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ABSTRACT
Using detailed mock galaxy redshift surveys (MGRSs) we investigate the abundance and ra-
dial distribution of satellite galaxies. The mock surveys are constructed using large numerical
simulations and the conditional luminosity function (CLF), and are compared against data
from the Two Degree Field Galaxy Redshift Survey (2dFGRS). We use Monte Carlo Markov
chains to explore the full posterior distribution of the CLF parameter space, and show that the
average relation between light and mass is tightly constrained and in excellent agreement with
our previous models and with that of Vale & Ostriker. The radial number density distribution of
satellite galaxies in the 2dFGRS reveals a pronounced absence of satellites at small projected
separations from their host galaxies. This is (at least partly) owing to the overlap and merging
of galaxy images in the 2dFGRS parent catalogue. Owing to the resulting close-pair incom-
pleteness we are unfortunately unable to put meaningful constraints on the radial distribution of
satellite galaxies; the data are consistent with a radial number density distribution that follows
that of the dark matter particles, but we cannot rule out alternatives with a constant number
density core. Marginalizing over the full CLF parameter space, we show that in a �CDM
concordance cosmology the observed abundances of host and satellite galaxies in the 2dFGRS
indicate a power spectrum normalization of σ 8 � 0.7. The same cosmology but with σ 8 = 0.9
is unable to match simultaneously the abundances of host and satellite galaxies. This confirms
our previous conclusions based on the pairwise peculiar velocity dispersions and the group
multiplicity function.

Key words: methods: statistical – galaxies: formation – galaxies: fundamental parameters –
galaxies: haloes – cosmological parameters – dark matter.

1 I N T RO D U C T I O N

In the hierarchical formation scenario, satellite galaxies are associ-
ated with dark matter subhaloes, which, some time in the past, were
accreted by their current host (or parent) halo. As satellites orbit their
host galaxies they are subjected to various forces that try to dissolve
them: dynamical friction, tides from the central object(s) and impul-
sive collisions with other satellites. A detailed understanding of the
abundance and radial distribution of satellite systems, therefore, pro-
vides important constraints on the outcome of these various physical
processes which are an essential ingredient of galaxy formation.

Traditionally, satellite galaxies have mainly been used as kine-
matic tracers of the dark matter potential well of the parent halo
(e.g. Little & Tremaine 1987; Zaritsky et al. 1993; Carlberg et al.
1996; Zaritsky et al. 1997; Evans et al. 2000; McKay et al. 2002;
Prada et al. 2003; Brainerd & Specian 2003; van den Bosch et al.
2004b). As satellite galaxies are distributed over the entire halo,
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they are ideally suited to measure the total virial mass, more so than
for example rotation curves, which only probe the potential out to
a fraction of the virial radius. The distribution of satellite galax-
ies, however, has received considerably less attention. In addition
to a few studies aimed at testing the claim by Holmberg (1969) that
the azimuthal distribution of satellite galaxies is anisotropic with
respect to the orientation of the host galaxy, the so-called Holm-
berg effect (Zaritsky et al. 1997; Zaritsky & Gonzales 1999; Sales
& Lambas 2004), relatively few studies have focused on the radial
distribution of satellite galaxies (but see Lake & Tremaine 1980;
Vader & Sandage 1991; Lorrimer et al. 1994; Willman et al. 2004).

The interest in satellite galaxies has recently increased consid-
erably, largely owing to the dramatic increase in computing power
that has made it possible to resolve dark matter subhaloes in cosmo-
logical numerical simulations (Tormen 1997; Ghigna et al. 1998;
Avila-Reese et al. 1999; Klypin et al. 1999; Moore et al. 1999;
Stoehr et al. 2002; Kravtsov et al. 2004a; De Lucia et al. 2004;
Diemand, Moore & Stadel 2004; Gill et al. 2004a; Gill, Knebe &
Gibson 2004b; Weller, Ostriker & Bode 2004; Reed et al. 2004).
This has resulted in a number of detailed studies of the abundances
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and both the spatial and the velocity distribution of subhaloes. As
satellite galaxies are thought to be associated with these subhaloes,
this has opened the possibility to compare the statistical properties
of satellite galaxies directly with those of dark matter subhaloes,
resulting in two apparent inconsistencies.

First of all, the radial distribution of dark matter subhaloes is found
to be spatially antibiased with respect to dark matter. However, the
observed distribution of cluster galaxies seems to accurately follow a
Navarro, Frenk & White (1997, hereafter NFW) distribution (Beers
& Tonry 1986; Carlberg, Yee & Ellingson 1997; van der Marel
et al. 2000; Lin, Mohr & Stanford 2004). Although this might signal
an inconsistency of the standard CDM framework, semi-analytical
models of galaxy formation that take the evolution of dark matter
subhaloes into account can reproduce the observed distribution of
cluster galaxies (Springel et al. 2001; Diaferio et al. 2001; Gao et al.
2004a; Kravtsov, Gnedin & Klypin 2004b). Part of the reason is that
galaxies are dense concentrations of baryons in the centers of dark
matter (sub)haloes, which are more resilient to tidal disruption than
(the outer parts of) their dark matter haloes, but other processes,
such as tidally induced star formation and tidal heating also play
important roles (see e.g. Kravtsov et al. 2004b).

The second apparent inconsistency concerns the abundances of
satellite galaxies. Although the subhalo mass function, when nor-
malized to the mass of the parent halo, is found to be virtually
independent of halo mass (Moore et al. 1999; De Lucia et al. 2004;
Diemand et al. 2004; Weller et al. 2004; but see Gao et al. 2004b),
the satellite populations of galaxy clusters are very different from
those of galaxy-sized haloes (Klypin et al. 1999; Moore et al. 1999;
D’onghia & Lake 2004). This must be telling us something impor-
tant about the physics of galaxy formation, and numerous studies
have focused on various mechanisms to explain this discrepancy
between the number of predicted subhaloes and observed satellites
(e.g. Kauffmann, White & Guiderdoni 1993; Bullock, Kravtsov &
Weinberg 2000; Benson et al. 2002).

At this point in time there is a strong need for better observational
constraints regarding the statistical properties of satellite galaxies. In
particular, does the radial distribution of satellite galaxies in galaxy-
sized haloes follow a NFW profile as for clusters, or does it reveal
a constant density core, as found for dark matter subhaloes? How
does the abundance of satellite galaxies depend on halo mass, or
on the luminosity of the host galaxy? Is this mass-dependent abun-
dance consistent with the full galaxy luminosity function and the
halo mass function? The conditional luminosity function (hereafter
CLF) formalism developed by Yang, Mo & van den Bosch (2003)
and van den Bosch, Yang & Mo (2003a) is ideally suited to address
these questions. It describes how many galaxies of given luminos-
ity reside in a halo of given mass. In this paper we therefore use
the CLF, constrained using the abundances and clustering proper-
ties of galaxies in the Two-Degree Field Galaxy Redshift Survey
(2dFGRS, Colless et al. 2001), to study the abundances and radial
distribution of satellite galaxies. We construct detailed mock galaxy
redshift surveys (MGRSs), based on the CLF, for direct comparison
with the 2dFGRS data. We show that a close-pair incompleteness
in the 2dFGRS prevents us from putting significant constraints on
the radial number density distribution of satellite galaxies, and that
matching the abundances of host and satellite galaxies in the 2dF-
GRS requires a �CDM concordance cosmology with a relatively
low value of the power-spectrum normalization parameter σ 8.

This paper is organized as follows. In Section 2 we describe the
CLF, and use a Monte Carlo Markov chain (hereafter MCMC) to
fully sample the posterior distribution of the CLF. In Section 3 we
describe how to use the CLF to construct detailed MGRSs for direct

comparison with the 2dFGRS. The selection criteria for host and
satellite galaxies are described in Section 4. Section 5 compares
the projected, radial distribution of satellite galaxies extracted from
the 2dFGRS with those obtained from our MGRSs, including a de-
tailed discussion of incompleteness effects in the 2dFGRS. Section
6 compares the abundances of host and satellite galaxies between
2dFGRS and MGRS. We summarize our results in Section 7.

2 T H E C O N D I T I O NA L
L U M I N O S I T Y F U N C T I O N

Yang et al. (2003) and van den Bosch et al. (2003a) presented a new
method to link the distribution of galaxies to that of dark matter
haloes. This method is based on modelling the CLF, �(L|M) dL,
which gives the average number of galaxies with luminosity L ±
dL/2 that reside in a halo of mass M. This CLF is the direct link
between the halo mass function n(M) dM, specifying the comoving
number density of haloes of mass M, and the galaxy luminosity func-
tion �(L) dL, specifying the comoving number density of galaxies
with luminosity L, through

�(L) =
∫ ∞

0

�(L|M) n(M) dM . (1)

In CDM cosmologies, more massive haloes are more strongly clus-
tered (Cole & Kaiser 1989; Mo & White 1996, 2002). This means
that information on the clustering strength of galaxies (of a given
luminosity) contains information about the characteristic mass of
the haloes in which they reside. Therefore, an observed luminosity
function �(L) combined with measurements of the galaxy–galaxy
two-point correlation function as function of luminosity, ξ gg(r, L),
puts stringent constraints on �(L|M) (see Yang et al. 2003).

For a given CLF the luminosity function �(L) follows directly
from equation (1) while, at sufficiently large separations r, the two-
point correlation function is given by

ξgg(r , L) = b2(L) ξdm(r ). (2)

Here ξ dm(r) is the dark matter mass correlation function and b(L)
is the average bias of galaxies of luminosity L, which derives from
the CLF according to

b(L) = 1

�(L)

∫ ∞

0

�(L|M) b(M) n(M) dM, (3)

with b(M) the bias of dark matter haloes of mass M.
Throughout this paper we compute the halo mass function using

the form suggested by Sheth, Mo & Tormen (2001), which has been
shown to be in excellent agreement with numerical simulations as
long as halo masses are defined as the masses inside a sphere with
an average overdensity of about 180 (Jing 1998; Sheth & Tormen
1999; Jenkins et al. 2001; White 2002). Therefore, in what follows
we consistently use that definition of halo mass when referring to M.
The halo bias, b(M), is computed using the fitting formula of Seljak
& Warren (2004). The linear power spectrum of density perturba-
tions is computed using the transfer function of Eisenstein & Hu
(1998), which properly accounts for the baryons, while the evolved,
non-linear power spectrum, required to compute the dark matter
correlation function, is computed using the fitting formula of Smith
et al. (2003).

Throughout this paper we assume a flat �CDM cosmology with
�m = 0.3, �� = 0.7, h = H 0/(100 km s−1 Mpc−1) = 0.7 and with a
scale-invariant initial power spectrum. Unless stated otherwise, we
adopt a normalization of σ 8 = 0.9.
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2.1 Parametrization

The CLF is parametrized by a Schechter function

�(L|M)dL = �̃∗

L̃∗

(
L

L̃∗

)α̃

exp(−L/L̃∗) dL, (4)

where L̃∗ = L̃∗(M), α̃ = α̃(M) and �̃∗ = �̃∗(M) are all functions
of halo mass M. We write the average, total mass-to-light ratio of a
halo of mass M as

〈M/L〉M = 1

2

(
M

L

)
0

[(
M

M1

)−γ1

+
(

M

M1

)γ2
]

. (5)

This parametrization has four free parameters: a characteristic mass
M1, for which the mass-to-light ratio is equal to (M/L)0, and two
slopes, γ 1 and γ 2, that specify the behavior of 〈M/L〉 at the low- and
high-mass ends, respectively. Motivated by observations (Bahcall,
Lubin & Dorman 1995; Bahcall et al. 2000; Sanderson & Ponman
2003), which indicate a flattening of 〈M/L〉M on the scale of
galaxy clusters, we set 〈M/L〉M = (M/L)cl for haloes with M �
1014 h−1 M�.

A similar parametrization is used for the characteristic luminosity
L̃∗(M)

M

L̃∗(M)
= 1

2

(
M

L

)
0

f (α̃)

[(
M

M1

)−γ1

+
(

M

M2

)γ3
]

, (6)

with

f (α̃) = 	(α̃ + 2)

	(α̃ + 1, 1)
. (7)

Here 	(x) is the Gamma function and 	(a, x) the incomplete Gamma
function. This parametrization has two additional free parameters:
a characteristic mass M2 and a power-law slope γ 3. For α̃(M) we
adopt a simple linear function of log(M)

α̃(M) = α15 + η log(M15), (8)

with M15 the halo mass in units of 1015 h−1 M�, α15 = α̃(M15 = 1),
and η describes the change of the faint-end slope α̃ with halo mass.
Note that once α̃ and L̃∗ are given, the normalization �̃∗ of the
CLF is obtained through equation (5), using the fact that the total
(average) luminosity in a halo of mass M is given by

〈L〉M =
∫ ∞

0

�(L|M) L dL = �̃∗ L̃∗ 	(α̃ + 2). (9)

Finally, we introduce the mass scale Mmin below which we set the
CLF to zero; i.e. we assume that no stars form inside haloes with
M < M min. Motivated by reionization considerations (see Yang et al.
2003, for details) we adopt M min = 109 h−1 M� throughout.

2.2 Parameter fitting

The CLF, as specified above, has a total of eight free parameters: two
characteristic masses; M1 and M2, three parameters that describe
the various mass dependencies γ 1, γ 3 and η, two normalizations
for the mass-to-light ratio, (M/L)0 and (M/L)cl, and a normaliza-
tion of the faint-end slope, α15. Note that γ 2 is not a free parame-
ter as it derives from requiring continuity in 〈M/L〉M across M =
1014 h−1 M�. The data that we use to constrain the CLF consists
of the 2dFGRS luminosity function of Madgwick et al. (2002) and
the galaxy–galaxy correlation lengths as a function of luminosity
obtained from the 2dFGRS by Norberg et al. (2002a). In Yang et al.
(2003) and van den Bosch et al. (2003a) we presented a number of
CLFs that accurately fit these data and that were based on different

assumptions regarding the free parameters. Motivated by a number
of independent observational constraints, the majority of these mod-
els were constrained to have (M/L)cl � 500 h (M/L)�. However,
subsequent studies have shown that these CLF models predict too
many rich galaxy groups (Yang et al. 2004b), and pairwise pecu-
liar velocity dispersions that are too high (Yang et al. 2004a). Both
these problems are alleviated by adopting a much higher cluster
mass-to-light ratio of (M/L)cl � 900 h (M/L)�.

In this paper we adopt a different approach. Rather than fixing
(M/L)cl at a preferred value and using a minimization routine to
search our multidimensional parameter space for the best-fitting
parameters, we follow Yan, Madgwick & White (2003) and use
a MCMC to fully describe the likelihood function in our multidi-
mensional parameter space. This will allow us to more accurately
investigate the freedom in cluster mass-to-light ratios. Readers not
familiar with, or interested in, MCMCs are referred to Gamerman
(1997) for details.

We start our MCMC from model D in van den Bosch, Yang &
Mo (2004a) and allow a ‘burn-in’ of 10 000 random walk steps for
the chain to equilibrate in the likelihood space. At any point in the
chain we generate a new trial model by drawing the shifts in its eight
free parameters from eight independent Gaussian distributions. The
probability of accepting the trial model is

Paccept =
{

1.0 if χ 2
new < χ2

old

exp
[ − (

χ2
new − χ 2

old

)/
2
]

if χ2
new � χ2

old

. (10)

Here χ 2 is defined as χ2 = χ 2
� + χ2

r0
with

χ 2
� =

N�∑
i=1

[
�(Li ) − �̂(Li )

��̂(Li )

]2

(11)

and

χ 2
r0

=
Nr∑

i=1

[
r0(Li ) − r̂0(Li )

�r̂0(Li )

]2

. (12)

Here �̂ and r̂0 are the observed quantities and N � = 35 and Nr = 8
are the number of data points for the LF and the correlation lengths,
respectively.

We construct a MCMC of 40 million steps, with an average ac-
ceptance rate of ∼12 per cent. To suppress the correlation power
between neighbouring models in the chain, we thin the chain by a
factor of 20 000. This results in a final MCMC consisting of 2000
independent models that properly sample the full posterior distribu-
tion. The hatched histograms in Fig. 1 plot the resulting distributions
of parameters, with the best-fitting values indicated by a vertical line.
The median and 68 per cent confidence intervals of these distribu-
tions are listed in Table 1 (model �0.9). Note that these parameters
are similar to those of models A–D presented in van den Bosch et al.
(2004a).1

In Fig. 2 we show scatter plots for some of the most tightly cor-
related pairs of parameters. The number density of points in these
plots is directly proportional to the probability density. The solid
circles correspond to 12 specific models to be discussed in more de-
tail below. The most pronounced correlations are between (M/L)cl,
(M/L)0 and γ 2: increasing the cluster mass-to-light ratio results in
a decrease of the minimum mass-to-light ratio (M/L)0. This simply

1 Small differences result from the fact that here we use the halo bias fitting
function of Seljak & Warren (2004), rather than that of Sheth et al. (2001),
and the transfer function of Eisenstein & Hu (1998), rather than that of
Efstathiou, Bond & White (1992).
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Figure 1. Constraints on the nine CLF parameters obtained from MCMCs with 2000 independent samples. The hatched (non-hatched) histograms correspond
to �CDM concordance cosmologies with σ 8 = 0.9 (0.7), respectively. Vertical lines indicate the best-fitting parameters for the σ 8 = 0.9 cosmology. The
median and 68 per cent confidence intervals of these distributions are listed in Table 1. Masses and mass-to-light ratios are in units of h−1 M� and h (M/L)�,
respectively.

reflects the conservation of the number of galaxies (constrained by
the LF): putting fewer galaxies in clusters requires an increase in the
occupation number in lower mass haloes. As γ 2 reflects the slope
of 〈M/L〉M in between M1 and the cluster scale, it is clear that γ 2

has to increase with increasing (M/L)cl and/or decreasing (M/L)0.
Another important correlation is between M1 and γ 1, which is a
direct consequence of the shallow faint-end slope of the galaxy LF.
Owing to the much steeper low-mass end of the halo mass function,
〈M/L〉M has to increase with decreasing mass. Lowering M1 results
in a steeper increase, and therefore a larger value of γ 1.

Fig. 3 shows confidence levels on various quantities computed
from our MCMC. The open circles with error bars in the upper
left and upper middle panels indicate the data used to constrain the
models. The shaded areas indicate the 68 and 99 per cent confidence
levels on �(L) and r0(L) computed from the MCMC. Note the good
agreement with the data, indicating that the CLF can accurately
match the observed abundances and clustering properties of galaxies
in the 2dFGRS. We emphasize that this is not a trivial result, as the
data can only be fitted for a certain combination of cosmological
parameters (van den Bosch, Mo & Yang 2003b).

The upper right-hand panel of Fig. 3 plots the faint-end slope of
the CLF as a function of halo mass. The data clearly favors models in
which α̃ increases with decreasing halo mass. At around the cluster
scale the models favor fairly steep faint-end slopes with −1.0 � α̃ �
−1.5, which is in excellent agreement with independent studies of
the luminosity functions in a number of individual clusters (e.g.
Sandage, Bingelli & Tammann 1985; Beijersbergen et al. 2002;
Trentham & Hodgkin 2002; Trentham & Tully 2002). The open
circles with error bars indicate α̃(M) for three different halo masses
M obtained by Eke et al. (2004) from an analysis of groups in the
2dFGRS, and are in good agreement with our model.

The lower left-hand panel of Fig. 3 plots the relation between
halo mass M and the total halo luminosity L, the expectation value
of which follows from the CLF according to equation (9). Note
that the confidence levels are extremely tight, especially for the
more massive haloes. The L(M) relation reveals a dramatic break
at around M = M 1 � 7 × 1010 h−1 M�, with L ∝ M3.5±1.5 for
M 
 M 1 and L ∝ M0.73±0.08 for M � M 1 (error bars are ob-
tained from the confidence levels on γ 1 and γ 2, respectively). In
a recent study, Vale & Ostriker (2004), under the assumption of
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Table 1. CLF parameters.

ID (M/L)cl (M/L)0 logM1 logM2 γ 1 γ 2 γ 3 α15 η χ2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1 311.2 167.1 10.76 12.45 3.803 0.176 0.609 −1.71 −0.374 70.53
2 353.2 155.2 10.61 12.46 4.310 0.194 0.650 −1.62 −0.314 68.46
3 393.6 135.8 10.77 12.22 2.770 0.236 0.624 −1.60 −0.373 65.97
4 441.6 125.0 10.72 12.24 3.141 0.259 0.646 −1.55 −0.330 65.09
5 490.9 115.1 10.76 12.10 2.639 0.287 0.666 −1.41 −0.312 64.34
6 508.2 111.9 10.77 12.08 2.594 0.297 0.654 −1.46 −0.333 64.42
7 563.6 102.1 10.88 11.93 2.106 0.334 0.664 −1.31 −0.327 65.18
8 632.4 95.1 10.93 11.86 1.970 0.366 0.665 −1.29 −0.342 66.20
9 726.1 85.7 11.15 11.66 1.451 0.431 0.653 −1.23 −0.400 67.95

10 798.0 82.2 11.21 11.58 1.331 0.461 0.639 −1.25 −0.445 68.91
11 899.5 76.4 11.30 11.64 1.444 0.507 0.684 −1.10 −0.310 72.01
12 1106.6 71.4 11.71 11.48 0.976 0.652 0.656 −1.11 −0.401 72.99

�0.9 500+130
−100 115+23

−20 10.76+0.25
−0.21 12.15+0.24

−0.31 2.92+2.11
−1.15 0.29+0.08

−0.06 0.66+0.06
−0.04 −1.44+0.21

−0.18 −0.31+0.10
−0.10 –

�0.7 400+120
−100 125+30

−21 10.71+0.21
−0.17 12.32+0.26

−0.35 3.46+2.18
−1.35 0.24+0.08

−0.07 0.62+0.06
−0.05 −1.64+0.21

−0.17 −0.35+0.10
−0.12 –

�ab
0.7 570+40

−40 98+3
−4 10.86+0.04

−0.04 11.96+0.10
−0.11 2.45+0.55

−0.37 0.34+0.02
−0.01 0.63+0.03

−0.05 −1.35+0.04
−0.25 −0.35+0.08

−0.11 –

Parameters of CLF models. Column (1) lists the ID by which we refer to each CLF in the text. Columns (2)–(10) list the model parameters,
and column (11) the value of χ2 = χ2

� + χ2
r0

. Masses and mass-to-light ratios are in h−1 M� and h (M/L)�, respectively. The first 12
lines (IDs 1–12) correspond to the best-fitting models extracted from the σ 8 = 0.9 MCMC for different bins in (M/L)cl. They are shown
as thick solid dots in Fig. 2. The last three lines list the median and 68 per cent confidence levels of the parameter probability distributions
obtained from the MCMCs. Models �0.9 and �0.7 correspond to the MCMC of the �CDM cosmologies with σ 8 = 0.9 and σ 8 = 0.7,
respectively. Model �ab

0.7 is the same as Model �0.7, except that we have weighted the MCMC samples by exp(−χ2
ab/2) (see Section 6.1).

a monotonic L(M), obtained the relation between light and mass
from a comparison of the galaxy luminosity function with the to-
tal halo mass function (counting both parent and subhaloes). They
find that L(M) changes from L ∝ M4 to L ∝ M0.9, in good agree-
ment with our results. This is also evident from a direct comparison
of their results (solid line in the lower left-hand panel of Fig. 3)
with ours, which shows almost perfect agreement. It is extremely
reassuring that two such wildly different methods yield results in
such good agreement. This combined with the extremely tight confi-
dence levels obtained from our CLF analysis suggests that we have
established a remarkably robust connection between galaxy light
and halo mass (at least for the concordance cosmology adopted
here).

The lower, middle panel of Fig. 3 plots the corresponding mass-
to-light ratios as function of halo mass. The pronounced minimum
in M/L indicates that galaxy formation is most efficient in haloes
with masses in the range 5 × 1010 h−1 M� � M � 1012 h−1 M�.
For less massive haloes, the mass-to-light ratio increases drastically
with decreasing halo mass, which is required to bring the steep slope
of the halo mass function at low M in agreement with the relatively
shallow faint-end slope of the observed LF. It indicates that galaxy
formation needs to become extremely inefficient in haloes with M �
5 × 1010 h−1 M� to prevent an overabundance of faint galaxies. The
increase in 〈M/L〉M from M ∼ 1011 h−1 M� to M ∼ 1014 h−1 M�
is associated with the decreasing ability of the gas to cool with
increasing halo mass (e.g. White & Rees 1978; van den Bosch 2002).
Finally, the sharp turn-over to a constant 〈M/L〉M for haloes with
M � 1014 h−1 M� is a direct reflection of our CLF parametrization
(see Section 2.1). The various lines correspond to models A–D from
van den Bosch et al. (2003a), and are in excellent agreement with
the confidence intervals obtained here. This indicates that the CLF
models used in our previous work (Yang et al. 2004a,b; van den
Bosch et al. 2003a,b, 2004a,b; Mo et al. 2004; Wang et al. 2004)
are perfectly consistent with the parameter constraints obtained here
using the MCMC.

Finally, the lower right-hand panel of Fig. 3 plots predictions for
the number of galaxies (with M bJ − 5 log h < −14) as a function
of halo mass. These are derived from the CLF according to

〈N 〉M =
∫ ∞

Lmin

�(L|M) dL, (13)

with Lmin being the minimum luminosity considered (L min = 5.2 ×
107 h−2 L� in our case). Although the exact shape and normaliza-
tion of 〈N〉M depends on Lmin (e.g. van den Bosch et al. 2003a),
the power-law behavior combined with a shoulder plus break at low
M values is in good agreement with a number of studies based on
halo occupation numbers (Seljak 2000; Scranton 2003; Berlind et al.
2003; Magliocchetti & Porciani 2003; Kravtsov et al. 2004a).

We can compare these predictions with the number of galaxies
with M bJ − 5 log h < −14 in the MW and M31 systems. Us-
ing the data collected by Mateo (1998), and adopting h = 0.7, we
find N = 3 for the MW (MW, LMC and SMC), and N = 6 for
M31 (M31, M32, M33, NGC 205, NGC 147 and IC 10). Adopting
the virial masses for the MW (7 × 1011 h−1 M�) and M31 (1.1 ×
1012 h−1 M�) obtained by Klypin, Zhao & Somerville (2002), and
converting these to our definition of halo mass M (see Section 2),
we obtain the results indicated by the solid dot and the asterisk, re-
spectively. Although these occupation numbers lie somewhat above
our predictions, we caution that the latter indicate the 68 and 99 per
cent confidence levels on the average 〈N〉M; they do not indicate the
scatter. Furthermore, the virial masses are quite uncertain; if the true
virial masses of the MW and M31 are twice as large as the values ad-
vocated by Klypin et al. (see, for instance Hernández, Avila-Reese
& Firmani 2001), they nicely match our CLF predictions.

3 M O C K G A L A X Y R E D S H I F T S U RV E Y S

To properly interpret the 2dFGRS data on the abundance and radial
distribution of satellite galaxies we construct detailed mock galaxy
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Figure 2. Correlations between various CLF parameters of the 2000 samples in the σ 8 = 0.9 MCMC (thin dots). The thick, solid dots correspond to the 12
CLF models listed in Table 1 which represent the best-fitting models in 12 intervals of cluster mass-to-light ratio, (M/L)cl. Masses and mass-to-light ratios are
in units of h−1 M� and h (M/L)�, respectively.

redshift surveys (hereafter MGRSs). These have the following ad-
vantages:

(i) we know exactly the true abundances and the true radial dis-
tributions;

(ii) we can model the effects of various observational biases; and
(iii) we can use exactly the same host/satellite selection criteria

as for the 2dFGRS, making the comparison with the data straight-
forward.

To construct MGRSs two ingredients are required: a distribution
of dark matter haloes and a description of how galaxies of differ-
ent luminosity occupy haloes of different mass. For the former we
use large numerical simulations, and for the latter the CLF. Ideally
we would construct a MGRS for each of the 2000 models in our
MCMC. As this is computationally too expensive we adopt an al-
ternative method. We determine the minimum and maximum values
of (M/L)cl in the entire MCMC, and split the interval into 12 equally
sized logarithmic bins. For each of these bins we then determine the
model that yields the lowest χ 2. The parameters of the resulting

12 models are listed in Table 1, and are indicated by thick solid dots
in Fig. 2. For each of these 12 CLFs we construct a MGRS, which
we use to assess the uncertainties on the abundances and radial dis-
tribution of satellite galaxies owing to the uncertainties in (M/L)cl.
In what follows we refer to the MGRS based on CLF n as Mn, where
n is the ID listed in column (1) of Table 1.

We choose (M/L)cl as our main parameter to sample parameter
space because (i) this parameter has direct observational constraints
(e.g. Carlberg et al. 1996; Fukugita, Hogan & Peebles 1998; Bahcall
et al. 2000), (ii) previous studies based on the CLF have shown that
varying (M/L)cl has important implications for the pairwise peculiar
velocities of galaxies (Yang et al. 2004a) and the abundance of large
groups (Yang et al. 2004b) and (iii) it is strongly correlated with
several of the other CLF parameters (see Fig. 2).

3.1 Numerical simulations

The distribution of dark matter haloes is obtained from a set of large
N-body simulations (dark matter only) for a �CDM ‘concordance’
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Figure 3. Posterior constraints on a number of quantities computed from the σ 8 = 0.9 MCMC. The contours show the 68 and 99 per cent confidence limits
from the marginalized distribution. Upper left-hand panel: the galaxy luminosity function; open circles with error bars correspond to the 2dFGRS data from
Madgwick et al. (2002). Upper middle panel: galaxy–galaxy correlation lengths as function of absolute magnitude; open circles with error bars correspond
to the 2dFGRS data from Norberg et al. (2002a). Upper right-hand panel: the faint-end slope of the CLF as a function of halo mass; open circles with error
bars correspond to the 2dFGRS data from Eke et al. (2004). Lower left-hand panel: the total luminosity per halo as a function of halo mass. The solid grey
line (blue in the electronic version) corresponds to the model of Vale & Ostriker (2004), and is shown for comparison. Lower middle panel: the average
mass-to-light ratio as a function of halo mass. The various lines (blue in the electronic version) correspond to models A–D of van den Bosch et al. (2003a),
as indicated. Lower right-hand panel: the average number of galaxies with M bJ − 5 log h < −14 per halo as a function of halo mass. See text for a detailed
discussion.

cosmology with �m = 0.3, �� = 0.7, h = 0.7 and σ 8 = 0.9. In
this paper we use two simulations with N = 5123 particles each,
which are described in more detail in Yang et al. (2004a) and Jing
& Suto (2002). The simulations have periodic boundary conditions
and box sizes of L box = 100 h−1 Mpc (hereafter L100) and L box =
300 h−1 Mpc (hereafter L300). We follow Yang et al. (2004a) and
replicate the L300 box on a 4 × 4 × 4 grid. The central 2 × 2 × 2
boxes, are replaced by a stack of 6 × 6 × 6 L 100 boxes, and the virtual
observer is placed in the centre (see fig. 11 in Yang et al. (2004a)).
This stacking geometry circumvents incompleteness problems in
the mock survey owing to insufficient mass resolution of the L300

simulations, and allows us to reach the desired depth of zmax = 0.15
in all directions.

Dark matter haloes are identified using the standard friends-
of-friends algorithm (Davis et al. 1985) with a linking length of
0.2 times the mean interparticle separation. Unbound haloes, or
haloes with less than 10 particles, are removed from the sam-
ple. In Yang et al. (2004a) we have shown that the resulting halo
mass functions are in excellent agreement with the analytical halo
mass function given by Sheth et al. (2001) and Sheth & Tormen
(2002).

3.2 Halo occupation numbers and luminosities

Owing to the mass resolution of the simulations and the complete-
ness limit of the 2dFGRS we adopt a minimum galaxy luminosity of
L min = 107 h−2 L� throughout. The mean number of galaxies with
L � L min that resides in a halo of mass M is given by equation (13).
In order to Monte Carlo sample occupation numbers for individual
haloes one requires the full probability distribution P(N|M) (with N
an integer) of which 〈N〉M gives the mean, i.e.

〈N 〉M =
∞∑

N=0

N P(N |M). (14)

We use the results of Kravtsov et al. (2004a), who has shown that
the number of subhaloes follows a Poisson distribution. In what fol-
lows we differentiate between satellite galaxies, which we associate
with these dark matter subhaloes, and central galaxies, which we
associate with the host halo (cf. Vale & Ostriker 2004). The total
number of galaxies per halo is the sum of N cen, the number of cen-
tral galaxies which is either one or zero, and N sat, the (unlimited)
number of satellite galaxies. We assume that N sat follows a Poisson
distribution and require that N sat = 0 whenever N cen = 0. The halo
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occupation distribution is thus specified as follows: if 〈N 〉M � 1 then
N sat = 0 and N cen is either zero (with probability P = 1 − 〈N 〉M )
or one (with probability P = 〈N 〉M ). If 〈N 〉M > 1 then N cen = 1
and N sat follows the Poisson distribution

P(Nsat|M) = e−µ µNsat

Nsat!
, (15)

with µ = 〈N sat〉M = 〈N 〉M − 1.
We follow Yang et al. (2004a) and van den Bosch et al. (2004b)

and assume that the central galaxy is the brightest galaxy in each
halo. Its luminosity is drawn from �(L|M) with the restriction that
L > L 1 with L1 defined by∫ ∞

L1

�(L|M) dL = 1. (16)

The luminosities of the satellite galaxies are also drawn at random
from �(L|M), but with the restriction L min < L < L 1.

3.3 Assigning galaxies their phase-space coordinates

Next we assign all galaxies a position and velocity within their
halo. Ideally we would associate the central galaxy with the parent
halo, and satellite galaxies with the dark matter subhaloes. However,
as our numerical simulations do not resolve these subhaloes, we
have to assign the positions and velocities of (satellite) galaxies
‘manually’. We assume that each dark matter halo has an NFW
density distribution with virial radius rvir, characteristic scale radius
rs, and concentration c = r vir/r s. Throughout this paper we compute
halo concentrations as a function of halo mass using the relation
given by Eke, Navarro & Steinmetz (2001), properly accounting for
our definition of halo mass. The ‘central’ (brightest) galaxy in each
halo is assumed to be located at the halo centre, which we associate
with the position of the most bound particle. Satellite galaxies are
assumed to follow a radial number density distribution given by

nsat(r ) ∝
(

r

Rrs

)−α(
1 + r

Rrs

)α−3

(17)

(limited to r � r vir) with α and R being two free parameters. Unless
specifically stated otherwise we adopt α = R = 1 for which the
number density distribution of satellite galaxies exactly follows the
dark matter mass distribution.

Finally, peculiar velocities are assigned as follows. We assume
that the ‘central’ galaxy is located at rest with respect to its halo,
and set its peculiar velocity equal to the mean halo velocity. Satel-
lite galaxies are assumed to be in a steady-state equilibrium within
the dark matter potential well with an isotropic distribution of ve-
locities with respect to the halo centre (see van den Bosch et al.
2004b for details). As shown by Diemand et al. (2004) this is a good
approximation for dark matter subhaloes.

3.4 Creating mock surveys

The 2dFGRS uses a multifibre spectrograph to obtain redshifts.
However, because of the physical size of the fibres, when two galax-
ies are closer than ∼30 arcsec in projection only one of them can
be targeted. Furthermore, owing to clustering, some areas on the
sky contain more galaxies within a single two-degree field than the
available number of fibres. By using a sophisticated tiling strategy
these problems are largely overcome, yielding a fairly uniform sam-
pling rate. Nevertheless, some spatial non-uniformities remain. In
addition, fainter galaxies yield noisier spectra, and therefore less
accurate redshifts. All these effects combined result in a complete-

ness which depends on both the position in the sky and on the
apparent magnitude. The 2dFGRS team has constructed maps that
parametrize this position and magnitude-dependent completeness
(Colless et al. 2001; Norberg et al. 2002b), and which facilitate a
correction for these effects in our MGRSs. However, as it turns out,
the completeness depends also on the angular separation, θ , between
galaxy pairs. This is largely owing to the problem of fibre collisions,
which has not been completely corrected for by the tiling strategy.
Finally, Norberg et al. (2002b) have shown that the parent catalogue
of the 2dFGRS, the APM catalogue (Maddox et al. 1990), is only 91
per cent complete. Using this information we mimic the various ob-
servational selection and completeness effects in the 2dFGRS using
the following steps.

(i) We define a (α, δ)-coordinate frame with respect to the virtual
observer at the centre of the stack of simulation boxes, and remove
all galaxies that are not located in the areas equivalent to the NGP
and SGP regions of the 2dFGRS.

(ii) For each galaxy we compute the redshift as ‘seen’ by the
virtual observer. We take the observational velocity uncertainties
into account by adding a random velocity drawn from a Gaussian
distribution with dispersion 85 km s−1 (Colless et al. 2001).

(iii) For each galaxy we compute the apparent magnitude ac-
cording to its luminosity and distance, to which we add a rms error
of 0.15 mag (Colless et al. 2001; Norberg et al. 2002b). As galax-
ies in the 2dFGRS were pruned by apparent magnitude before a
K correction was applied, we proceed as follows: we first apply a
negative K correction, then select galaxies according to the position-
dependent magnitude limit (obtained using the apparent magnitude
limit masks provided by the 2dFGRS team), and finally K correct
the magnitudes back to their rest-frame bJ band. Throughout we use
the type-dependent K corrections given in Madgwick et al. (2002).

(iv) For each galaxy we compute the redshift as ‘seen’ by the
virtual observer. We take the observational velocity uncertainties
into account by adding a random velocity drawn from a Gaussian
distribution with dispersion 85 km s−1 (Colless et al. 2001), and
remove those galaxies not in the redshift range 0.01 < z < 0.15.

(v) To take account of the completeness level of the 2dFGRS
parent catalogue (Norberg et al. 2002b) we randomly remove 9 per
cent of all galaxies.

(vi) To take account of the position- and magnitude-dependent
completeness of the 2dFGRS, we randomly sample each galaxy
using the completeness masks provided by the 2dFGRS team.

The construction of the MGRS described above is identical to
the method used by Yang et al. (2004a,b), Wang et al. (2004), and
van den Bosch et al. (2004b). As discussed above, the level of com-
pleteness of the 2dFGRS depends on position, apparent magnitude
and pair-separation θ . In constructing our MGRSs we corrected
for the formed two effects, using detailed completeness maps pro-
vided by the 2dFGRS team, but no correction was made for the
pair-separation dependency. However, for the purpose of investi-
gating the radial distribution of satellite galaxies this θ -dependent
incompleteness cannot be ignored.

To quantify the pair-separation incompleteness Hawkins et al.
(2003) computed the ratio r (θ ) ≡ [1 + wp(θ )]/[1 + wz(θ )] between
the angular correlation functions of the 2dFGRS parent catalogue,
wp(θ ), and that of the final redshift survey, wz(θ ). r(θ ) is there-
fore a direct measure of the fraction of pairs with separation θ in
the parent catalogue divided by the same fraction but in the final
redshift survey. Whenever r(θ ) differs from unity it indicates that
the incompleteness of the redshift survey (with respect to the par-
ent catalogue) depends on pair separation, where values larger than
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Figure 4. The solid line corresponds to the r(θ ) (see text for definition)
obtained from the 2dFGRS by Hawkins et al. (2003). Note that r is signifi-
cantly larger than unity for θ � 100 arcsec, indicating that the 2dFGRS has
missed a significant fraction of close pairs (largely owing to fibre collisions).
The open circles with error bars correspond to the r(θ ) obtained for MGRS
M6, after we have removed close pairs. The good agreement with the results
from the 2dFGRS indicates that we have constructed a MGRS with the same
deficiency of close pairs as in the data. Note that this does not correct for a
possible close-pair incompleteness in the parent catalogue of the 2dFGRS
(see Section 5.2).

unity indicate a pair deficiency. Hawkins et al. found r to be signif-
icantly larger than unity for θ � 60 arcsec. In an attempt to model
this ‘close-pair deficiency’ in our MGRSs we proceed as follows.
We follow the same procedure as described above, but we skip step
(iv); i.e. we do not correct the MGRS for the incompleteness of
the parent catalogue. After having corrected for the position- and
magnitude-dependent incompleteness, we compute the angular sep-
arations θ between all galaxy pairs and remove galaxies based on
a probability p(θ ), which we tune (by trial and error) so that we
reproduce the r(θ ) obtained by Hawkins et al. (2003). As a last
step we then remove a number of galaxies completely at random
such that, together with the galaxies removed because of their an-
gular separation to neighbours, we have removed 9 per cent of all
mock galaxies. This mimics the incompleteness level of the parent
catalogue.2 The solid line in Fig. 4 shows r(θ ) for the 2dFGRS as
obtained by Hawkins et al. (2003), while open circles with error bars
correspond to the r(θ ) obtained from a comparison of the angular
correlation functions in MGRS M6 before and after the removal of
close pairs. The good agreement with the 2dFGRS results demon-
strates that we have managed to construct MGRSs with the same de-
ficiency of close pairs as present in the real 2dFGRS. All MGRSs dis-
cussed in this paper have been similarly corrected for this close-pair
incompleteness.

4 S E L E C T I N G H O S T A N D
S AT E L L I T E G A L A X I E S

A galaxy is considered a potential host galaxy if it is at least f h times
brighter than any other galaxy within a volume specified by Rp < Rh

2 Note that the sequential order in which the various completeness correc-
tions have been applied is not entirely correct. However, numerous tests have
shown that this has an absolutely negligible effect on our results.

and |�V | < (�V )h. Here Rp is the separation projected on the sky at
the distance of the candidate host, and �V is the line-of-sight veloc-
ity difference. Around each potential host galaxy, satellite galaxies
are defined as those galaxies that are at least f s times fainter than
their host and located within a volume with Rp < R s and |�V | <

(�V )s (here �V is the line-of-sight velocity difference between the
potential satellite galaxy and the host galaxy under consideration).
Host galaxies with zero satellite galaxies are removed from the list
of hosts.

In total, the selection of hosts and satellites thus depends on six
free parameters: Rh, (�V )h and f h to specify the population of host
galaxies, and R s, (�V )s and f s to specify the satellite galaxies.
These parameters also determine the number of interlopers (de-
fined as a galaxy not physically associated with the halo of the host
galaxy) and non-central hosts (defined as a host galaxy that is not the
brightest, central galaxy in its own halo). Minimizing the number
of interlopers requires sufficiently small Rs and (�V)s. Minimizing
the number of non-central hosts requires one to choose Rh, (�V)h

and f h sufficiently large. Of course, each of these restrictions dra-
matically reduces the number of both hosts and satellites, making
the statistical estimates more and more noisy.

In van den Bosch et al. (2004b) we used our MGRS to opti-
mize these selection criteria, aiming for large numbers of hosts and
satellites, a small fraction of interlopers, and a small fraction of non-
central hosts. It was shown that an adaptive selection criterion, for
which Rh, (�V)h and Rs are made dependent of the luminosity of
the host candidate, was most successful. Motivated by these find-
ings we adopt: f h = f s = 1, (�V )h = 1000 σ 200 km s−1, (�V )s =
2000 km s−1, Rh = 0.8 σ 200 h−1 Mpc and R s = 0.15 σ 200 h−1 Mpc.
Here σ 200 = σ sat(L host)/(200 km s−1) is the velocity dispersion of
satellite galaxies around a host halo of luminosity Lhost in units of
200 km s−1. Following van den Bosch et al. (2004b) we adopt

log[σsat(Lhost)] = logσ10 + a1logL10 + a2(logL10)2. (18)

Here L 10 = L host/1010 h−2 L� and σ 10 = σ sat(L 10). We set σ 10 =
200 km s−1, a1 = 0.5 and a2 = 0.1, which is close to the parameters
obtained for the 2dFGRS by van den Bosch et al. (2004b). Note that
details regarding the selection criteria of host and satellite galaxies
are not very important as long as the data and model (MGRS) are
treated in the same way.

For the data we use the final, public data release from the 2dF-
GRS, restricting ourselves only to galaxies with redshifts 0.01 � z �
0.15 in the North Galactic Pole and South Galactic Pole subsamples
with a redshift quality parameter q � 3. This leaves a grand total
of 146 735 galaxies with a typical rms redshift error of 85 km s−1

(Colless et al. 2001). Absolute magnitudes for galaxies in the 2dF-
GRS are computed using the K corrections of Madgwick et al.
(2002). Applying our host–satellite selection criterion yields 8737
host galaxies and 13 738 satellite galaxies.

5 T H E R A D I A L D I S T R I BU T I O N
O F S AT E L L I T E G A L A X I E S

The hatched histograms in Fig. 5 show the projected, radial, number
density distribution, �̄sat(Rp) (in h2/Mpc2/host) of 2dFGRS satel-
lite galaxies around hosts in three different host magnitude bins.
Note that the �̄sat(Rp) reveal both an inner and an outer break. The
outer break radius increases with increasing host luminosity, and is
mainly owing to our selection criteria. The inner break radius, how-
ever, indicates a pronounced absence of satellite galaxies at small
projected radii from the host galaxy. To interpret these findings in
terms of the actual three-dimensional number density distribution of
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Figure 5. The projected number density distributions of satellite galaxies as a function of projected radius. Results are shown for three different bins in
host–galaxy luminosity, indicated at the top of each column. In each panel, the hatched histogram corresponds to the 2dFGRS data, while the various lines
have been obtained from the MGRSs. The error bars (only shown in the upper panels for clarity) indicate Poisson errors in the numbers of host and satellite
galaxies. The upper panels compare the 2dFGRS data to three MGRSs (M1, M6 and M12) that span the entire range in cluster mass-to-light ratio (see Table 1
for parameters). The middle row of panels compare the 2dFGRS data to MGRSs based on CLF 6, but in which the intrinsic, spatial distribution of satellite
galaxies is modelled with a constant number density core (equation 17 with α = 0) with R = 1 (M6a), 2 (M6b) and 3 (M6c). For comparison the fiducial
MGRS M6, for which α = R = 1 is also shown (solid lines). Finally, the lower panels compare the 2dFGRS data to MGRSs based on CLF 6, but in which
we have corrected for the size-projection incompleteness using R10 = 10 h−1 kpc (M6d), R10 = 15 h−1 kpc (M6e) and R10 = 20 h−1 kpc (M6f). See text for
detailed discussion.

satellite galaxies we compare these findings to those obtained from
our MGRSs.

The three non-hatched histograms in the upper panels of Fig. 5
depict the �̄sat(Rp) as obtained from MGRSs M1 (dotted lines), M6
(solid lines) and M12 (dashed lines). Note that all three MGRSs
yield virtually identical radial number density distributions. In fact,
this holds for all 12 MGRSs listed in Table 1: for clarity, however,
only three are shown. Although the projected number density distri-
butions of the MGRSs nicely match the 2dFGRS data at large pro-
jected radii, they severely overpredict �̄sat(Rp) at small Rp. Rather
than a pronounced inner break radius, �̄sat(Rp) increases continu-

ously down to the smallest radii shown. Especially for the brightest
host galaxies the discrepancy between MGRSs and 2dFGRS is dra-
matic. Either satellite galaxies are spatially antibiased with respect
to the dark matter, or the 2dFGRS has somehow missed a large
number of satellite galaxies at small projected radii from their host
galaxies. We investigate both options below.

Another characteristic of the projected number density distribu-
tions shown is that �̄sat is higher around fainter host galaxies. The
surface density of satellite galaxies scales as �̄sat ∝ 〈N 〉s/R2

vir, with
〈N〉s the average number of satellites in a halo associated with the
host galaxy, and Rvir the corresponding virial radius. To a good
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approximation, 〈N 〉s ∝ Mα , with M the halo mass and α � 0.9 (e.g.
Kravtsov et al. 2004a). Writing the relation between host luminosity
and halo mass as a simple power law, L host ∝ Mβ , and using that
Rvir ∝ M1/3

vir , one thus predicts that �̄sat ∝ L0.23/β

host . Given that β > 0
one thus expects that the projected number density decreases with
decreasing Lhost, opposite to what is seen in Fig. 5. The reason for this
apparent disagreement is that we only consider host galaxies with at
least one satellite. This means that, because of our selection criteria,
〈N〉s deviates from the pure power law at the low-mass end, where it
assymptotes to 〈N 〉s = 1 (i.e. α = 0.0). In this case �̄sat ∝ L−0.67/β

host

and �̄sat increases with decreasing Lhost, as observed.3

5.1 Spatial antibias

When constructing the MGRSs we have thus far assumed that satel-
lite galaxies follow the same number density distribution as dark
matter particles (i.e. equation 17 with α = R = 1.0). The resulting
overestimate of the projected number density of satellite galaxies at
small Rp, however, might indicate that α < 1.0 and/or that R > 1.
To test these ideas we construct three MGRSs using CLF 6. These
MGRSs, termed M6a, M6b and M6c, all have α = 0.0, and only
differ in the value of R, which is set to 1.0, 2.0 and 3.0, respectively.
The projected number density distributions of their satellite galaxies
are shown in the middle row of panels of Fig. 5. For comparison
we also plot the �̄sat(Rp) of M6 (solid lines). As expected, lowering
α and increasing R both result in a decrease of �̄sat at small Rp.
In fact, MGRS M6c fits most of the 2dFGRS data reasonably well,
although it fails to reproduce the pronounced inner break evident in
the data.

Taking these results at face value seems to indicate that satellite
galaxies are spatially antibiased with respect to the dark matter mass
distribution on small scales (20–30 per cent of the virial radius). This
is in wonderful agreement with high -resolution numerical N-body
simulations, which reveal a very similar spatial antibias for dark
matter subhaloes (Ghigna et al. 1998; Colin et al. 1999; Okamoto
& Habe 1999; Ghigna et al. 2000; Springel et al. 2001; De Lucia
et al. 2004; Diemand et al. 2004), but inconsistent with observations
of the number density distribution of galaxies in clusters (Beers &
Tonry 1986; Carlberg et al. 1997; van der Marel et al. 2000; Diemand
et al. 2004; Lin et al. 2004) and with predictions of semi-analytical
models of galaxy formation (Springel et al. 2001; Diaferio et al.
2001; Gao et al. 2004a).

5.2 Observational projection effects

This puzzling inconsistency calls for a closer examination of the se-
lection effects in the 2dFGRS. Could the absence of satellite galaxies
at small projected radii from their host galaxies be owing to selection
effects? Note that it cannot be explained as owing to fibre collisions.
As shown in Fig. 4, and discussed in Section 3, these effects are ac-
curately accounted for in our MGRSs. One effect that has not yet
been accounted for, however, is related to the fact that galaxies have
a finite size, which causes them to overlap in projection. Whenever
this happens only the brightest of the two will be recognized as a

3 Although this argument is based on the assumption of a volume-limited
sample, using our MGRSs we have verified that the host/satellite systems
selected from a flux-limited sample reveal the same behavior, with 〈N〉s

changing smoothly from a power law with slope ∼0.8 at the bright end to a
constant at the faint end.

galaxy and included in the survey. Indeed, as shown by Cole et al.
(2001) using a comparison of the 2dFGRS with the Two Micron All
Sky Survey (2MASS), about 4.5 per cent of all galaxies is missed
in the 2dFGRS parent catalogue because of merged or close images
(explaining about half of the incompleteness; the other half being
because of incorrect star–galaxy separation).

In order to take this size-projection effect into account we proceed
as follows. We model the characteristic size of a galaxy as

Rgal = R10

(
L

1010 h−2 L�

)ζ

(19)

and define the critical projection angle θ max = Rgal/DA, with DA the
angular distance of the galaxy. Based on the data on disc galaxies
in Courteau et al. (2003) we adopt ζ = 1/3, but we note that this
assumption is not very important. For example, we have also exper-
imented with ζ = 1/2 finding very similar results as those described
here.

We construct three MGRSs in which we take the size-projection
effect into account using R10 = 10 h−1 kpc (M6d), R10 = 15 h−1 kpc
(M6e), and R10 = 20 h−1 kpc (M6f). We follow the same procedure
as described in Section 3, except that this time, after having cor-
rected for the position- and magnitude-dependent incompleteness,
we compute the angular separations θ between all galaxy pairs and
remove the faintest galaxy from all pairs for which θ < θ max. Typi-
cally this removes about 2–4 per cent of all galaxies, which is com-
parable to the incompleteness level in the 2dFGRS parent catalogue
owing to this effect as found by Cole et al. (2001). Next we correct
for the fibre collisions, using the same trial-and-error method as de-
scribed in Section 3. Finally we remove a number of galaxies com-
pletely at random to bring the total fraction of removed galaxies to
9 per cent.

The lower panels Fig. 5 plot the �̄sat(Rp) of MGRSs M6d (dashed
lines), M6e (dot-dashed lines) and M6f (dotted lines). Note that these
MGRSs have α = R = 1.0, as for our fiducial MGRSs. For compar-
ison, the solid lines plot the projected number density distributions
of MGRS M6, for which no correction for the size-projection effect
has been applied. Clearly, the size-projection effect as modelled here
has a dramatic impact on �̄sat(Rp) at small projected radii. In fact,
it reproduces the inner cut-off observed for the 2dFGRS data, indi-
cating that, as first noticed by Cole et al. (2001), the 2dFGRS lacks
a significant fraction of close galaxy pairs owing to projection ef-
fects. The dramatic impact of this size-projection effect on �̄sat(Rp)
owes to the fact that in our MGRSs the central galaxy in each halo
is always the brightest galaxy in that halo. Most of the pairs with
small separations (i.e. those that would overlap in projection) are
between such a central galaxy and one of the inner satellites. As the
latter is always the fainter of the two, the number density of satellites
at small projected separations from the central galaxy is drastically
reduced.

Unfortunately, unless we can model this particular incomplete-
ness in more detail as done here (i.e. have independent constraints
on R10 and ζ ), we cannot use the 2dFGRS data to meaningfully con-
strain the actual radial density distribution of satellite galaxies. Our
models suggest that the data is consistent with no spatial (anti)bias
as long as the size-projection effects are taken into account, but we
cannot rule out that α = 0.0 and/or thatR > 1.0. For example, mod-
els with both α = 0.0 and in which we correct for the size-projection
effect are virtually indistinguishable from the same models but with
α = 1.0. It remains to be seen whether the higher spatial resolution
of the Sloan Digital Sky Survey (SDSS) will allow a more in-depth
investigation of the radial distribution of satellite galaxies.
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6 T H E A BU N DA N C E O F H O S T
A N D S AT E L L I T E G A L A X I E S

We now focus on the abundances of host and satellite galaxies. For
the 2dFGRS we obtain host and satellite fractions of N host/N tot =
0.060 (0.060, 0.059) and N sat/N tot = 0.094 (0.096, 0.092), where
the numbers in parentheses indicate the fractions obtained using only
the NGP and SGP data, respectively. We compare these numbers
with those obtained from the MGRSs. The solid triangles in the
upper panels of Fig. 6 plot N host/N tot, N sat/N tot and N sat/N host as a
function of (M/L)cl for the 12 MGRSs listed in Table 1. The grey,
horizontal bars indicate the 2dFGRS results. Clearly, the fraction

Figure 6. Abundances of host and satellite galaxies. From left to right, the different panels in a given row plot the ratios N host/N tot, N sat/N tot and N sat/N host,
all as a function of the cluster mass-to-light ratio (M/L)cl (in units of h (M/L)�). Grey, horizontal bars indicate the ratios obtained from the 2dFGRS. Upper
panels: solid triangles and open circles indicate the ratios obtained from the MGRSs for the 12 CLFs listed in Table 1 without and with correction for the
size-projection effects, respectively. Error bars, computed assuming Poisson errors on N tot, N host and N sat, are smaller than the symbols, and are therefore
not shown. The solid line indicates the ratios obtained from the analytical estimates (equations 20–25) after taking account of the correction factors f host and
f sat (see text). The good agreement with the open circles indicates that these analytical estimates can be used to compute the abundances of host and satellite
galaxies for any CLF model without the need to construct a detailed MGRS. Middle panels: the ratios N host/N tot, N sat/N tot and N sat/N host for all 2000 samples
in the σ 8 = 0.9 MCMC, obtained using the approximate, analytical method. Note that none of these models can simultaneously match all three ratios obtained
from the 2dFGRS. Lower panels: same as middle panels, but this time showing the results for the σ 8 = 0.7 MCMC. Note that at around log[(M/L)cl] � 2.75
these model predictions simultaneously match all three 2dFGRS ratios.

of satellite galaxies in the MGRS is much too high compared to
the 2dFGRS, independent of (M/L)cl. The fraction of host galaxies
is in reasonable agreement with the 2dFGRS (though somewhat
too high), but only for (M/L)cl � 650 h (M/L)�. Matching the
number of satellites per host, however, favours much higher values
for (M/L)cl. In short, none of the 12 MGRS can simultaneously
match the abundances of host and satellite galaxies in the 2dFGRS.

The open circles in the upper panels of Fig. 6 correspond to the
same 12 MGRSs, but this time corrected for the size-projection ef-
fects discussed in Section 5.2 using R10 = 0.015 h−1 Mpc and ζ =
1/3. This lowers the overall abundances of both hosts and (mainly)
satellites, but still, none of the 12 MGRS can simultaneously match
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the abundances of host and satellite galaxies in the 2dFGRS. Al-
though the host fraction is in good agreement with the data for
(M/L)cl � 650 h (M/L)�, matching the number of satellites per
host requires (M/L)cl � 800 h (M/L)�.

In order to investigate this failure of the models in more detail,
and to explore all freedom in the CLF parameters, ideally one would
construct a MGRS for each of the 2000 models in our MCMC.
This, however, is not feasible computationally, and we therefore
use an approximate, analytical method instead. The total number of
galaxies in a flux-limited survey is given by

Ntot =
∫ �

0

d�

∫ zmax

zmin

dz
dV

d� dz

∫ ∞

0

dM n(M) 〈N 〉M,z . (20)

Here � is the solid angle of sky of the survey, dV is the differential
volume element, zmin and zmax are the survey redshift limits (zmin =
0.01 and zmax = 0.15 in our case), and 〈N〉M,z is the average number
of galaxies per halo of mass M at redshift z which follows from the
CLF according to

〈N 〉M,z =
∫ Lmax(z)

Lmin(z)

�(L|M) dL (21)

with Lmin(z) and Lmax(z) the minimum and maximum luminosities
of a galaxy at redshift z that makes the apparent magnitude limits of
the survey (we adopt 15.0 < mbJ < 19.3 for the 2dFGRS). Similarly,
the number of satellite galaxies follows from

Nsat =
∫ �

0

d�

∫ zmax

zmin

dz
dV

d� dz

∫ ∞

0

dM n(M) 〈Nsat〉M,z (22)

with

〈Nsat〉M,z =
{ 〈N 〉M,z − 1 if 〈N 〉M,z � 1

0 otherwise.
(23)

The number of host galaxies in a flux-limited survey, finally, is given
by

Nhost =
∫ �

0

d�

∫ zmax

zmin

dz
dV

d� dz

∫ ∞

0

dM n(M) w(M, z), (24)

where the weight function w(M, z) is given by

w(M, z) =
{

1 − exp(−〈Nsat〉M,z) if 〈N 〉M,z � 1

0 otherwise
. (25)

This derives from the fact that only hosts with at least one satel-
lite galaxy are counted as host galaxies, and using the fact that the
number of satellite galaxies follows a Poisson distribution (see Sec-
tion 3.2).

Using these equations we compute the abundances of host and
satellite galaxies for each of the 2000 CLF models in the MCMC.
However, this does not take care of incompleteness effects, fibre col-
lisions or the size-projection effect. In addition, this assumes that
all satellites are selected with zero interlopers. Instead, the host–
satellite selection criterion used for the 2dFGRS and the MGRSs
is not 100 per cent complete and yields about 15 per cent inter-
lopers (van den Bosch et al. 2004b). To correct for all these ef-
fects/shortcomings we proceed as follows. We multiply the N host and
N sat computed using equations (24) and (22) with correction factors
f host and f sat, respectively, which we calibrate using the results of the
12 MGRSs (that have been corrected for the size-projection effects)
shown in Fig. 6 (open circles). We find a good match for f host = 0.8
and f sat = 0.57 + 0.25[log(M/L)cl − 3.0], the results of which are
indicated by the solid line in the upper panels of Fig. 6. In what fol-
lows we assume that the same correction factors apply to all models
in our MCMC.

Although only approximate, equations (20)–(25) combined with
this simple scaling allows us to make predictions for the fractions
of host and satellite galaxies for each of the 2000 CLF models in
our MGRSs. The results are shown in the middle row of panels of
Fig. 6. The overall behavior is similar to that of the 12 MGRSs
shown in the upper panels: matching the fraction of host galaxies
requires (M/L)cl � 650 h (M/L)�, whereas matching the number
of satellites per host basically requires the opposite. Meanwhile, the
number of satellite galaxies is systematically too high. Although
there are a few models that match the fraction of satellite galaxies
of the 2dFGRS, as we show below, these models can not simultane-
ously match the fraction of host galaxies. Therefore, we conclude
that the abundances of host and satellite galaxies in the 2dFGRS
cannot be reproduced within the �CDM concordance cosmology
with σ 8 = 0.9.

6.1 Evidence for a low value of σ8

Using MGRSs similar to those presented here, Yang et al. (2004a)
have shown that a �CDM concordance cosmology with (M/L)cl =
500 h (M/L)� predicts too much clustering power on small scales,
and pairwise peculiar velocity dispersions that are too high. In Yang
et al. (2004b) it was shown that the same model predicts too many
large groups of galaxies. All these problems indicate that there are
too many galaxies in (massive) clusters compared to observations.
As demonstrated in Yang et al. (2004a,b), this can be remedied by
adopting a high (M/L)cl value, which results in fewer galaxies per
cluster. This agrees perfectly with the fact that matching the number
of satellites per host requires a similarly high (M/L)cl value. How-
ever, the failure to match simultaneously the separate abundances of
host and satellite galaxies, and the independent observational con-
straints on cluster mass-to-light ratios which indicate that (M/L)cl �
(400 ± 100) h (M/L)� (Carlberg et al. 1996; Fukugita et al. 1998;
Bahcall et al. 2000), signal a clear shortcoming of this model.

An alternative solution to the apparent overabundance of cluster
galaxies is to lower the abundance of cluster-sized haloes. This is
most easily established by lowering the power-spectrum normaliza-
tion σ 8. As shown by Yang et al. (2004a,b), a �CDM cosmology
with σ 8 = 0.7 and (M/L)cl = 500 h (M/L)� can equally well match
the clustering data, the pairwise peculiar velocities, and the abun-
dances of galaxy groups as a concordance cosmology with σ 8 = 0.9
and (M/L)cl = 900 h (M/L)�. In addition, as shown in van den
Bosch et al. (2003b), this cosmology is in good agreement with the
WMAP data and may even alleviate some problems with the �CDM
cosmology regarding the concentration of dark matter haloes. It is
interesting, therefore, to investigate whether such a model can also
simultaneously match the abundances of host and satellite galaxies
in the 2dFGRS.

In order to test this we construct a MCMC for the �CDM cos-
mology but with σ 8 = 0.7. We use the same number of steps and the
same thinning factor as for the MCMC described in Section 2.2. The
resulting distribution of parameters is indicated by the non-hatched
histograms in Fig. 1. The corresponding median and 68 per cent
confidence intervals are listed in Table 1 (model �0.7) and correla-
tions amongst various parameters are shown in Fig. 7. Compared
to the distributions for the concordance cosmology with σ 8 = 0.9
the main differences are a reduction of the mean (M/L)cl, α15 and
γ 3. Other parameters, notably M1 and γ 1, are extremely insensitive
to σ 8.

Unfortunately we do not have numerical simulations for a �CDM
cosmology with σ 8 = 0.7, so that we cannot construct MGRSs for
this cosmology (but see Yang et al. 2004a). Nevertheless, we can
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Figure 7. Same as Fig. 2 except that this time we plot parameter correlations for the MCMC constructed assuming a �CDM cosmology with σ 8 = 0.7. The
thick solid dots indicate those models for which χ2

ab < 4, indicating a good match to the observed abundances of host and satellite galaxies. Note that these
extra constraints severely restrict a number of the CLF parameters; cf. the parameters of models �0.7 and �ab

0.7 in Table 1.

use the scaling parameters f host and f sat, under the assumption that
they are also valid for this cosmology, to predict the abundances of
host and satellite galaxies for the low-σ 8 cosmology using equa-
tions (20)–(25). The resulting host–satellite fractions are shown in
the lower panels of Fig. 6. Compared to the same results for the
σ 8 = 0.9 cosmology (panels in middle row), the satellite fractions
have been reduced, bringing them in better agreement with the 2dF-
GRS results. In order to make the comparison between the two
different σ 8 models more quantitative, and to investigate whether
any model can simultaneously match the abundances of host and
satellite galaxies, we introduce the goodness-of-fit measure

χ2
ab =

(
Nhost/Ntot − 0.060

0.002

)2

+
(

Nsat/Ntot − 0.094

0.003

)2

, (26)

where the numbers in the numerators are the 2dFGRS ratios, and
those in the denominators are the standard deviations owing to cos-
mic variance that we obtain from a set of independent MGRSs using

different simulation boxes (see Yang et al. 2004a).4 For the σ 8 =
0.7 cosmology, the number of samples (out of a total of 2000) with
χ 2

ab < (2, 4, 6) is (11, 34, 57). For the σ 8 = 0.9 cosmology, these
numbers are (0, 0, 0). Clearly, the σ 8 = 0.7 models are far more suc-
cessful in simultaneously fitting the abundances of host and satellite
galaxies than those with σ 8 = 0.9.

The thick, solid dots in Fig. 7 indicate the 34 CLF models in the
σ 8 = 0.7 cosmology for which χ 2

ab < 4. Note how they are clustered
together in parameter spaces. This means that using the observed
abundances of host and satellite galaxies in the 2dFGRS as extra
constraints allows a significant tightening of the constraints on the
CLF parameters. We can take account of these additional constraints
by weighting each sample in the MCMC with exp(−χ 2

ab/2). This
yields the median and 68 per cent confidence intervals listed under
model �ab

0.7 in Table 1. Note that the constraints on some of the CLF

4 Note that these are very similar to the standard deviations obtained from a
comparison of the host–satellite fractions in the 2dFGRS NGP and SGP.
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parameters, notably (M/L)0, (M/L)cl and M1, are now much tighter
(cf. model �0.7).

Although the above results strongly favour a �CDM cosmology
with relatively low power spectrum normalization, we caution that
they are obtained assuming that the scaling parameters f host and f sat,
determined for a small subset of all MCMC samples with σ 8 = 0.9,
are valid for all MCMC samples, even those with σ 8 = 0.7. Testing
the accuracy of this assumption requires similar N-body simulations
as those used here, but for the �CDM cosmology with σ 8 = 0.7,
and the construction of a large number of different MGRSs to probe
the full CLF parameter space. Given our limited computational re-
sources, we are unfortunately unable to perform these tests.

7 S U M M A RY

Comparing the radial distribution and abundances of dark matter
subhaloes in simulations with those of observed satellite galaxies,
which are thought to be associated with these subhaloes, has led to
two apparent inconsistencies: (i) The radial number density distribu-
tion of subhaloes reveals a constant density core, whereas galaxies
in clusters seem to follow an NFW profile, and (ii) whereas dark
matter haloes of different masses look homologous when it comes
to the properties of their dark matter subhaloes, a galaxy cluster
looks very different from a galaxy-sized system when it comes to
their satellite galaxies (see Section 1 for references).

In this paper we have made use of the CLF to address these
issues using data from the 2dFGRS. We constructed large MCMCs
that allowed us to explore the full posterior distribution of the CLF
parameter space. Using detailed MGRSs based on the CLF we have
analysed the radial distribution and abundances of host and satellite
galaxies in the 2dFGRS. Our main conclusions can be summarized
as follows.

(i) The 2dFGRS is missing a significant fraction of galaxies in
close (projected) pairs (about 2–4 per cent of all galaxies). This is
in good agreement with Cole et al. (2001), who have shown that this
close-pair deficiency is owing to the overlap and merging of galaxy
images in the APM catalogue.

(ii) Owing to this close-pair incompleteness we cannot put strong
constraints on the radial distribution of satellite galaxies. After mod-
elling the close-pair incompleteness in our MGRSs the data are con-
sistent with a model in which the radial number density distribution
of satellite galaxies follows that of the dark matter particles (i.e. a
NFW distribution), but we can not rule out alternatives with, for
example, a constant number density core.

(iii) Within the �CDM concordance cosmology with σ 8 = 0.9
we can not simultaneously match the abundances of host and satellite
galaxies in the 2dFGRS. Matching the number of satellites per host
requires exceptionally high mass-to-light ratios on cluster scales.
This is in excellent agreement with previous findings based on the
CLF formalism, but severely overpredicts the abundance of both
host and satellite galaxies.

(iv) Simultaneously matching the luminosity function, the clus-
tering properties as a function of luminosity, and the abundances
of host and satellite galaxies seems to require a reduction of the
power spectrum normalization to σ 8 � 0.7. As shown by Yang et al.
(2004a,b), this is also required in order to match the pairwise pecu-
liar velocities in the 2dFGRS, the clustering power on small scales,
and the multiplicity function of galaxy groups.

(v) The CLF models for the �CDM concordance cosmology with
σ 8 = 0.7 that match the abundances of host and satellite galaxies are
extremely well constrained. They indicate that the average mass-to-
light ratio of dark matter haloes reveals a pronounced minimum of

97 ± 3 h (M/L)� at a halo mass of (7.2 ± 0.7) × 1010 h−1 M�. On
cluster scales (M � 1014 h−1 M�) the average mass-to-light ratio
is 570 ± 40 h (M/L)�.
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