n,b))
1 C ω(n)

2 C3 gcd(n, b)

�
∑
d|b

∑
0<n′≤t/d

gcd(n′,b/d)=1

C ω(d)
1 C ω(dn′)

2 C3d

� C2

∑
d|b

(C1C2)ω(d)C3t (log(t + 2))C2−1

� τ (b)(C1C2)ω(b)C3t (log(t + 2))C2−1,

using Example 3.3.

For (3), for p ∈ P, let νp = min{ν ∈ Z≥0 | Ap(ν) �= 0}. Since ϑ is nontrivial, νp = 0 for

all but finitely many p, so a = ∏
p pνp defines a positive integer. If a � n, then ϑ (n) = 0 and

(ϑ ∗ μ)(n) = 0.

We define the multiplicative function B : Z>0 → R by

B(pν ) = Ap(ν + νp) − Ap(ν + νp − 1)

Ap(νp)
,
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for any p ∈ P and ν ∈ Z>0, and

c′ = c
∏

p

Ap(νp) ∈ R.

If n = an′ for some n′ ∈ Z>0, then, by (1),

(ϑ ∗ μ)(n) = c
∏
p�an′

Ap(0)
∏

pν‖an′
(Ap(ν) − Ap(ν − 1)) = c′B(n′).

We assume that gcd(a, q) = 1. By (2) and Lemma 3.4, the following sum converges

absolutely, so that we may form the Euler product in the second step.

∞∑
n=1

gcd(n,q)=1

(ϑ ∗ μ)(n)

n
=

∞∑
n′=1

gcd(n′,q)=1

c′B(n′)
an′ = c′

a

∏
p�q

( ∞∑
ν=0

B(pν )

pν

)

= c
∏

p

Ap(νp)

pνp

∏
p�q

(
1 +

∞∑
ν=1

Ap(ν + νp) − Ap(ν + νp − 1)

pν Ap(νp)

)

= c
∏
p|q

Ap(νp)

pνp

∏
p�q

⎛⎝(1 − 1

p

) ∞∑
ν=νp

Ap(ν)

pν

⎞⎠ .

Since Ap(ν) = 0 for any ν < νp, and νp = 0 for any p | q, this proves the claim in the case

gcd(a, q) = 1.

If gcd(a, q) > 1, then (ϑ ∗ μ)(n) = 0 for all n satisfying gcd(n, q) = 1, so that (3) is

trivially true. �

Because of the following result, A(ϑ (n), n, q) should be viewed as the average size

of ϑ (n) when summed over all n in a residue class modulo q in a sufficiently long interval.

Corollary 6.9. Let ϑ ∈ 
2(b, C1, C2, C3) be nontrivial. If q ∈ Z>0 and a ∈ Z with

gcd(a, q) = 1, then

∑
0<n≤t

n≡a (mod q)

ϑ (n) = t

q
A(ϑ (n), n, q) + OC2

(
τ (b)(C1C2)ω(b)C3(log(t + 2))C2

)
,

for any t ∈ R≥0. In particular, in the notation of Definition 3.7, ϑ ∈ 
0(C2), withA(ϑ (n), n) =
A(ϑ (n), n, 1) and E (ϑ (n), n) = OC2 (τ (b)(C1C2)ω(b)C3). �

Proof. Let C4 = τ (b)(C1C2)ω(b)C3. By Proposition 6.8(2), Lemma 6.2 applies to C −1
4 ϑ , with

c0 = C −1
4 A(ϑ (n), n, q) by Proposition 6.8(3). �
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Example 6.10. For a, b ∈ Z>0, we consider fa,b as in [3, (3.2)]. Then fa,b ∈ 
1, correspond-

ing to c, Ap, where c = 1 and Ap(0) = 1 for any prime p, while

Ap(ν) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, p | b,

1, p � b, p | a,

1 − 1
p, p � ab,

for any ν > 0. Clearly, fa,b ∈ 
2(
∏

p|b p, 1, 1, 1), and we compute

A( fa,b(n), n, q) =
∏
p|b
p�q

(
1 − 1

p

) ∏
p�abq

(
1 − 1

p2

)
,

for any q ∈ Z>0. Since τ (
∏

p|b p) = 2ω(b), Corollary 6.9 gives another proof of [3,

Lemma 1]. �

7 Arithmetic Functions in Several Variables

Here, we are interested in the average size of certain arithmetic functions in several vari-

ables when summing them over some or all of these variables. Our goal is to characterize

functions explicitly that typically appear in proofs of Manin’s conjecture and to show

that they lie in 
2,r(C ) (see Definition 4.2), so that we can apply Proposition 4.3.

Definition 7.1. Let r ∈ Z≥0. For any η1, . . . , ηr ∈ Z>0 and any prime p, we define

kp(η1, . . . , ηr) = (k1, . . . , kr),

where pki ‖ ηi for i = 1, . . . , r.

Let 
3,0 = R. For r ∈ Z>0, let 
3,r be the set of all nonnegative functions ϑ :

Zr
>0 → R for which there are nonnegative functions ϑp : Zr

≥0 → R for any prime p such

that

ϑ (η1, . . . , ηr) =
∏

p

ϑp(kp(η1, . . . , ηr)),

for all η1, . . . , ηr ∈ Z>0. We call the functions ϑp local factors of ϑ .
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For k ∈ Zr, we define

supp(k) = {i ∈ {1, . . . , r} | ki �= 0}, �(k) = k1 + · · · + kr. �

Definition 7.2. Let C ∈ R≥1. Let 
4,0(C ) = R. For any r ∈ Z>0, let 
4,r(C ) be the set of all

functions ϑ ∈ 
3,r whose local factors ϑp fulfill the following conditions for any prime p:

(1) For any k, k′ ∈ Zr
≥0 with supp(k − k′) = {i} and �(k − k′) = 1 (i.e., k, k′ differ by

1 at the ith coordinate ki, k′
i and coincide at all other coordinates),

|ϑp(k) − ϑp(k′)| ≤
{

C , ki = 1, # supp(k) ≥ 2,

C p−ki , otherwise.

(2) For any k ∈ Zr
≥0,

ϑp(k) ≤
{

1 + C p−2, k = (0, . . . , 0),

1 + # supp(k) · C p−1, otherwise. �

We recall Definition 6.6 of 
2.

Lemma 7.3. For r ∈ Z>0, C ∈ R≥1, let ϑ ∈ 
4,r(C ), with local factors ϑp. As a function

in ηr,

ϑ ∈ 
2

⎛⎝ ∏
p|η1···ηr−1

p, C , C , (3rC )ω(η1···ηr−1)
∏

p

(
1 + C

p2

)⎞⎠ .

The function ϑ ′ : Zr−1
>0 → R defined by

ϑ ′(η1, . . . , ηr−1) = A(ϑ (η1, . . . , ηr), ηr, 1),

has local factors

ϑ ′
p(k) =

(
1 − 1

p

) ∞∑
kr=0

ϑp(k, kr)

pkr
. �

Proof. We have

ϑ (η1, . . . , ηr) =
∏

pkr ‖ηr

ϑp(kp(η1, . . . , ηr−1), kr)
∏
p�ηr

ϑp(kp(η1, . . . , ηr−1), 0).
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Therefore, ϑ as a function in ηr lies in 
1, with corresponding c = 1 and Ap(ν) =
ϑp(kp(η1, . . . , ηr−1), ν) for any ν ∈ Z≥0 and p ∈ P.

Now we check that c, Ap fulfill the conditions of Definition 6.6. For any k ∈ Zr
≥0,

ϑp(k) is at most

ϑp((0, . . . , 0)) +
r∑

i=1

ki∑
n=1

|ϑp(k1, . . . , ki−1, n, 0, . . . , 0) − ϑp(k1, . . . , ki−1, n − 1, 0, . . . , 0)|

≤ (1 + C p−2) +
r∑

i=1

(
C +

ki∑
n=2

C p−n

)

≤ 1 + C p−2 + r
(

C + C

p2(1 − p−1)

)
≤ 3rC .

Therefore,

|Ap(0)| ≤
{

3rC , p | η1 · · · ηr−1,

1 + C p−2, p � η1 · · · ηr−1,

so that, for any k ∈ Z>0,

∣∣∣∣∣∣c
∏
p�k

Ap(0)

∣∣∣∣∣∣ ≤ (3rC )ω(η1···ηr−1)
∏

p

(
1 + C

p2

)
.

Furthermore, for any prime p and ν ∈ Z>0,

|Ap(ν) − Ap(ν − 1)| = |ϑp(kp(η1, . . . , ηr−1), ν) − ϑp(kp(η1, . . . , ηr−1), ν − 1)|

≤
⎧⎨⎩C , ν = 1, # supp(kp(η1, . . . , ηr−1)) > 0,

C p−ν , otherwise,

where the first case applies if and only if pν | ∏p |η1···ηr−1
p.

Therefore, we may define ϑ ′ as in the statement of the lemma. By definition,

ϑ ′(η1, . . . , ηr−1) =
∏

p

((
1 − 1

p

) ∞∑
kr=0

ϑp(kp(η1, . . . , ηr−1), kr)

pkr

)
,

for any η1, . . . , ηr−1. Here, we can read off local factors for ϑ ′ as claimed. �
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Lemma 7.4. Let r, C , ϑ , ϑ ′ be as in Lemma 7.3. Then ϑ ′ ∈ 
4,r−1(3C ). �

Proof. By Lemma 7.3, local factors of ϑ ′ are

ϑ ′
p(k) =

(
1 − 1

p

) ∞∑
kr=0

ϑp(k, kr)

pkr
.

For kr ∈ Z>0, we have

|ϑp(0, . . . , 0, kr) − ϑp(0, . . . , 0, 0)| ≤
kr∑

n=1

C

pn
≤ 2C

p
.

Therefore,

|ϑ ′
p(0, . . . , 0) − ϑp(0, . . . , 0, 0)| ≤

(
1 − 1

p

) ∞∑
kr=1

|ϑp(0, . . . , 0, kr) − ϑp(0, . . . , 0, 0)|
pkr

≤ 2C

p2
.

By the assumption on ϑp(0, . . . , 0), this implies ϑ ′
p(0, . . . , 0) ≤ 1 + 3C p−2.

For k ∈ Zr−1
≥0 \ {(0, . . . , 0)}, so that # supp(k) + 1 ≤ 2# supp(k), we have

ϑ ′
p(k) ≤

(
1 − 1

p

) ∞∑
kr=0

1 + (1 + # supp(k))C p−1

pkr
≤ 1 + # supp(k) · 2C

p
.

Now we consider k, k′ ∈ Zr−1
≥0 with supp(k − k′) = {i} and �(k − k′) = 1, so that we

have ki = k′
i + 1 for the ith coordinates ki, k′

i of k, k′. We have

|ϑ ′
p(k) − ϑ ′

p(k′)| ≤
(

1 − 1

p

) ∞∑
kr=0

|ϑp(k, kr) − ϑp(k′, kr)|
pkr

.

If ki ≥ 2, then

|ϑ ′
p(k) − ϑ ′

p(k′)| ≤ C

pki
.

If ki = 1 and # supp(k) = 1, then

|ϑ ′
p(k) − ϑ ′

p(k′)| ≤
(

1 − 1

p

)(
C

p
+

∞∑
kr=1

C

pkr

)
≤ 2C

p
.
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If ki = 1 and # supp(k) ≥ 2, then

|ϑ ′
p(k) − ϑ ′

p(k′)| ≤ C .

This completes the proof. �

Recall Definition 3.2 of 
0,r(C ), Definition 3.8 of 
1,r(C , ηr), and Definition 4.2 of


2,r(C ).

Corollary 7.5. For any r ∈ Z≥0, C ∈ Z≥0, we have


4,r(C ) ⊂ 
0,r(0) ∩ 
1,r(6rC 3, ηr) ∩ 
2,r(6r(3rC )3). �

Proof. We prove the results by induction on r. The case r = 0 is trivial. Let r ∈ Z>0 and

ϑ ∈ 
4,r(C ).

Since

ϑ (η1, . . . , ηr) ≤
r∏

i=1

(φ†(ηi))
C
∏

p

(
1 + C

p2

)
,

for any η1, . . . , ηr ∈ Z>0, we have ϑ ∈ 
0,r(0) (see Example 3.3).

By Lemma 7.3 and Corollary 6.9, ϑ ∈ 
0(C ) as a function in ηr. We define

ϑ ′(η1, . . . , ηr−1) = A(ϑ (η1, . . . , ηr), ηr),

ϑ ′′(η1, . . . , ηr−1) = E (ϑ (η1, . . . , ηr), ηr).

By Lemma 7.4, we have ϑ ′ ∈ 
4,r−1(3C ). By induction, ϑ ′ ∈ 
0,r−1(0). By Corollary 6.9,

ϑ ′′(η1, . . . , ηr−1) = OC
(
(6rC 3)ω(η1···ηr−1))

since τ (
∏

p|n p) = 2ω(n) for any n ∈ Z>0. By Example 3.3, ϑ ′′ ∈ 
0,r−1(6rC 3). Therefore, ϑ ∈

1,r(6rC 3, ηr).

Since ϑ ′ ∈ 
2,r−1(6(r − 1)(3r−1(3C ))3) by induction, this implies ϑ ∈ 
2,r(6r(3rC )3). �
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Lemma 7.6. Let r ∈ Z>0 and ϑr ∈ 
4,r(C ), with local factors ϑr,p. Let � ∈ {0, . . . , r − 1}.
Local factors of ϑ� = A(ϑr(η1, . . . , ηr), ηr, . . . , η�+1) are given by

ϑ�,p(k) =
(

1 − 1

p

)r−� ∑
k′∈Zr−�

≥0

ϑr,p(k, k′)
p�(k′) .

In particular, for ϑ0 = A(ϑr(η1, . . . , ηr), ηr, . . . , η1) ∈ R, we have

ϑ0 =
∏

p

⎛⎝(1 − 1

p

)r ∑
k∈Zr

≥0

ϑr,p(k)

p�(k)

⎞⎠ . �

Proof. We prove the claim by induction on �. Local factors of ϑr−1 are given by

Lemma 7.3. By an application of Lemma 7.3 to ϑ� ∈ 
4,�(3r−�C ) (Lemma 7.4) and the

induction hypothesis, local factors of ϑ�−1 are

ϑ�−1,p(k) =
(

1 − 1

p

) ∞∑
k�=0

ϑ�,p(k, k�)

pk�

=
(

1 − 1

p

)r−(�−1) ∞∑
k�=0

1

pk�

∑
k′∈Zr−�

≥0

ϑr,p(k, k�, k′)
p�(k′)

=
(

1 − 1

p

)r−(�−1) ∑
k′′∈Zr−(�−1)

≥0

ϑr,p(k, k′′)
p�(k′′) .

This completes the induction step. �

In many applications, we are concerned with a function ϑ ∈ 
3,r whose local fac-

tors ϑp(k) only depend on supp(k). In this case, the notation and results can be simplified

as follows.

Definition 7.7. Let 
′
3,0 = R. For r ∈ Z>0, let 
′

3,r be the set of all ϑ ∈ 
3,r, with local

factors ϑp, such that, for any k, k′ ∈ Zr
≥0 with supp(k) = supp(k′), we have ϑp(k) = ϑp(k′).

Let ϑ ∈ 
′
3,r with local factors ϑp. For any I ⊂ {1, . . . , r}, we define ϑp(I ) as ϑp(kI )

for any kI ∈ Zr
≥0 with supp(kI ) = I .

For any η1, . . . , η� ∈ Z>0, let

Ip(η1, . . . , ηr) = supp(kp(η1, . . . , ηr)) = {i ∈ {1, . . . , r} : p | ηi},
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so that

ϑ (η1, . . . , ηr) =
∏

p

ϑp(Ip(η1, . . . , ηr)). �

Definition 7.8. Let r ∈ Z>0 and C ∈ R≥1. Let 
′
4,r(C ) be the set of all ϑ ∈ 
′

3,r such that,

for any I ⊂ {1, . . . , r} and p ∈ P,

|ϑp(I ) − 1| ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C p−2, #I = 0,

C p−1, #I = 1,

C , #I ≥ 2

and ϑp(I ) ≤ 1 + #I · C p−1 if #I > 0. �

Corollary 7.9. For any r ∈ Z>0 and C ∈ R≥1, we have


′
4,r(C ) ⊂ 
4,r(2C ) ⊂ 
0,r(0) ∩ 
1,r(48rC 3, ηr) ∩ 
2,r(48r(3rC )3). �

Proof. Let ϑ ∈ 
′
4,r(C ). Let k, k′ ∈ Zr

≥0 with supp(k − k′) = {i} and �(k − k′) = 1. If ki ≥ 2,

then supp(k) = supp(k′), so that ϑp(k) = ϑp(k′). If ki = 1, then # supp(k) = # supp(k′) + 1,

so that

|ϑp(k) − ϑp(k′)| = |ϑp(supp(k)) − ϑp(supp(k′))| ≤
⎧⎨⎩2C , # supp(k) ≥ 2,

2C p−1, # supp(k) = 1.

Furthermore, for any k ∈ Zr
≥0,

ϑp(k) = ϑp(supp(k)) ≤
⎧⎨⎩1 + C p−2, k = (0, . . . , 0),

1 + # supp(k) · C p−1, otherwise.

This shows that ϑ ∈ 
4,r(2C ), and the result follows from Corollary 7.5. �
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Corollary 7.10. Let r ∈ Z>0 and ϑr ∈ 
′
4,r(C ). Let � ∈ {0, . . . , r − 1}. The function ϑ� defined

by ϑ�(η1, . . . , η�) = A(ϑr(η1, . . . , ηr), ηr, . . . , η�+1) has local factors ϑ�,p given by

ϑ�,p(I ) =
∑

J⊂{�+1,...,r}

(
1 − 1

p

)r−�−#J ( 1

p

)#J

ϑr,p(I ∪ J),

for any I ⊂ {1, . . . , �}. In particular,

ϑ0 =
∏

p

∑
J⊂{1,...,r}

(
1 − 1

p

)r−#J ( 1

p

)#J

ϑr,p(J),

while A(ϑr(η1, . . . , ηr), ηr) has local factors

ϑr−1,p(I ) =
(

1 − 1

p

)
ϑr,p(I ) + 1

p
ϑr,p(I ∪ {r}). �

Proof. This is a special case of Lemma 7.6, which we may apply because of Corol-

lary 7.9. �

8 Application to a Quartic del Pezzo Surface

Let S ⊂ P4 be the quartic del Pezzo surface defined by

x2
0 + x0x3 + x2x4 = x1x3 − x2

2 = 0.

It contains exactly two singularities, namely (0 : 0 : 0 : 0 : 1) of type A3 and (0 : 1 : 0 : 0 : 0)

of type A1, and three lines,

{x0 = x1 = x2 = 0}, {x0 + x3 = x1 = x2 = 0}, {x0 = x2 = x3 = 0}.

Theorem 8.1. We have

NU ,H (B) = α(S̃)

(∏
p

ωp

)
ω∞B(log B)5 + O(B(log B)4(log log B)2),



Counting Integral Points on Universal Torsors 2691

for B ≥ 3, where

α(S̃) = 1

8640
,

ωp =
(

1 − 1

p

)6 (
1 + 6

p
+ 1

p2

)
,

ω∞ =
∫

|x0|,|x2|,|x2
2/x1|,|(x2

0 x1+x0x2
2 )/(x1x2)|≤1, 0≤x1≤1

1

x1x2
dx0 dx1 dx2.

�

Remark 8.2. We note that S is not an equivariant compactification of the additive group

G2
a, so that Theorem 8.1 does not follow from the general results of [5].

Indeed, the projection S ��� P2 from the line {x0 = x1 = x2 = 0} is an isomorphism

between the complement U of the three lines in S and the complement of two lines in P2.

If S were an equivariant compactification of G2
a, then there would be a G2

a-structure on

P2 fixing two lines, contradicting [12, Proposition 3.2]. �

Since all lines on S are defined over Q, the minimal desingularization S̃ of S

is the blowup of P2 in five rational points, so that Pic(S̃) ∼= Z6. The effective cone in

Pic(S̃)R = Pic(S̃) ⊗Z R ∼= R6 of S̃ has seven generators. The investigation of the geometry

of S̃ in [6, Section 7] shows the intersection of its dual (with respect to the intersection

form (·, ·) on Pic(S̃)R) with the hyperplane {t ∈ Pic(S̃)R | (t, −KS̃) = 1} is the polytope

P =
{

(t1, . . . , t6) ∈ R6
≥0

∣∣∣∣∣t1 + t2 + t3 − 2t5 − t6 ≥ 0,

2t1 + 2t2 + 3t3 + 2t4 + t6 = 1

}

∼= P ′ =
{

(t1, . . . , t5) ∈ R5
≥0

∣∣∣∣∣2t1 + 2t2 + 3t3 + 2t4 ≤ 1,

3t1 + 3t2 + 4t3 + 2t4 − 2t5 ≥ 1

}
. (8.1)

We check that Theorem 8.1 agrees with the conjectures of Manin [10] and Peyre

[13] that predict an asymptotic formula with main term cB(log B)k, where k = rk Pic(S̃) − 1

and c is the product of local densities and Vol(P ). Indeed, rk Pic(S̃) = 6 since S is split. By

a computation as in [1, Lemma 1], ωp resp. ω∞ as in the statement of Theorem 8.1 agree

with the density of p-adic resp. real points on S. Finally,

Vol(P ) = Vol(P ′) = α(S̃) = 1/180

#W(A1) · #W(A3)
= 1

8640

by [7, Theorem 4] and [8, Theorem 1.3], where W(Ai) is the Weyl group of the root system

Ai.
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E9 E1

E7 E5 E6 E4 E3

E8 E2

Fig. 3. Configuration of curves on S̃.

8.1 Passage to a universal torsor

We carry out step (1) of the strategy described in Section 1. Let

η = (η1, . . . , η7), η′ = (η1, . . . , η8), η′′ = (η1, . . . , η9), ηk = η
k1
1 · · · ηk7

7 ,

for any k = (k1, . . . , k7) ∈ R7. For i = 1, . . . , 9, let

(Zi, Ji, J ′
i ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(Z>0, R≥1, R≥1), i ∈ {1, . . . , 5},
(Z>0, R≥1, R≥0), i = 6,

(Z�=0, R≤−1 ∪ R≥1, R), i = 7,

(Z, R, R), i ∈ {8, 9}.

(8.2)

The following result is based on our investigation [6, Section 7] of

Cox(S̃) = Q[η1, . . . , η9]/
(
η1η9 + η2η8 + η4η

3
5η

2
6η7

)
,

where TS̃ is an open subset of Spec(Cox(S̃)). It is derived using the method developed in

[9, Section 4]. Figure 3 shows the configuration of curves E1, . . . , E9 on S̃ that correspond

to the generators η1, . . . , η9 of Cox(S̃), with edges between pairs of intersecting curves.

Here, E1, E2, E5 are strict transforms of the three lines {x0 + x3 = x1 = x2 = 0}, {x0 = x1 =
x2 = 0}, {x0 = x2 = x3 = 0}, while E3, E4, E6, and E7 are the exceptional divisors obtained

by blowing up the A3 and A1 singularities.

Lemma 8.3. The map ψ : TS̃ → S defined by

η′′ �→ (
η(0,1,1,1,1,1,1)η8, η(2,2,3,2,0,1,0), η(1,1,2,2,2,2,1), η(0,0,1,2,4,3,2), η7η8η9

)
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induces a bijection � between

T0(B) = {η′′ ∈ Z1 × · · · × Z9 | (8.3), (8.4), (8.5) hold}

and {x ∈ U (Q) | H (x) ≤ B}, where

η1η9 + η2η8 + η4η
3
5η

2
6η7 = 0, (8.3)

max
i∈{0,...,4}

|�(η′′)i| ≤ B, (8.4)

η1, . . . , η9 fulfill coprimality conditions as in Figure 3. (8.5)

�

Using (8.3) to eliminate η9, the height condition (8.4) is equivalent to h(η′; B) ≤ 1,

where

h(η′; B) = B−1 max

⎧⎨⎩
∣∣η(0,1,1,1,1,1,1)η8

∣∣, ∣∣η(2,2,3,2,0,1,0)
∣∣, ∣∣η(1,1,2,2,2,2,1)

∣∣,∣∣η(0,0,1,2,4,3,2)
∣∣, ∣∣η−1

1 (η2η7η
2
8 + η4η

3
5η

2
6η

2
7η8)

∣∣
⎫⎬⎭ .

8.2 Counting points

We come to step (2) of our strategy. We recall the definition (8.2) of J1, . . . , J8 and

define

R(B) = {η′ ∈ J1 × · · · × J8 | h(η′; B) ≤ 1}.

Using the results of Sections 2, 4, and 7, we show (Lemma 8.5) that the number of

integral points in the region R(B) on TS̃ that satisfy the coprimality conditions (8.5) can

be approximated by the product of the volume of R(B) and p-adic densities coming from

the coprimality conditions.

Lemma 8.4. We have

NU ,H (B) =
∑

η∈Z1×···×Z7

ϑ1(η)V1(η; B) + O(B(log B)2),
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Table 3 Application of Proposition 2.4.

(r, s, t ) (3,1,1) δ η3

(α0; α1, . . . , αr ) (η7; η4, η6, η5) (a0; a1, . . . , ar ) (1;1,2,3)

(β0; β1, . . . , βs) (η8; η2) (b0; b1, . . . , bs) (1;1)

(γ0; γ1, . . . , γt ) (η9; η1) (c1, . . . , ct ) (1)

�(α) η4η
3
5η

2
6 �′(δ, α) η3η4η6

�(β) η2 �′(δ, β) η3

�(γ ) η1 �′(δ, γ ) η3

where

V1(η; B) =
∫

η′∈R(B)
η−1

1 dη8

and, in the notation of Definition 7.7,

ϑ1(η) =
∏

p

ϑ1,p(Ip(η)),

with Ip(η) = {i ∈ {1, . . . , 7} : p | ηi} and

ϑ1,p(I ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, I = ∅, {1}, {2}, {7},
1 − 1

p, I = {4}, {5}, {6}, {1, 3}, {2, 3}, {3, 4}, {4, 6}, {5, 6}, {5, 7},
1 − 2

p, I = {3},
0, all other I ⊂ {1, . . . , 7}. �

Proof. By Lemma 8.3, our counting problem has the special form of Section 2. Table 3

provides a dictionary between the notation of Section 2 and the present situation.

By Proposition 2.4,

NU ,H (B) =
∑

η∈Z1×···×Z7

(ϑ1(η)V1(η; B) + R1(η; B)),

where local factors of ϑ1 as in the statement of Proposition 2.4 are easily computed to

be the ones in the statement of this lemma, and

R1(η; B) � 2ω(η3)+ω(η3η4η5η6).
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Both N1 and V1 and therefore also R1 vanish unless |η(1,1,2,2,2,2,1)| ≤ B, so

∑
η

R1(η; B) �
∑

η

2ω(η3)+ω(η3η4η5η6)

�
∑

η1,...,η6

2ω(η3)+ω(η3η4η5η6)) B

η(1,1,2,2,2,2,0)

� B(log B)2.

This completes the proof. �

Lemma 8.5. We have

NU ,H (B) =
(∏

p

ωp

)
V0(B) + O(B(log B)4(log log B)2),

where

V0(B) =
∫

η

V1(η; B) dη =
∫

η′∈R(B)
η−1

1 dη′. �

Proof. Clearly, ϑ1 ∈ 
′
4,7(2), so ϑ1 ∈ 
2,7(C ) for some C ∈ Z>0 by Corollary 7.9. By

Lemma 5.1(4),

V1(η; B) � B1/2

η
1/2
1 η

1/2
2 |η7|1/2

= B∣∣η(1,1,1,1,1,1,1)
∣∣ ·
(

B∣∣η(2,2,3,2,0,1,0)
∣∣
)−1/4 (

B∣∣η(0,0,1,2,4,3,2)
∣∣
)−1/4

.

As V1(η; B) = 0 unless 1 ≤ η1, . . . , η6, |η7| ≤ B and |η(2,2,3,2,0,1,0)| ≤ B and |η(0,0,1,2,4,3,2)| ≤ B, we

can apply Proposition 4.3 with (r, s) = (5, 2), a1 = a2 = 1/4,

(ki, j)1≤i≤7
1≤ j≤2

=
(

2 2 3 2 0 1 0

0 0 1 2 4 3 2

)
.

We compute

A(ϑ1(η), η7, . . . , η1) =
∏

p

(
1 − 1

p

)6 (
1 + 6

p
+ 1

p2

)
=
∏

p

ωp

using Corollary 7.10. �
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8.3 The expected leading constant

We carry out step (3) of our strategy. This step is necessary as Lemma 8.6 shows that the

main term in Theorem 8.1 is obtained by replacing the integral over R(B) by an integral

over a region R′(B) that is closely related to the shape of the polytope P ′ (8.1). Recalling

(8.2), we define

R′
1(B) = {

(η1, . . . , η5) ∈ J ′
1 × · · · × J ′

5 | η2
1η

2
2η

3
3η

2
4 ≤ B, η3

1η
3
2η

4
3η

2
4η

−2
5 ≥ B

}
,

R′
2(η1, . . . , η5; B) = {(η6, η7, η8) ∈ J ′

6 × J ′
7 × J ′

8 | h(η1, . . . , η8; B) ≤ 1},
R′(B) = {(η1, . . . , η8) ∈ R8 | (η1, . . . , η5) ∈ R′

1(B), (η6, η7, η8) ∈ R′
2(η1, . . . , η5; B)},

and

V ′
0(B) =

∫
η′∈R′(B)

η−1
1 dη′.

Lemma 8.6. We have

V ′
0(B) = α(S̃)ω∞B(log B)5. �

Proof. By substituting

x1 = B−1η(2,2,3,2,0,1,0), x2 = B−1η(1,1,2,2,2,2,1), x0 = B−1η(0,1,1,1,1,1,1)η8

into the expression for ω∞ given in the statement of Theorem 8.1, we prove

Bω∞
η1 · · · η5

=
∫

(η6,η7,η8)∈R′
2(η1,...,η5;B)

η−1
1 dη6 dη7 dη8.

Substituting ti = log ηi

log B into α(S̃) = Vol(P ′) = ∫
t∈P ′ dt shows

α(S̃)(log B)5 =
∫
R′

1(B)

1

η1 · · · η5
dη1 · · · dη5.

This completes the proof. �

Lemma 8.7. We have

V0(B) = V ′
0(B) + O(B(log B)4). �
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Proof. We define

V (i)(B) =
∫

h(η′;B)≤1, η∈Ri (B)
η−1

1 dη′,

where

R0(B) = {η′ ∈ J ′
1 × · · · × J ′

8 | η6, |η7| ≥ 1},
R1(B) = {

η′ ∈ J ′
1 × · · · × J ′

8 | η6, |η7| ≥ 1, η(2,2,3,2,0,0,0) ≤ B
}
,

R2(B) =
⎧⎨⎩η′ ∈ J ′

1 × · · · × J ′
8

∣∣∣∣∣∣ η6, |η7| ≥ 1,

η(2,2,3,2,0,0,0) ≤ B, η(3,3,4,2,−2,0,0) ≥ B

⎫⎬⎭ ,

R3(B) = {
η′ ∈ J ′

1 × · · · × J ′
8 | η6 ≥ 1, η(2,2,3,2,0,0,0) ≤ B, η(3,3,4,2,−2,0,0) ≥ B

}
,

R4(B) = {
η′ ∈ J ′

1 × · · · × J ′
8 | η(2,2,3,2,0,0,0) ≤ B, η(3,3,4,2,−2,0,0) ≥ B

}
.

For i ∈ {0, . . . , 3}, we will show that

|V (i)(B) − V (i+1)(B)| ≤
∫

η′∈(Ri (B)∪Ri+1(B))\(Ri (B)∩Ri+1(B)), h(η′;B)≤1
η−1

1 dη′

is O(B(log B)4). Since V0(B) = V (0)(B) and V ′
0(B) = V (4)(B), this proves the result.

For i = 0, we note that h(η′; B) ≤ 1 and η6 ≥ 1 imply η(2,2,3,2,0,0,0) ≤ B. Therefore,

V (0)(B) = V (1)(B).

For i = 1, we note that η′ ∈ R1(B) \ R2(B) implies η2
5 > η(3,3,4,2,0,0,0)/B and 1 ≤

η1, η2, η3, η4 ≤ B and |η7| ≥ 1. Combining these bounds for the integration over η1, . . . , η5, η7

with ∫
h(η′;B)≤1

η−1
1 dη6 dη8 �

(
B3

|η(1,1,0,2,6,0,5)|
)1/4

by Lemma 5.1(6) leads to the estimation

V (1)(B) − V (2)(B) �
∫ (

B3

|η(1,1,0,2,6,0,5)|
)1/4

dη1 · · · dη5 dη7

�
∫

B

η1η2η3η4|η7|5/4
dη1 · · · dη4 dη7

� B(log B)4.

For i = 2, we note that η′ ∈ R3(B) \ R2(B) implies |η7| ≤ 1, 0 ≤ η6 ≤ B/(η(2,2,3,2,0,0,0)),

η2
5 ≤ η(3,3,4,2,0,0,0)/B, and 1 ≤ η1, . . . , η4 ≤ B. We combine these bounds for the integration
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over η1, . . . , η7 with

∫
h(η′;B)≤1

η−1
1 dη8 � B1/2

η
1/2
1 η

1/2
2 |η7|1/2

by Lemma 5.1(4) for the integration over η8 to obtain

V (3)(B) − V (2)(B) �
∫

B1/2

η
1/2
1 η

1/2
2

dη1 · · · dη6

�
∫

B3/2

η(5/2,5/2,3,2,0,0,0)
dη1 · · · dη5

�
∫

B

η(1,1,1,1,0,0,0)
dη1 · · · dη4

� B(log B)4.

For i = 3, we note that η′ ∈ R4(B) \ R3(B) implies |η6| ≤ 1, η2
4 ≤ B/(η(2,2,3,0,0,0,0)), and

1 ≤ η1, η2, η3, η5 ≤ B. We combine these bounds for the integration over η1, . . . , η6 with

∫
h(η′;B)≤1

η−1
1 dη8 dη7 � B2/3

η(1/3,1/3,0,1/3,1,2/3,0)

by Lemma 5.1(5) to show that

V (4)(B) − V (3)(B) �
∫

B2/3

η(1/3,1/3,0,1/3,1,0,0)
dη1 · · · dη5

�
∫

B

η(1,1,1,0,1,0,0)
dη1 dη2 dη3 dη5

� B(log B)4.

This completes the proof. �

Theorem 8.1 follows from Lemma 8.5, Lemma 8.6, and Lemma 8.7.
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1–50.

[3] Browning, T. D., and U. Derenthal. “Manin’s conjecture for a quartic del Pezzo sur-

face with A4 singularity.” Annales de l’Institut Fourier (Grenoble) (forthcoming): preprint

arXiv:0710.1560.

[4] Browning, T. D., and U. Derenthal. “Manin’s conjecture for a cubic surface with D5 singular-

ity.” International Mathematics Research Notices (2008): doi:10.1093/imrn/rnp029.

[5] Chambert-Loir, A., and Yu. Tschinkel. “On the distribution of points of bounded height on

equivariant compactifications of vector groups.” Inventiones Mathematicae 148, no. 2 (2002):

421–52.

[6] Derenthal, U. “Singular Del Pezzo surfaces whose universal torsors are hypersurfaces.”

(2006): preprint arXiv:math.AG/0604194.

[7] Derenthal, U. “On a constant arising in Manin’s conjecture for del Pezzo surfaces.” Mathe-

matical Research Letters 14, no. 3 (2007): 481–9.

[8] Derenthal, U., M. Joyce, and Z. Teitler. “The nef cone volume of generalized del Pezzo sur-

faces.” Algebra Number Theory 2, no. 2 (2008): 157–82.

[9] Derenthal, U., and Yu. Tschinkel. “Universal torsors over del Pezzo surfaces and rational

points.” In Equidistribution in Number Theory: An Introduction. NATO Science Series 2:

Mathematics, Physics and Chemistry 237, 169–96. Dordrecht, The Netherlands: Springer,

2007.

[10] Franke, J., Yu. I. Manin, and Yu. Tschinkel. “Rational points of bounded height on Fano

varieties.” Inventiones Mathematicae 95, no. 2 (1989): 421–35.

[11] Hassett, B. “Rational surfaces over nonclosed fields.” Clay Mathematics Proceedings 9 (2009).

[12] Hassett, B., and Yu. Tschinkel. “Geometry of equivariant compactifications of Gn
a .” Interna-

tional Mathematics Research Notices 22 (1999): 1211–30.

[13] Peyre, E. “Hauteurs et mesures de Tamagawa sur les variétés de Fano.” Duke Mathematical

Journal 79, no. 1 (1995): 101–218.

[14] Salberger, P. “Tamagawa measures on universal torsors and points of bounded height on
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