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ABSTRACT

Background. Fabry disease is an X-linked lysosomal storage
disorder caused by mutations in the GLA gene. Deficiency of
α-galactosidase A (α-Gal A) causes intracellular accumu-
lations of globotriaosylceramide (GL-3) and related glyco-
sphingolipids in all organs, including the kidney, often leading
to end-stage renal failure. In women with Fabry disease,
accumulation of GL-3 in the glomerular podocytes and other
renal cells induces progressive, proteinuric nephropathy, but
not as severe as in men. Enzyme replacement therapy (ERT)
with recombinant α-Gal A reduces cellular GL-3 deposits in
podocytes and tubular epithelial cells. We have previously
shown that α-Gal A is delivered to these cells by different
pathways involving different receptors. This study investigated
the long-term changes in albuminuria, estimated glomerular
filtration rate (eGFR) and urinary markers of both glomerular
and tubular dysfunction in women with Fabry disease treated
with ERT.
Methods. A retrospective, single centre, cohort study evalu-
ated the long-term association between ERT, albuminuria and
eGFR in 13 women with Fabry disease and mild renal involve-
ment. In particular, we analysed the changes in the proteinuric
profile, including the glomerular marker IgG, the tubular
markers α1-microglobulin and retinol-binding protein (RBP),
and the shared tubular and glomerular markers albumin and
transferrin.
Results. ERT was associated with a significant reduction in al-
buminuria and a relatively stable eGFR. The decrease in albu-
minuria was paralleled by a decrease in both glomerular and
tubular urine protein markers.

Conclusions. The data indicate that long-term ERT is associ-
ated with a reduction in albuminuria and glomerular and
tubular urinary protein markers in women with Fabry disease
and mild renal manifestations.

Keywords: albuminuria, enzyme replacement therapy, Fabry
disease, proteinuria

INTRODUCTION

Fabry disease is an X-linked lysosomal disorder that results
from mutations of the gene (GLA) that encodes the lysosomal
hydrolase α-galactosidase A (α-Gal A) [1]. The enzymatic
defect leads to progressive lysosomal accumulation of globo-
triaosylceramide (GL-3) and related glycosphingolipids in the
kidney and other tissues [1, 2]. In classically affected males,
clinical onset occurs in childhood or adolescence and is
characterized by several symptoms [1, 3, 4]. Glycosphingolipid
accumulates over time leading to kidney failure, cerebrovascu-
lar manifestations, heart failure and eventually premature
death [5].

Nephropathy is a dominant feature in Fabry disease and
impairment of renal function occurs due to progressive
accumulation of GL-3 in renal endothelial, interstitial, tubular
epithelial and glomerular cells [1, 6–10]. Early findings in
Fabry nephropathy include isosthenuria and tubular dysfunc-
tion [1]. Progressive decline in the glomerular filtration rate
(GFR) and proteinuria are detrimental signs of renal dysfunc-
tion in Fabry disease that may eventually lead to end-stage
renal failure [11–14]. This usually occurs in the third to fifth
decade of life, when the lysosomal GL-3 accumulation is
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irreversible [8, 13]. Fabry nephropathy is generally less severe
in women than in men [15]. However, many heterozygous
female individuals may be affected similarly to hemizygous
male individuals due to random X-chromosomal inactivation
[5, 16–18].

Currently, enzyme replacement therapy (ERT) is the only
specific treatment for Fabry disease patients [9, 14, 19–23],
which has been shown to reduce the GL-3 deposits from mul-
tiple cell types. Several studies have suggested that ERT with
recombinant α-Gal A stabilizes or slows the progression of
Fabry nephropathy in Fabry disease patients [22, 24–28]. We
have previously demonstrated that recombinant α-Gal A is
taken up by the endocytic receptors, megalin and mannose-6-
phosphate receptor (M6PR) in the proximal tubule cells [29],
and megalin, M6PR and sortilin in the podocytes [30], and by
M6PR and sortilin in the glomerular endothelial cells [31],
suggesting that ERT may interact with several different parts
of the nephron.

In this study, we investigated the association between ERT
in women with Fabry disease and the changes in albuminuria,
estimated glomerular filtration rate (eGFR and urinary
markers of both glomerular and tubular dysfunction during a
mean follow-up period of 6 years.

MATERIALS AND METHODS

Ethics

The study was approved by the Regional Research Ethics
Committee and conducted in accordance with the Helsinki
Declaration. Informed consent was obtained from all
participants.

Study population

This was a retrospective, single centre, cohort study of 17
Caucasian women with Fabry disease referred to the Danish
Fabry Centre, Copenhagen University Hospital, Denmark,
at which treatment of Fabry patients in Denmark has been
centralised. The study included 13 female patients treated with
ERT for >1 year and four untreated female patients, all older
than 10 years, referred from 2003 to 2011. The study excluded
18 female patients followed at the centre during the same
period, either untreated and/or lacking urine samples or on
ERT for <1 year. Fabry disease was confirmed in all patients
by GLA mutation analysis. All patients underwent regular and
systematic examinations for manifestations of Fabry disease as
a part of the normal follow-up procedure at the hospital.
Patients received agalsidase beta (Fabrazyme®, Genzyme) 1
mg/kg intravenously every second week during the follow-up
period. Because of a shortage of Fabrazyme® in 2010/2011,
most patients subsequently received agalsidase alfa (Replagal®,
Shire) 0.2 mg/kg for the remaining follow-up period.

Data and sample collection

Relevant clinical data were collected from patient files. Data
and urine samples were collected over a period of up to 7
years. Plasma creatinine was measured in a certified laboratory
using a standardized Roche Modular enzymatic creatinine

assay. The eGFR was calculated using the CKD-EPI equation
[32, 33]. Morning urine samples were collected at baseline and
during follow-up. Urine samples were frozen at −80°C until
processed.

Urine protein analysis

Frozen morning urine samples were analysed for total
protein (pyrogallol red method) and creatinine (standardized
enzymatic method) on a Roche systems Modular clinical
chemistry analyser. The following urinary proteins were
measured on a Beckman Coulter Image nephelometry system:
albumin, IgG, transferrin, retinol-binding protein (RBP) and
α1-microglobulin (α1M) [34, 35]. The urinary excretions of all
proteins were normalized according to the urine creatinine
concentration. Normal reference ranges for IgG, transferrin,
albumin, α1M, RBP and total protein excretion are listed in
Table 1.

Statistical analyses

The continuous variables are presented by medians and
ranges. The albuminuria and eGFR data were analysed using a
random coefficient model with the time as a covariate and
ERT as a treatment factor. The albuminuria data were log-
transformed based on the inspection of residual plots. A
P < 0.05 was considered statistically significant. Data analysis
was performed using Stata version 12.1 and the figures were
prepared using Adobe Photoshop CS3.

RESULTS

Patients

Thirteen ERT-treated and four ERT-naive female patients
were included. Patient characteristics are given in Table 2. The
ERT treatment was initiated on the day of inclusion and con-
tinued until the end of follow-up. The ERT-naive patients
were not on ERT prior to inclusion or during follow-up. The
included patients revealed little or no clinical signs of kidney
disease (Table 2). Nevertheless, renal biopsies from three of
the patients demonstrated GL-3 inclusions in the podocytes
and tubule epithelial cells suggesting renal involvement (data
not shown). No major side effects to ERT were reported and
there were no deaths or loss in follow-up.

Albuminuria and eGFR

There was a slight decrease in eGFR during the follow-up
period (Figure 1A). In ERT-treated patients, the average

Table 1. References for established normal values for urinary protein
excretion [34, 35]

Urinary protein Normal range (mg/mmol creatinine)

IgG <1.13
Transferrin <0.19
Albumin <2.26
α1M <1.36
RBP <0.08
Total protein <11.31
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decline in eGFR was 1.45 mL/min/1.73 m2 per year (95% CI:
0.31–2.58 mL/min/1.73 m2 per year, P = 0.012) compared
with 0.89 mL/min/1.73 m2 per year (95% CI: −1.51–3.30 mL/
min per 1.73 m2 per year, P = 0.47) in ERT naive. The decline
in the two groups was not significantly different, P = 0.68.
During the same period, there was a clearly significant de-
crease in the albumin/creatinine ratio in the ERT-treated
patients (22% per year, 95% CI: 11–34%, P < 0.0001)
(Figures 1B and 2). In the ERT-naive patients, a significant in-
crease was observed (39% per year, 95% CI: 15–67%, P <
0.0001) (Figures 1B and 2). The difference between the two
groups was significantly different, P < 0.0001.

Other urine protein markers

To examine the association between ERT and selective
markers of glomerular protein leakage as well as proximal
tubule reabsorptive dysfunction, we examined the urinary
excretion of IgG, RBP, a1M and transferrin, the latter being a
marker of both glomerular and tubular dysfunction. Treat-
ment with ERT was associated with a significant decrease in
the IgG/creatinine ratio (8% per year, 95% CI: 2–13% per year,
P = 0.010) and α1M/creatinine ratio (9% per year, 95% CI: 4–
14% per year, P < 0.0001, Figure 3). A trend towards lower
protein excretion was also observed for the RBP/creatinine
ratio (1% per year, 95% CI: −6–7% per year, P = 0.827), trans-
ferrin/creatinine ratio (6% per year, 95% CI: −2–13% per year,
P = 0.143) and total protein/creatinine ratio (5% per year, 95%
CI: −8–19% per year, P = 0.469) in the ERT-treated patients
(Figure 3). ERT-naive patients revealed no significant trend
towards an increase in the excretion of glomerular and tubular
markers.

DISCUSSION

This study shows that in women with Fabry disease and mild
renal involvement ERT are associated with stable renal func-
tion and a reduction in albuminuria as well as the excretion of
both glomerular and tubular protein markers.

The efficacy of ERT is supported by a very recent study
showing that long-term ERT with agalsidase alfa stabilized
renal function in women with Fabry disease [27]. Several other
studies evaluating the effect of short-term ERT with agalsidase
beta [24] or agalsidase alfa [26] have shown stabilization of
renal function in both male and female Fabry disease patients.
The natural progression of Fabry nephropathy has been retro-
spectively studied in a group of female Fabry disease patients
before ERT became available showing a yearly decline in
eGFRs of 0.6 ± 2.3 and 2.2 ± 2.2 mL/min/1.73 m2 in women

Table 2. Baseline characteristics of the 17 female patients with Fabry disease included in this cohort

Baseline characteristic N Median (range)

Female Fabry disease patients ERT-treated (N = 13) ERT naïve (N = 4)

Age at inclusion (years) 17 45 (10–62) 34 (30–66)
eGFR (ml/min per 1.73 m2) 17 100 (64–159) 99 (88–124)
Urine albumin to creatinine ratio (mg/mmol) 17 1 (0.2–72) 0.26 (0.23–0.52)
Mean follow-up (years) 17 6 (1–7) 5 (2–6)

N (% of total, N = 13) N (% of total, N = 4)
Classic Fabry disease mutations/(reference)
N34S/[36] 1 1 (7.7)
G85N/[37] 6 4 (31) 2 (50)
A156T/[38, 39] 7 7 (54)
N355K/[40] 2 1 (7.7) 1 (25)
G271S/[41] 1 0 (0) 1 (25)

On antihypertensive medication 5 4 (31) 1 (25)

F IGURE 1 : Change in median eGFR (A) and albuminuria (B) in
ERT-treated and ERT-naive female Fabry disease patients during the
follow-up period.
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with proteinuria <100 mg/day and between 100 and 1000 mg/
day, respectively [11]. Four women with Fabry disease fol-
lowed at our centre and not receiving ERT also revealed a
trend towards increasing albuminuria and declining eGFR
during an average of 5-year follow-up.

Proteinuria in Fabry disease patients is associated with pro-
gressive tubular injury, interstitial fibrosis and a decline in
GFR [42]. Injury to the podocytes due to GL-3 deposits is es-
sential in the development of Fabry nephropathy and protei-
nuria [9]. We observed GL-3 accumulation in podocytes and
tubule epithelial cells in biopsies from three patients included
in this study. Recently, it has been shown that ERT is associ-
ated with a reduction of GL-3 deposits in podocytes and
tubule epithelial cells [9], and that α-Gal A is taken up by
megalin and the M6PR in the proximal tubule cells, [29] and
by megalin, M6PR and sortilin in the podocytes [30]. Thus,
ERT might exert effects in multiple, different parts of the
nephron.

Changes in urinary protein excretion may reflect changes
in both glomerular and tubular function. We analysed the
pattern of proteinuria in order to gain information on the
effect of ERT on the different parts of the nephron [43]. We
show that long-term ERT with recombinant α-Gal A is associ-
ated with a significant reduction in albuminuria in women
with Fabry disease and mild renal involvement. Furthermore,
we observed significant decreases in the excretion of both

glomerular and tubular urine protein markers. The change in
the excretion of α1M and IgG in ERT-treated patients paral-
leled the decrease in the excretion of albumin. Thus, this study
demonstrates a correlation between changes in the excretion of
glomerular and tubular markers, and albuminuria. It may be
hypothesized that ERT affects both the podocytes and the
tubular epithelial cells, and that uptake of filtered α-Gal A
does not negatively affect proximal tubule function even
though significant amounts of recombinant α-Gal A accumu-
lates here [29].

It is generally recommended to use blockers of the renin–
angiotensin system, such as angiotensin-converting enzyme
inhibitors and angiotensin II receptor blockers (ACEi/ARBs)
in proteinuric renal diseases to prevent progression [44, 45].
Although none of the patients had overt proteinuria, 31% of
ERT-treated and 25% of ERT-naive patients in our study were
treated with ACEi/ARB. Seventy-five percent of the ERT-
treated patients on ACEi/ARB initiated ACEi/ARB treatment
after being on ERT for 2 years. Thus, the initial and greater de-
crease in urinary protein excretion after initiation of ERT was
independent of ACEi/ARB therapy. Furthermore, a recent
study evaluating the long-term use of ACEi/ARB in combi-
nation with recombinant α-Gal A did not show any significant
differences in the effect of ERT on eGFR between Fabry
disease patients receiving ACEi/ARB and those who did not
[27]. Because of the retrospective nature of most studies

F IGURE 2 : Individual curves showing changes in albuminuria in the 13 ERT-treated patients dependent on the initial level (<2 mg/mmol (A),
>2 mg/mmol but <10 mg/mmol (B) and >10 mg/mmol (C)) and in the four ERT-naive patients (D).
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involving ACEi/ARB and ERT, no definite conclusion can be
made on the potential, additional effects of ACEi/ARB. More
systematic studies are needed to evaluate the effect of ERT in
combination with other renoprotective medications, and we
cannot exclude that the concomitant use of ACEi/ARBs was a
possible confounding factor in our study.

The major limitations of this study include the non-ran-
domized design and the lack of a larger control group. Only
four female Fabry patients at the study centre with regular
follow-up were not receiving ERT making relevant, statistical
comparisons impossible. Also, conclusions are restricted by

the low number of study participants. The heterogeneity of the
disease in female patients due to skewed X-inactivation also
leads to varying degrees of renal pathology; however, depo-
sition of GL-3 was observed in the kidneys of all the three
patients biopsied in this study. The change in treatment proto-
col due to shortage of agalsidase beta may also have influenced
the outcome of this study because of the difference in the
dosages used: 0.2 mg/kg agalsidase alfa versus 1 mg/kg agalsi-
dase beta. Finally, we used eGFR as endpoint rather than more
precise measurements of GFR. The CKD-EPI formula was
applied since this formula has been shown to be more accurate

F IGURE 3 : Change in the (median; range) excretion of IgG (A), α1M (B), RBP (C), transferrin (D) and total protein (E) during ERT.
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than the MDRD formula for estimating GFR ≥60 mL/min/
1.73 m2 [32, 46].

In conclusion, long-term ERT with agalsidase beta is
associated with a reduction in albuminuria and glomerular
and tubular urinary protein markers in women with Fabry
disease and mild renal manifestations.
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ABSTRACT

Background and objectives. In patients with end-stage renal
disease (ESRD), the rate of deaths preceded by dialysis withdra-
wal is high. However, rates vary across studies and national renal
registries. This study aimed to (i) determine how dialysis with-
drawal mortality is defined in the literature and (ii) whether mor-
tality rates preceded by dialysis withdrawal change over time.
Methods. MEDLINE (1946 to March 2012) and EMBASE
(1980 to March 2012) databases were searched. We included
epidemiological studies that reported data permitting calcu-
lation of crude (unadjusted) mortality rates preceded by dialysis
withdrawal. Definitions of dialysis withdrawal were also ex-
tracted. Crude mortality rates and 95% confidence intervals
were calculated using OpenEpi software. Non-English language
studies were excluded.

Results. Twenty-three eligible studies were identified; these in-
cluded 14 527 885 dialysis patients at risk from six countries.
Crude mortality rates preceded by dialysis withdrawal ranged
from 3 to 50.2 per 1000 person-years. Seven different definitions
of dialysis withdrawal were identified, with no assessment of
validity. Crude mortality rates preceded by withdrawal have in-
creased over time across the study period 1966 (3 per 1000
person-years) to 2010 (48.6 per 1000 person-years), although
these rates are difficult to interpret because of differences in
classification. In the USA crude mortality rates preceded by
dialysis withdrawal are higher in the older population and have
increased over time in the age group 65+ years. In this age
group, the crude mortality rate preceded by dialysis withdrawal
was 89.4 per 1000 person-years (2008–10) compared with 26.1
per 1000 person-years in the age group 50–64 years (2008–10).
Conclusion. Mortality rates preceded by dialysis withdrawal
over time should be interpreted with caution because of
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