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orders of torsion elements of finitely presented groups are precisely the Zg sets which are closed under taking
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1 Introduction

By a finite presentation (X|R) of a group we mean, as usual, a finite collection of generators X together with
a finite set R of defining relations. A recursive (resp. countably generated recursive) presentation (X|R) of
a group is a finite (resp. countable) collection of generators X together with a recursive enumeration of a
possibly infinite set R of defining relations. We use P to denote the group presented by a presentation P.

The Higman embedding theorem [7] shows that every recursively presented group embeds into a finitely
presented group. Moreover, this embedding can be made uniform; there is an algorithm that takes any recur-
sive presentation P and outputs a finite presentation Q and an explicit embedding ¢ : P < Q. This embedding
theorem was used by Higman to show the existence of a universal finitely presented group; one into which
all finitely presented groups embed. By analysing Higman’s embedding theorem, we prove:

Theorem 3.10. There is a universal finitely presented torsion-free group G. That is, G is torsion-free and, for any
finitely presented group H, we have that H — G if (and only if) H is torsion-free.

Theorem 3.10 first appeared (as far as we are aware) as Theorem A.1 in the appendix by Oleg V. Belegradek
of [1]. He gives a proof different to ours, making use of arguments from model theory. Moreover, in [1, Remark
A.2] he points out that Theorem 3.10 can also be proved along the lines we follow in the present paper.

Key to many of the important results in this work is the technical observation that the Higman embedding
theorem can preserve the set of orders of torsion elements; we state this as Theorem 2.2. Every group G has a
unique torsion-free quotient through which all other torsion-free quotients factor (see Corollary 3.4); we call
this the torsion-free universal quotient G*. By standard techniques in combinatorial group theory, we show in
Proposition 3.8 the existence of an algorithm that takes any finite presentation P and outputs a recursive pre-
sentation P of the torsion-free universal quotient of P. Then Theorem 3.10 follows by combining Theorem 2.2
and Proposition 3.8, in a similar way to Higman’s original construction of a universal finitely presented group.

In [9] it was shown by Lempp that the problem of recognising torsion-freeness for finitely presented
groups is Hg-complete in Kleene’s arithmetic hierarchy (see [11] or the introduction to [9] for a description
of 22 sets, 1'[2 sets, and Kleene’s arithmetic hierarchy). Therefore the set of finitely presented subgroups of



2 =—— M. Chiodo, On torsion in finitely presented groups DE GRUYTER

any universal torsion-free finitely presented group is I1 3 -complete, and, in particular, not recursively enumer-
able. In [4] we gave another proof of the existence of a finitely presented group whose set of finitely presented
subgroups is not recursively enumerable, without the use of the results of Lempp [9] or Oleg Belegradek [1].
Building on Theorem 3.10, we show the following.

Theorem 4.5. For any recursive enumeration Py, P,, . .. of all finite presentations of groups, the set K = {(i, j) €
N? | P; — P} is £)-hard, IT;-hard, and has a X3 description.

We write Tord(G) to denote the orders of non-trivial torsion elements of a group G, and say a set A € N is
factor-complete if it is closed under taking multiplicative factors (excluding 1). Applying Theorem 2.2 to an
idea of Dorais in the comments to [8, user 1463], we give the following complete characterisation of sets which
can occur as Tord(G) for a finitely (or recursively) presented group G:

Theorem 5.2. For a set of natural numbers A, the following conditions are equivalent:
(1) A = Tord(G) for some finitely presented group G.

(2) A = Tord(G) for some countably generated recursively presented group G.

(3) Adis afactor-complete 5 set.

It follows (Corollary 5.5) that we can realise any X9 set, up to one-one equivalence, as Tord(G) for some finitely
presented group G.

2 Preliminaries

2.1 Notation

With the convention that IN contains 0, we denote by ¢,, the m-th partial recursive function ¢,, : N — N.
The domain of ¢,,, W,,, denotes the m-th partial recursive set (also known as a recursively enumerable set,
abbreviated to r.e. set). A presentation P = (X|R) is said to be a countably generated recursive presentation
if X is a recursive enumeration of generators and R is a recursive enumeration of relators. If P, Q are group
presentations then we denote their free product presentation by P = Q, which is given by taking the disjoint
union of their generators and relators; this extends to the free product of arbitrary collections of presentations.
If X is a set, we write X* for the set of finite words on X U X', including the empty word 0. If ¢ : X — Y*
is a set map, then we write ¢ : X* — Y* for the extension of ¢ to X*. If g, ..., g, are elements of a group G,
then we write (g, ...,g,)° for the subgroup in G generated by these elements, and {(g,,...,g,)) for the
normal closure of these elements in G. Cantor’s pairing function is defined by (-,-) : Nx N — N, (x, y) :=
%(x + y)(x + y + 1) + y, which gives a computable bijection.

2.2 Embedding theorems
Definition 2.1. Let G be a group. We let o(g) denote the order of a group element g, and say g is torsion if
1 < o(g) < oco. We set

Tor(G) := {g € G | gistorsion}, Tord(G) := {n € N | 3g € Tor(G) with o(g) = n = 2}.

Thus, Tord(G) is the set of orders of non-trivial torsion elements of G.
As detailed in [4, Lemma 6.9 and Theorem 6.10], the following theorem is implicit in Rotman’s proof [12,
Theorem 12.18] of the Higman embedding theorem.

Theorem 2.2. There is a uniform algorithm that, on input of a countably generated recursive presentation P =
(X|R), constructs a finite presentation T(P) such that P — T(P) and Tord(P) = Tord(T(P)), along with an
explicit embedding ¢ : P — T(P).

We will also use the following consequence of Theorem 2.2.
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Theorem 2.3 ([4, Lemma 6.11]). There is a uniform algorithm that, on input of any n € N, constructs a finite
presentation Q,, such that Tord(an) is one-one equivalent to N\ W,. Thus, taking n' with W, non-recursive gives
that Tord(Q,,) is not recursively enumerable; thus, the set of finitely presented subgroups of Q,, is not recursively
enumerable.

3 Universal finitely presented torsion-free groups

Let G, H be groups with H torsion-free. A surjective homomorphism 4 : G — H is universal if, for any torsion-
free K and any homomorphism f : G — K, there isa homomorphism ¢ : H — K such that f = ¢oh: G — K,

i.e., the following diagram commutes:

GLH

N

K

Note that if ¢ exists then it will be unique. Indeed, if ¢’ also satisfies f = ¢’ o h, then ¢ o h = ¢' - h, and hence
¢ = ¢ as his a surjection and thus is right-cancellative. Moreover, any such H is unique, up to isomorphism.
Such an H is called the universal torsion-free quotient for G, denoted by G*. Observe that if G is itself torsion-
free, then G exists and G = G, as the identity map idg : G — G has the universal property above.

A standard construction, showing that G exists for every group G, is done via taking the quotient of G by
its torsion-free radical p(G), where p(G) is the intersection of all normal subgroups N < G with G/N torsion-
free (see [3]). It follows immediately that G/p(G) has all the properties of a torsion-free universal quotient
for G.

Here we present an alternative construction for G which, though isomorphic to G/ p(G), lends itself more
easily to an effective procedure for finitely (or recursively) presented groups, as shown in Proposition 3.8.

Definition 3.1. Given a group G, we inductively define Tor;(G) as follows:

Tory(G) = {e}, Tor,,,(G) := {({g € G| g Tor;(G) € Tor (G/ Tor,(G))}))®, Tor,(G) := U Tor,(G).
ielN
Thus, Tor;(G) is the set of elements of G which are annihilated upon taking i successive quotients of G by the
normal closure of all torsion elements, and Tor,(G) is the union of all these.

By construction, we have Tor;(G) < Torj(G) whenever i < j. It follows immediately that Tor,,(G) < G. The
finite presentation P := (x, y,z | x*, y°, xy = z°) defines a group for which Tor, (P) # Tor,(P), as shown in [5,
Proposition 4.1].

Lemma 3.2. IfGis a group, then G/ Tor,(G) is torsion-free.

Proof. Suppose g Tor, (G) € Tor (G/ Tor. (G)). Then g" Tor, (G) = e in G/ Tor,,(G) for some n > 1, s0 g" €
Tor,,(G). Thus there is some i € N such that g" € Tor;(G), and hence g Tor,(G) € Tor (G/ Tor;(G)). Thus
g € Tor;,,(G) € Tor, (G), and so g Tor. (G) = e in G/ Tor,(G). O

Proposition 3.3. If G is a group, then p(G) = Tor,(G).

Proof. Clearly, p(G) ¢ Tor. (G) by definition of p(G) and the fact that G/ Tor (G) is torsion-free (Lemma 3.2).
It remains to show that Tor, (G) < p(G). We proceed by contradiction, so assume Tor (G) ¢ p(G). Then there
is some N <« G with G/N torsion-free, along with some minimal i such that Tor,(G) ¢ N (clearly, i > 0, as
Tor,(G) = {e}). Then, by definition of Tor;(G) and the fact that N is normal, there exists some e # g € Tor;(G)
such that g Tor;_,(G) € Tor (G/ Tor,_,(G)) and g ¢ N (or else Tor,(G) < N). But then g" € Tor,;_, (G) for some
n > 1. Since Tor;_;(G) < N by minimality of i, we have that gN is a (non-trivial) torsion element of G/N,
contradicting the torsion-freeness of G/N. Hence, Tor,(G) < p(G). O

Corollary 3.4. IfGis a group, then G/ Tor(G) = G, which is the torsion-free universal quotient for G.



4 =—— M. Chiodo, On torsion in finitely presented groups DE GRUYTER

What follows is a standard result, which we state without proof.

Lemma 3.5. Let P = (X|R) be a countably generated recursive presentation. Then the set of words {w € X" |
w = ein P}isre.

Lemma 3.6. Let P = (X|R) be a countably generated recursive presentation. Then the set of words {w € X" |
w € Tor(P) in P} is r.e.

Proof. Take any recursive enumeration {w;, w,, ...} of X*. Using Lemma 3.5, start checking if w; = e in P for
each w; € X" and each n € N (by proceeding along finite diagonals). For each w; we come across which
represents an element of finite order, add it to our enumeration. This procedure will enumerate all words in
Tor(P), and only words in Tor(P). Thus, the set of words in X* representing elements in Tor(P) is r.e. O

From this, we deduce the following lemma.

Lemma 3.7. Given a countably generated recursive presentation P = (X|R), thesetT; :== {w ¢ X" | w €
Tor,;(P) in P} is r.e., uniformly over all i and all such presentations P. Moreover, the union T, := | J T; is r.e., and
is precisely the set {w € X* | w € Tor,(P) in P}.

Proof. We proceed by induction. Clearly, Tor, (P) is r.e., as it is the normal closure of Tor(P), which is r.e. by
Lemma 3.6. So assume that Tor;(P) is r.e. for all i < n. Then Tor,,,, (P) is the normal closure of Tor (P/ Tor,,(P)),
which again is r.e. by the induction hypothesis and Lemma 3.6. The remaining parts of the lemma follow
immediately. O

Proposition 3.8. There is a uniform algorithm that, on input of a countably generated recursive presentation
P = (X|R) of a group P, outputs a countably generated recursive presentation P = (X|R') (on the same
generating set X, and with R < R' as sets) such that P¥ is the torsion-free universal quotient of P, with associated
surjection given by extending idy : X — X.

Proof. By Corollary 3.4, ?tf is the group P/ Tor, (P). Then, with the notation from Lemma 3.7, it can be seen
that P := (X|R U T,,) is a countably generated recursive presentation for ﬁtf, uniformly constructed from
P. O

Theorem 3.9. There is a finitely presentable group G which is torsion free and contains an embedded copy of
every countably generated recursively presentable torsion-free group.

Proof. Take an enumeration P,, P,, ... of all countably generated recursive presentations of groups, and con-
struct the countably generated recursive presentation Q := P« P «. . . ; this is the countably infinite free prod-
uct of the universal torsion-free quotient of all countably generated recursively presentable groups (with some
repetition). As each P,.tf is uniformly constructible from P, (by Proposition 3.8), we have that our construction
of Q is indeed effective, and hence Q is a countably generated recursive presentation. Also, Proposition 3.8
shows that Qis a torsion-free group, as we have successfully annihilated all the torsion in the free product fac-
tors, and the free product of torsion-free groups is again torsion-free. Moreover, Q contains an embedded copy
of every torsion-free countably generated recursively presentable group, as the universal torsion-free quotient
of a torsion-free group is itself. Now use Theorem 2.2 to embed Q into a finitely presentable group T(Q). By
construction, 0 = Tord(Q) = Tord(T(Q)), so T(Q) is torsion-free. Finally, T(Q) has an embedded copy of every
countably generated recursively presentable torsion-free group, since Q did. Taking G to be T(Q) completes
the proof. O

From this, we immediately observe the following consequence.

Theorem 3.10. Thereis a universal finitely presented torsion-free group G. That is, G is torsion-free, and for any
finitely presented group H, we have that H — G if (and only if) H is torsion-free.

Note. One may ask why Theorem 3.10 does not follow immediately from Higman’s embedding theorem by
taking the free product of all finite presentations of torsion-free groups, and using the fact that Higman’s
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theorem preserves orders of torsion elements. This cannot work, as we show later in Theorem 4.2 that the set
of finite presentations of torsion-free groups is not recursively enumerable.

Remark. Miller [10, Corollary 3.14], extending a result of Boone and Rogers [2, Theorem 2], showed that there
is no universal finitely presented solvable word problem group. It can be shown that none of the following
group properties admit a universal finitely presented group: finite, abelian, solvable, nilpotent (simple, how-
ever, remains open).

4 Complexity of embeddings

Using the machinery described in Section 2, we can encode the following recursion theory facts into groups.

Lemma 4.1 ([11, §13.2, Theorem VIII). Theset {n € N | W, = N} is I13-complete; the set {n € N | |[W,| < co} is
>5-complete.

We thus can recover the following result, first proved in [9, Main Theorem].
Theorem 4.2. The set of finite presentations of torsion-free groups is ng -complete.

Proof. Givenn € IN, we use Theorem 2.3 to construct a finite presentation Q, such that Tord(Q,) is one-one
equivalent to N \ W,. Thus, Q, is torsion-free if and only if W, = N. By Lemma 4.1, {n € N | W, = N} is
Hg -complete, so the set of torsion-free finite presentations is at least Hg -hard. But this set has the following
IT) description (taken from [9]):

G is torsion-free if and only if (Vw € G)(Vn > 0)(w" #; e or w = e)

and hence is IT;-complete. O

Applying this theorem to the universal torsion-free group from Theorem 3.10, we get the following immediate
corollary, which extends Theorem 2.3.

Corollary 4.3. There s a finitely presented group whose finitely presentable subgroups form a I13-complete set.
A construction similar to the proof of Theorem 2.3 (as found in [4, Lemma 6.11]) gives us the following:
Proposition 4.4. For any fixed prime p, the set of finite presentations into which C, embeds is Zg -complete.

Proof. Given n € IN, we form the countably generated recursive presentation P, as follows:
P, = <x0,x1,... [ {xF lie ]N}U{xo,...,x]- | je Wn}>
If [W,| < cothen P, = C, % C,, * ---. Conversely, if [W,| = co then P,, = {e}. So

{p} if[W,| < oo,

Tord(1_3n) =
0 if [W,| = oo.

That is, we have C,, — P, if and only if |[W,| < co. Now use Theorem 2.2 to construct a finite presentation
T(P,) such that P, — T(P,) with Tord(P,) = Tord(T(P,)). Hence C, — T(P,) if and only if [W,| < co. So
by Lemma 4.1 the set of finite presentations into which C,, embeds is Zg-hard. But this set has the following
straightforward =) description:

C, — Gifand only if (3w € G)(w #; eand w? =; e)

and hence is XJ-complete. O

Now we can prove the following theorem.
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Theorem 4.5. Take an enumeration P,, P,, ... of all finite presentations of groups, where P, = {X;|R;). Then the
set K = {(i, j) € N’ | P; — P;} is X}-hard, I1;-hard, and has a X3 description.

Proof. Corollary 4.3 shows that K is Hg -hard, Proposition 4.4 shows that K is Zg-hard, and the following is a
=7 description for the set K:

K={Gj)eN"|(3¢: X; - X;)(Vw € X )($(w) =5, eifand only if w =5 e)}. O

Note that, with the aid of Cantor’s pairing function (a computable bijection between N? and IN), we can view
the set K above as being a subset of IN. Hence it makes sense to talk of K being 1'[2 -hard etc.
Based on Theorem 4.5, we conjecture the following:

Conjecture. The set K defined above is Zg-complete. That is, the problem of deciding for finite presentations
P, P; if P; — P is X3-complete.

5 Complexity of Tord(G)

We now apply our techniques to investigate the complexity of Tord(G) for G a finitely presented group.

Definition 5.1. Callaset A < IN,, factor-complete if it is closed under taking non-trivial factors. Thatis,n € A
implies m € A for all m > 1 with m|n.

We give a set-theoretic description of the factor-complete sets which can appear as Tord(G) for G finitely (or
recursively) presented. We presented a proof of the following result in [8, user 31415] earlier; what follows is
a clearer proof pointed out to us by an anonymous referee.

Theorem 5.2. For a set of natural numbers A, the following conditions are equivalent:
(1) A = Tord(G) for some finitely presented group G.

(2) A = Tord(G) for some countably generated recursively presented group G.

(3) Ais a factor-complete X3 set.

Proof. (2) = (1). By Theorem 2.2, any recursively presented group can be embedded into a finitely presented
group with the same Tord.

(1) = (3). First, observe that Tord(G) is factor-complete (for any group G), because if o(g) = mn then
o(g™) = n, for any g € G. Second, Tord(G) is a zg set. Indeed, if G has a finite presentation (X|R), and S is the
set of words in X* which represent the trivial element in G, then

Tord(G) = {n| (Gw e X*)(n>1Aw" € SAVI(0 <i<n=w ¢8))}

Since Sisr.e. (by Lemma 3.5), itis a 2(1) subset of X", and so the result follows.
B3)=(Q).AsAisa zg set, it has a description of the form

A={neN|3IxVyR(n, x, y)}
for some ternary recursive relation R on IN. Let
P :={(n,m) € N* | (Vx < m)(3y)-R(n, x, y)}.
Clearly, Pisr.e.If n ¢ Athen (n,m) € P for all m. Conversely, if n € A then
(n,m) e P & m<m,:=min{m| (Vy)R(n,m, y)}.
LetI:={(n,m) € N* | n> 1}, and let G := (X|T) where

X:={a,, | nm)el}, T:={a, |(nm)elluia,,l (nm)elnP}
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Clearly, T is r.e., and so G has a countably generated recursive presentation. By the observations above, G
can be defined by the generators q,,, and relators ), = e, where n € A and m > m,,. Let K, denote the free
product of countably many cyclic groups C,, of order n. Then G is isomorphic to the free product

G=x,,4K,
and therefore
Tord(G) = | J Tord(C,) = | J {k | kin Ak > 1} = A;
neA neA
the latter equality holds because A is factor-complete. O

Note. Theorem 5.2 was first proved in the more restricted setting of primes (i.e., considering sets of integers
consisting only of primes) by Steinberg and separately by Wilton in response to a question asked by Kohl,
see [8]. Moreover, Dorais gave a sketch of an alternate proof of the version for primes in comments to [8, user
1463]. Our original proof was a formalisation of the proof by Dorais, and our result is an extension of this
to the more general setting of all factor-complete zg sets. We thank Dorais, Kohl, Steinberg, and Wilton for
their online discussion, as well as their insight into key aspects of this result; our work in this section is an
extension of their ideas and results.

From the uniformity of the constructions in the proof of Theorem 5.2, we make the following observation.

Proposition 5.3. The equivalence discussed in Theorem 5.2 is computable, in the following sense:

(@) Given a countably generated recursive presentation Q, we can compute from it a finite presentation P with
Tord(P) = Tord(Q).

(b) Given a finite presentation P, we can compute from it a ternary recursive relation R on N for which Tord(P) =
{n e N|3IxVyR(n, x, y)}.

(c) Given a ternary recursive relation R on N for which A := {n € N | 3xVyR(n, x, y)} is factor-complete, we
can compute from it a countably generated recursive presentation Q with Tord(Q) = A.

We adopt the standard numbering of primes {p;}._,, ordered by size; the following lemma is then immediate.

ieN?
Lemma 5.4. Let X < N. Then the set

Xprime = {Pl | i€ X}
is factor-complete and one-one equivalent to X.

Applying Lemma 5.4 to Theorem 5.2, we can conclude the following corollary.

Corollary 5.5. Given any ) set A, the set A prime 1S One-one equivalent to A, and can be realised as the set of
orders of torsion elements of some finitely presented group G.

6 Further work

This paper gives rise to several questions. We mention some here.

Problem 1. Given the existence of a universal torsion-free group (Theorem 3.10), and the constructions of ex-
plicit finite presentations of universal finitely presented groups by Valiev [13, 14], one could perhaps combine
these techniques to produce an explicit finite presentation of a universal torsion-free group.

Problem 2. The positions of the following properties in the arithmetic hierarchy have not been fully deter-
mined. Techniques such as those we have covered here may be of use in locating them.

1. Solvable: Known to have a XJ description.

2. Residually finite: Known to have a ITJ description.

3. Simple: Known to have a IT) description.

4, Orderable: Known to have a Hg description (the Ohnishi condition).
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Properties 1-3 are mentioned in [10, p. 20], while property 4 appears in [6, Lemma 2.2.1]. We note that it may
be very well the case that some of these are neither IT°-complete nor X)-complete, for any #.

Problem 3. Considering Theorem 5.5 and the uniformity of such a realisation of a 2‘2) set A as one-one equiv-
alent to the torsion orders of a finitely presented group, one could perhaps construct an explicit finite pre-
sentation P of a group with Tord(P) being Zg -complete by encoding the set {n ¢ N | |W,| < oo}, which is
>3-complete (Lemma 4.1).
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