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1 Introduction
By a �nite presentation ⟨X|R⟩ of a group we mean, as usual, a �nite collection of generatorsX together with
a �nite set R of de�ning relations. A recursive (resp. countably generated recursive) presentation ⟨X|R⟩ of
a group is a �nite (resp. countable) collection of generators X together with a recursive enumeration of a
possibly in�nite set R of de�ning relations. We use P to denote the group presented by a presentation P.

The Higman embedding theorem [7] shows that every recursively presented group embeds into a �nitely
presented group. Moreover, this embedding can be made uniform; there is an algorithm that takes any recur-
sivepresentationPandoutputs a�nite presentationQandanexplicit embeddingõ : P í→ Q. This embedding
theorem was used by Higman to show the existence of a universal �nitely presented group; one into which
all �nitely presented groups embed. By analysing Higman’s embedding theorem, we prove:

Theorem 3.10. There is a universal �nitely presented torsion-free groupG. That is,G is torsion-free and, for any
�nitely presented groupH, we have thatH í→ G if (and only if)H is torsion-free.

Theorem 3.10 �rst appeared (as far as we are aware) as Theorem A.1 in the appendix by Oleg V. Belegradek
of [1]. He gives a proof di�erent to ours, making use of arguments frommodel theory. Moreover, in [1, Remark
A.2] he points out that Theorem 3.10 can also be proved along the lines we follow in the present paper.

Key tomany of the important results in this work is the technical observation that theHigman embedding
theorem can preserve the set of orders of torsion elements; we state this as Theorem 2.2. Every group G has a
unique torsion-free quotient through which all other torsion-free quotients factor (see Corollary 3.4); we call
this the torsion-free universal quotient Gtf . By standard techniques in combinatorial group theory, we show in
Proposition 3.8 the existence of an algorithm that takes any �nite presentation P and outputs a recursive pre-
sentationPtf of the torsion-free universal quotient ofP. Then Theorem 3.10 follows by combining Theorem 2.2
and Proposition 3.8, in a similarway toHigman’s original construction of a universal �nitely presented group.

In [9] it was shown by Lempp that the problem of recognising torsion-freeness for �nitely presented
groups is Ð0

2 -complete in Kleene’s arithmetic hierarchy (see [11] or the introduction to [9] for a description
of Ò0

n sets, Ð0
n sets, and Kleene’s arithmetic hierarchy). Therefore the set of �nitely presented subgroups of
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any universal torsion-free �nitely presented group isÐ0
2 -complete, and, in particular, not recursively enumer-

able. In [4] we gave another proof of the existence of a �nitely presented groupwhose set of �nitely presented
subgroups is not recursively enumerable, without the use of the results of Lempp [9] or Oleg Belegradek [1].
Building on Theorem 3.10, we show the following.

Theorem 4.5. For any recursive enumeration P1, P2, . . . of all �nite presentations of groups, the set K = {(i, j) ∈ℕ2 | Pi í→ Pj} is Ò0
2-hard,Ð0

2 -hard, and has a Ò0
3 description.

We write Tord(G) to denote the orders of non-trivial torsion elements of a group G, and say a set A ⊆ ℕ is
factor-complete if it is closed under taking multiplicative factors (excluding 1). Applying Theorem 2.2 to an
idea of Dorais in the comments to [8, user 1463], we give the following complete characterisation of sets which
can occur as Tord(G) for a �nitely (or recursively) presented group G:

Theorem 5.2. For a set of natural numbers A, the following conditions are equivalent:
(1) A = Tord(G) for some �nitely presented group G.
(2) A = Tord(G) for some countably generated recursively presented group G.
(3) A is a factor-complete Ò0

2 set.

It follows (Corollary 5.5) that we can realise anyÒ0
2 set, up to one-one equivalence, asTord(G) for some �nitely

presented group G.

2 Preliminaries

2.1 Notation

With the convention that ℕ contains 0, we denote by ÿm the m-th partial recursive function ÿm : ℕ → ℕ.
The domain of ÿm, Wm, denotes the m-th partial recursive set (also known as a recursively enumerable set,
abbreviated to r.e. set). A presentation P = ⟨X|R⟩ is said to be a countably generated recursive presentation
if X is a recursive enumeration of generators and R is a recursive enumeration of relators. If P, Q are group
presentations then we denote their free product presentation by P ∗ Q, which is given by taking the disjoint
unionof their generators and relators; this extends to the freeproduct of arbitrary collections of presentations.
If X is a set, we write X∗ for the set of �nite words on X ∪ X−1, including the empty word 0. If õ : X → Y∗

is a set map, then we write õ : X∗ → Y∗ for the extension of õ to X∗. If g1, . . . , gn are elements of a group G,
then we write ⟨g1, . . . , gn⟩G for the subgroup in G generated by these elements, and ⟨⟨g1, . . . , gn⟩⟩G for the
normal closure of these elements in G. Cantor’s pairing function is de�ned by ⟨⋅, ⋅⟩ : ℕ × ℕ → ℕ, ⟨x, y⟩ :=
1
2 (x + y)(x + y + 1) + y, which gives a computable bijection.

2.2 Embedding theorems

De�nition 2.1. Let G be a group. We let o(g) denote the order of a group element g, and say g is torsion if1 ≤ o(g) < ∞. We setTor(G) := {g ∈ G | g is torsion}, Tord(G) := {n ∈ ℕ | ∃g ∈ Tor(G) with o(g) = n ≥ 2}.
Thus, Tord(G) is the set of orders of non-trivial torsion elements of G.

As detailed in [4, Lemma 6.9 and Theorem 6.10], the following theorem is implicit in Rotman’s proof [12,
Theorem 12.18] of the Higman embedding theorem.

Theorem 2.2. There is a uniform algorithm that, on input of a countably generated recursive presentation P =⟨X|R⟩, constructs a �nite presentation T(P) such that P í→ T(P) and Tord(P) = Tord(T(P)), along with an
explicit embedding õ : P í→ T(P).
We will also use the following consequence of Theorem 2.2.
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Theorem 2.3 ([4, Lemma 6.11]). There is a uniform algorithm that, on input of any n ∈ ℕ, constructs a �nite
presentationQn such that Tord(Qn) is one-one equivalent toℕ\Wn. Thus, taking n� withWn� non-recursive gives
thatTord(Qn� ) is not recursively enumerable; thus, the set of �nitely presented subgroups of Qn� is not recursively
enumerable.

3 Universal �nitely presented torsion-free groups
LetG,H be groups withH torsion-free. A surjective homomorphism ℎ : G �¤ H is universal if, for any torsion-
freeK and any homomorphism f : G → K, there is a homomorphism õ : H → K such that f = õ ∘ ℎ : G → K,
i.e., the following diagram commutes: G ℎ

//

f
��

H
õ
��K

Note that if õ exists then it will be unique. Indeed, if õ� also satis�es f = õ� ∘ ℎ, then õ ∘ ℎ = õ� ∘ ℎ, and henceõ = õ� as ℎ is a surjection and thus is right-cancellative. Moreover, any suchH is unique, up to isomorphism.
Such anH is called the universal torsion-free quotient for G, denoted by Gtf . Observe that if G is itself torsion-
free, then Gtf exists and Gtf ≅ G, as the identity map idG : G → G has the universal property above.

A standard construction, showing thatGtf exists for every groupG, is done via taking the quotient ofG by
its torsion-free radical ñ(G), where ñ(G) is the intersection of all normal subgroups N ⊲ G with G/N torsion-
free (see [3]). It follows immediately that G/ñ(G) has all the properties of a torsion-free universal quotient
for G.

Herewe present an alternative construction forGtf which, though isomorphic toG/ñ(G), lends itself more
easily to an e�ective procedure for �nitely (or recursively) presented groups, as shown in Proposition 3.8.

De�nition 3.1. Given a group G, we inductively de�ne Tori(G) as follows:Tor0(G) := {e}, Tori+1(G) := ⟨⟨{g ∈ G | g Tori(G) ∈ Tor (G/ Tori(G))}⟩⟩G, Tor∞(G) := ⋃
i∈ℕ
Tori(G).

Thus, Tori(G) is the set of elements of Gwhich are annihilated upon taking i successive quotients of G by the
normal closure of all torsion elements, and Tor∞(G) is the union of all these.

By construction, we have Tori(G) ≤ Torj(G) whenever i ≤ j. It follows immediately that Tor∞(G) ⊲ G. The
�nite presentation P := ⟨x, y, z | x2, y3, xy = z6⟩ de�nes a group for which Tor1(P) ̸= Tor∞(P), as shown in [5,
Proposition 4.1].

Lemma 3.2. If G is a group, then G/Tor∞(G) is torsion-free.
Proof. Suppose gTor∞(G) ∈ Tor (G/ Tor∞(G)). Then gn Tor∞(G) = e in G/Tor∞(G) for some n > 1, so gn ∈Tor∞(G). Thus there is some i ∈ ℕ such that gn ∈ Tori(G), and hence gTori(G) ∈ Tor (G/ Tori(G)). Thusg ∈ Tori+1(G) ⊆ Tor∞(G), and so gTor∞(G) = e in G/Tor∞(G).
Proposition 3.3. If G is a group, then ñ(G) = Tor∞(G).
Proof. Clearly, ñ(G) ⊆ Tor∞(G) by de�nition of ñ(G) and the fact that G/Tor∞(G) is torsion-free (Lemma 3.2).
It remains to show that Tor∞(G) ⊆ ñ(G). We proceed by contradiction, so assume Tor∞(G) ⊈ ñ(G). Then there
is some N ⊲ G with G/N torsion-free, along with some minimal i such that Tori(G) ⊈ N (clearly, i > 0, asTor0(G) = {e}). Then, by de�nition of Tori(G) and the fact that N is normal, there exists some e ̸= g ∈ Tori(G)
such that gTori−1(G) ∈ Tor (G/ Tori−1(G)) and g ∉ N (or else Tori(G) ⊆ N). But then gn ∈ Tori−1(G) for somen > 1. Since Tori−1(G) ⊆ N by minimality of i, we have that gN is a (non-trivial) torsion element of G/N,
contradicting the torsion-freeness of G/N. Hence, Tor∞(G) ⊆ ñ(G).
Corollary 3.4. If G is a group, then G/Tor∞(G) = Gtf , which is the torsion-free universal quotient for G.
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What follows is a standard result, which we state without proof.

Lemma 3.5. Let P = ⟨X|R⟩ be a countably generated recursive presentation. Then the set of words {w ∈ X∗ |w = e in P} is r.e.
Lemma 3.6. Let P = ⟨X|R⟩ be a countably generated recursive presentation. Then the set of words {w ∈ X∗ |w ∈ Tor(P) in P} is r.e.
Proof. Take any recursive enumeration {w1, w2, . . .} of X∗. Using Lemma 3.5, start checking if wn

i = e in P for
each wi ∈ X∗ and each n ∈ ℕ (by proceeding along �nite diagonals). For each wi we come across which
represents an element of �nite order, add it to our enumeration. This procedure will enumerate all words inTor(P), and only words in Tor(P). Thus, the set of words inX∗ representing elements in Tor(P) is r.e.
From this, we deduce the following lemma.

Lemma 3.7. Given a countably generated recursive presentation P = ⟨X|R⟩, the set Ti := {w ∈ X∗ | w ∈Tori(P) in P} is r.e., uniformly over all i and all such presentations P. Moreover, the union T∞ := ⋃Ti is r.e., and
is precisely the set {w ∈ X∗ | w ∈ Tor∞(P) in P}.
Proof. We proceed by induction. Clearly, Tor1(P) is r.e., as it is the normal closure of Tor(P), which is r.e. by
Lemma 3.6. So assume that Tori(P) is r.e. for all i ≤ n. Then Torn+1(P) is the normal closure of Tor (P/ Torn(P)),
which again is r.e. by the induction hypothesis and Lemma 3.6. The remaining parts of the lemma follow
immediately.

Proposition 3.8. There is a uniform algorithm that, on input of a countably generated recursive presentationP = ⟨X|R⟩ of a group P, outputs a countably generated recursive presentation Ptf = ⟨X|R�⟩ (on the same
generating setX, andwithR ⊆ R� as sets) such thatPtf is the torsion-free universal quotient ofP, with associated
surjection given by extending idX : X → X.

Proof. By Corollary 3.4, Ptf is the group P/ Tor∞(P). Then, with the notation from Lemma 3.7, it can be seen
that Ptf := ⟨X|R ∪ T∞⟩ is a countably generated recursive presentation for Ptf , uniformly constructed fromP.
Theorem 3.9. There is a �nitely presentable group G which is torsion free and contains an embedded copy of
every countably generated recursively presentable torsion-free group.

Proof. Take an enumeration P1, P2, . . . of all countably generated recursive presentations of groups, and con-
struct the countably generated recursive presentationQ := Ptf1 ∗Ptf2 ∗⋅ ⋅ ⋅ ; this is the countably in�nite free prod-
uct of theuniversal torsion-free quotient of all countably generated recursively presentable groups (with some
repetition). As each Ptfi is uniformly constructible from Pi (by Proposition 3.8), we have that our construction
of Q is indeed e�ective, and hence Q is a countably generated recursive presentation. Also, Proposition 3.8
shows thatQ is a torsion-free group, aswehave successfully annihilated all the torsion in the free product fac-
tors, and the free product of torsion-free groups is again torsion-free.Moreover,Q contains an embedded copy
of every torsion-free countably generated recursively presentable group, as the universal torsion-free quotient
of a torsion-free group is itself. Now use Theorem 2.2 to embed Q into a �nitely presentable group T(Q). By
construction, 0 = Tord(Q) = Tord(T(Q)), so T(Q) is torsion-free. Finally, T(Q) has an embedded copy of every
countably generated recursively presentable torsion-free group, since Q did. Taking G to be T(Q) completes
the proof.

From this, we immediately observe the following consequence.

Theorem 3.10. There is a universal �nitely presented torsion-free groupG. That is,G is torsion-free, and for any
�nitely presented groupH, we have thatH í→ G if (and only if)H is torsion-free.

Note. One may ask why Theorem 3.10 does not follow immediately from Higman’s embedding theorem by
taking the free product of all �nite presentations of torsion-free groups, and using the fact that Higman’s
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theorem preserves orders of torsion elements. This cannot work, as we show later in Theorem 4.2 that the set
of �nite presentations of torsion-free groups is not recursively enumerable.

Remark. Miller [10, Corollary 3.14], extending a result of Boone and Rogers [2, Theorem 2], showed that there
is no universal �nitely presented solvable word problem group. It can be shown that none of the following
group properties admit a universal �nitely presented group: �nite, abelian, solvable, nilpotent (simple, how-
ever, remains open).

4 Complexity of embeddings
Using the machinery described in Section 2, we can encode the following recursion theory facts into groups.

Lemma 4.1 ([11, §13.2, Theorem VIII]). The set {n ∈ ℕ | Wn = ℕ} isÐ0
2 -complete; the set {n ∈ ℕ | |Wn| < ∞} isÒ0

2-complete.

We thus can recover the following result, �rst proved in [9, Main Theorem].

Theorem 4.2. The set of �nite presentations of torsion-free groups isÐ0
2 -complete.

Proof. Given n ∈ ℕ, we use Theorem 2.3 to construct a �nite presentation Qn such that Tord(Qn) is one-one
equivalent to ℕ \ Wn. Thus, Qn is torsion-free if and only if Wn = ℕ. By Lemma 4.1, {n ∈ ℕ | Wn = ℕ} isÐ0

2 -complete, so the set of torsion-free �nite presentations is at least Ð0
2 -hard. But this set has the followingÐ0

2 description (taken from [9]):G is torsion-free if and only if (∀w ∈ G)(∀n > 0)(wn ̸=G e or w =G e)
and hence isÐ0

2 -complete.

Applying this theorem to the universal torsion-free group from Theorem 3.10, we get the following immediate
corollary, which extends Theorem 2.3.

Corollary 4.3. There is a �nitely presented group whose �nitely presentable subgroups form aÐ0
2 -complete set.

A construction similar to the proof of Theorem 2.3 (as found in [4, Lemma 6.11]) gives us the following:

Proposition 4.4. For any �xed prime p, the set of �nite presentations into which Cp embeds is Ò0
2-complete.

Proof. Given n ∈ ℕ, we form the countably generated recursive presentation Pn as follows:Pn := ⟨x0, x1, . . . | {xp
i | i ∈ ℕ} ∪ {x0, . . . , xj | j ∈ Wn}⟩

If !!!!Wn
!!!! < ∞ then Pn ≅ Cp ∗ Cp ∗ ⋅ ⋅ ⋅ . Conversely, if !!!!Wn

!!!! = ∞ then Pn ≅ {e}. So
Tord(Pn) = {{{{p} if |Wn| < ∞,0 if |Wn| = ∞.

That is, we have Cp í→ Pn if and only if |Wn| < ∞. Now use Theorem 2.2 to construct a �nite presentationT(Pn) such that Pn í→ T(Pn) with Tord(Pn) = Tord(T(Pn)). Hence Cp í→ T(Pn) if and only if |Wn| < ∞. So
by Lemma 4.1 the set of �nite presentations into which Cp embeds is Ò0

2-hard. But this set has the following
straightforward Ò0

2 description:Cp í→ G if and only if (∃w ∈ G)(w ̸=G e and wp =G e)
and hence is Ò0

2-complete.

Now we can prove the following theorem.
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Theorem 4.5. Take an enumeration P1, P2, . . . of all �nite presentations of groups, where Pi = ⟨Xi|Ri⟩. Then the
setK = {(i, j) ∈ ℕ2 | Pi í→ Pj} is Ò0

2-hard,Ð0
2 -hard, and has a Ò0

3 description.

Proof. Corollary 4.3 shows thatK isÐ0
2 -hard, Proposition 4.4 shows thatK is Ò0

2-hard, and the following is aÒ0
3 description for the setK:K = {(i, j) ∈ ℕ2 | (∃õ : Xi → X∗

j )(∀w ∈ X∗
i )(õ(w) =Pj

e if and only if w =Pi
e)}.

Note that, with the aid of Cantor’s pairing function (a computable bijection betweenℕ2 andℕ), we can view
the setK above as being a subset ofℕ. Hence it makes sense to talk ofK beingÐ0

2 -hard etc.
Based on Theorem 4.5, we conjecture the following:

Conjecture. The setK de�ned above is Ò0
3-complete. That is, the problem of deciding for �nite presentationsPi, Pj if Pi í→ Pj is Ò0

3-complete.

5 Complexity of Tord(G)
We now apply our techniques to investigate the complexity of Tord(G) for G a �nitely presented group.

De�nition 5.1. Call a setA ⊆ ℕ≥2 factor-complete if it is closed under taking non-trivial factors. That is, n ∈ A
impliesm ∈ A for allm > 1 withm|n.
We give a set-theoretic description of the factor-complete sets which can appear as Tord(G) for G �nitely (or
recursively) presented. We presented a proof of the following result in [8, user 31415] earlier; what follows is
a clearer proof pointed out to us by an anonymous referee.

Theorem 5.2. For a set of natural numbers A, the following conditions are equivalent:
(1) A = Tord(G) for some �nitely presented group G.
(2) A = Tord(G) for some countably generated recursively presented group G.
(3) A is a factor-complete Ò0

2 set.

Proof. (2)⇒ (1). By Theorem 2.2, any recursively presented group can be embedded into a �nitely presented
group with the same Tord.

(1) ⇒ (3). First, observe that Tord(G) is factor-complete (for any group G), because if o(g) = mn theno(gm) = n, for any g ∈ G. Second, Tord(G) is a Ò0
2 set. Indeed, if G has a �nite presentation ⟨X|R⟩, and S is the

set of words inX∗ which represent the trivial element in G, thenTord(G) = {n | (∃w ∈ X∗)(n > 1 ∧ wn ∈ S ∧ ∀i(0 < i < n ⇒ wi ∉ S))}
Since S is r.e. (by Lemma 3.5), it is a Ò0

1 subset ofX∗, and so the result follows.
(3)⇒ (2). As A is a Ò0

2 set, it has a description of the formA = {n ∈ ℕ | ∃x∀yR(n, x, y)}
for some ternary recursive relation R onℕ. LetP := {(n, m) ∈ ℕ2 | (∀x ≤ m)(∃y)¬R(n, x, y)}.
Clearly, P is r.e. If n ∉ A then (n, m) ∈ P for allm. Conversely, if n ∈ A then(n, m) ∈ P ⇔ m < mn := min {m | (∀y)R(n, m, y)} .
Let I := {(n, m) ∈ ℕ2 | n > 1}, and let G := ⟨X|T⟩ whereX := {anm | (n, m) ∈ I}, T := {annm | (n, m) ∈ I} ∪ {anm | (n, m) ∈ I ∩ P}.
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Clearly, T is r.e., and so G has a countably generated recursive presentation. By the observations above, G
can be de�ned by the generators anm and relators annm = e, where n ∈ A and m ≥ mn. Let Kn denote the free
product of countably many cyclic groups Cn of order n. Then G is isomorphic to the free productG ≅ ∗n∈AKn

and therefore Tord(G) = ⋃
n∈A
Tord(Cn) = ⋃

n∈A
{k | k|n ∧ k > 1} = A;

the latter equality holds because A is factor-complete.

Note. Theorem 5.2 was �rst proved in the more restricted setting of primes (i.e., considering sets of integers
consisting only of primes) by Steinberg and separately by Wilton in response to a question asked by Kohl,
see [8]. Moreover, Dorais gave a sketch of an alternate proof of the version for primes in comments to [8, user
1463]. Our original proof was a formalisation of the proof by Dorais, and our result is an extension of this
to the more general setting of all factor-complete Ò0

2 sets. We thank Dorais, Kohl, Steinberg, and Wilton for
their online discussion, as well as their insight into key aspects of this result; our work in this section is an
extension of their ideas and results.

From the uniformity of the constructions in the proof of Theorem 5.2, we make the following observation.

Proposition 5.3. The equivalence discussed in Theorem 5.2 is computable, in the following sense:
(a) Given a countably generated recursive presentation Q, we can compute from it a �nite presentation P withTord(P) = Tord(Q).
(b) Given a �nite presentationP, we can compute from it a ternary recursive relationR onℕ for whichTord(P) ={n ∈ ℕ | ∃x∀yR(n, x, y)}.
(c) Given a ternary recursive relation R on ℕ for which A := {n ∈ ℕ | ∃x∀yR(n, x, y)} is factor-complete, we

can compute from it a countably generated recursive presentation Q with Tord(Q) = A.

We adopt the standard numbering of primes {pi}i∈ℕ, ordered by size; the following lemma is then immediate.

Lemma 5.4. LetX ⊆ ℕ. Then the set Xprime := {pi | i ∈ X}
is factor-complete and one-one equivalent toX.

Applying Lemma 5.4 to Theorem 5.2, we can conclude the following corollary.

Corollary 5.5. Given any Ò0
2 set A, the set Aprime is one-one equivalent to A, and can be realised as the set of

orders of torsion elements of some �nitely presented group G.

6 Further work
This paper gives rise to several questions. We mention some here.

Problem 1. Given the existence of a universal torsion-free group (Theorem 3.10), and the constructions of ex-
plicit �nite presentations of universal �nitely presented groups by Valiev [13, 14], one could perhaps combine
these techniques to produce an explicit �nite presentation of a universal torsion-free group.

Problem 2. The positions of the following properties in the arithmetic hierarchy have not been fully deter-
mined. Techniques such as those we have covered here may be of use in locating them.
1. Solvable: Known to have a Ò0

3 description.
2. Residually �nite: Known to have aÐ0

2 description.
3. Simple: Known to have aÐ0

2 description.
4. Orderable: Known to have aÐ0

3 description (the Ohnishi condition).
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Properties 1–3 are mentioned in [10, p. 20], while property 4 appears in [6, Lemma 2.2.1]. We note that it may
be very well the case that some of these are neitherÐ0

n-complete nor Ò0
n-complete, for any n.

Problem 3. Considering Theorem 5.5 and the uniformity of such a realisation of a Ò0
2 set A as one-one equiv-

alent to the torsion orders of a �nitely presented group, one could perhaps construct an explicit �nite pre-
sentation P of a group with Tord(P) being Ò0

2-complete by encoding the set {n ∈ ℕ | |Wn| < ∞}, which isÒ0
2-complete (Lemma 4.1).
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