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background: We previously established parthenogenetic mouse embryonic stem cells (ESCs) and this study was subsequently con-
ducted for elucidating the influence of oocyte parthenogenesis on gene expression profile of ESCs.

methods: Gene expression of parthenogenetic ESC (pESC)-1 or pESC-2 was separately compared with that of two normally fertilized
ESC (nfESC) lines (B6D2F1 and R1 strains), and quantification of mRNA expression was conducted for validating microarray data.

results: In two sets of comparison, reaction of 11 347 and 15 454 gene probes were altered by parthenogenesis, while strain difference
changed the expression of 15 750 and 14 944 probes. Level of correlation coefficient was higher in the comparisons between normal ferti-
lization and parthenogenesis (0.974–0.985) than in the comparisons between strains of nfESCs (0.97–0.971). Overall, the expression of
3276–3329 genes was changed after parthenogenesis, and 88% (96/109) of major functional genes differentially (P , 0.01) expressed in
one comparison set showed the same change in the other. When we monitored imprinted genes, expression of nine paternal and eight
maternal genes were altered after parthenogenesis and 88% (14/16) of these was confirmed by mRNA quantification.

conclusions: The change in gene expression after parthenogenesis was similar to, or less than, the change induced by a strain diffe-
rence under a certain genetic background. These results may suggest the clinical feasibility of parthenogenesis-derived, pluripotent cells.
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Introduction
Successful cell replacement therapy requires either establishing
immune-specific pluripotent cell lines or acquiring immune tolerance
in heterogeneous stem cells. To eliminate the risk of cloning in auto-
logous stem cell therapy and to efficiently establish immune-specific
stem cells, various alternatives to somatic cell nuclear transfer have
been suggested (Cowan et al., 2005; Chung et al., 2006; Meissner
and Jaenisch, 2006; Okita et al., 2007; Wernig et al., 2007). Using a
mouse model, we have previously established autologous embryonic
stem cells (ESCs) by parthenogenetic activation of oocytes (Lee
et al., 2008), and the physiological and genetic properties of the
parthenogenetic ESC (pESC) lines have been characterized (Gong
et al., 2008). To confirm clinical feasibility of pESCs established, it is
absolutely necessary to evaluate alteration of genetic and cellular

properties after parthenogenesis. Unfortunately, there was no
report on evaluating difference in gene expression in pESCs.

In this study, we made two sets of comparison using pESC-1 and
pESC-2 lines. In each comparison, we first compared the gene
expression between normally fertilized ESCs (nfESCs) of B6D2F1
(C57BL/6 X DBA2) strain (established from our laboratory) and
those of R1 (129X1 � 129S1) strain (commercially purchased from
ATCC) in mice. Second, comparison was subsequently made
between B6D2F1 pESCs (pESC-1 for the first and pESC-2 line for
the second comparison) and nfESCs of the same strain, and
between B6D2F1 pESC-1 or pESC-2 and nfESCs of R1 strain. Using
a microarray Genechip technology and a gene network map, genes
being up-regulated or down-regulated after parthenogenesis were
identified. Gene ontogeny annotation was performed for assuming
changes in cellular function after parthenogenesis and real-time
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PCR analysis was conducted to verify the microarray results. As
additional analyses, major regulatory hub genes were identified in
the comparisons between pESCs and nfESCs.

Materials and Methods

Preparation of mouse blastocysts fertilized
in vivo
All procedures for animal management, breeding and surgery followed the
standard protocols of Seoul National University. Appropriate management
of experimental samples and quality control of the laboratory facility and
equipment were also conducted. The Institutional Animal Care and Use
Committee, Seoul National University, approved our research proposal
in April 2005 (approval number: SNU0050331-02). The B6D2F1 hybrid
strain, produced by the mating of a female C57BL/6 with a male DBA2,
was maintained under controlled lighting (14 h Light:10 h Dark), tempera-
ture (20–228C) and humidity (40–60%). Naturally ovulated females in
estrus were then mated naturally, and we collected blastocysts by
uterine flushing 72 h after mating. The flushing medium was M2 medium
consisting of 94.7 mM NaCl, 4.8 mM KCl, 1.7 mM CaCl2.2H2O, 1.2 mM
KH2PO4, 1.2 mM MgSO4.7H2O, 4.2 mM NaHCO3, 20.9 mM HEPES,
23.3 mM sodium lactate, 0.3 mM sodium pyruvate, 5.6 mM glucose, 1%
(v/v) penicillin/streptomycin solution and 4 mg/ml bovine serum
albumin (BSA). All medium substrates were purchased from Sigma-Aldrich
Corp. (St Louis, MO, USA) unless otherwise stated.

Collection of mature oocytes and production
of blastocysts after parthenogenetic
activation
Ovulated oocytes were collected by oviduct flushing of naturally ovulated
F1 females in estrus 15 h after mating with a vasectomized male. Matu-
ration of the oocytes to the metaphase II stage was determined by extru-
sion of the first polar body and expansion of cumulus cells. Oocytes were
freed from cumulus cells by placement in M2 medium supplemented with
hyaluronidase (200 units/ml) for 5 min at 378C. The oocytes were then
activated by culture in Ca2+-free KSOM medium supplemented with
10 mM SrCl2 and 5 mg/ml cytochalasin B for 4 h. Modified Chatot,
Ziomek and Bavister medium consisting of 81.6 mM NaCl, 4.8 mM KCl,
1.2 mM KH2PO4, 1.2 mM MgSO4.7H2O, 1.7 mM CaCl2.2H2O, 25.1 mM
NaHCO3, 31.3 mM sodium lactate, 0.3 mM sodium pyruvate, 1 mM glu-
tamine, 0.1 mM EDTA and 5 mg/ml BSA, to which 0.001 mg/ml Hb
(methemoglobin) and 5.5 mM b-mercaptoethanol (Gibco Invitrogen,
Grand Island, NY, USA) were added, was used for culturing parthenogen-
etically activated oocytes. Activated oocytes were cultured in a 5-ml
droplet of the medium overlaid with washed mineral oil at 378C in an
atmosphere containing 5% CO2. Blastocysts obtained were used for
ESC establishment.

Establishment and culture of ESCs
The zona pellucida of blastocysts derived from normal fertilization and
parthenogenesis were removed using acid Tyrode’s solution, and the
zona-free blastocysts were subsequently cultured on a feeder layer of
mouse embryonic fibroblasts (MEFs) treated with 10 mg/ml mitomycin
C (Chemicon, Temecula, CA, USA) for 3 h in gelatin-coated 4-well
multi-dishes. Knock-out Dulbecco’s minimal essential medium (KDMEM;
Gibco Invitrogen) supplemented with 0.1 mM b-mercaptoethanol
(Gibco Invitrogen), 1% (v/v) non-essential amino acids (Gibco Invitrogen),
2 mM L-glutamine, 1% (v/v) mixture of penicillin and streptomycin,
2000 units/ml mouse leukemia inhibitory factor (LIF; Chemicon), and a

3:1 mixture of fetal bovine serum (FBS) and knock-out serum replacement
was used for initial culture of the blastocysts. On Day 4 of culture, inner
cell mass cell-derived cell colonies were mechanically removed with a
capillary pipette and replated on MEF feeder cells for further expansion.
Expanded colonies were dissociated with 0.04% (w/v) trypsin–EDTA
(Gibco Invitrogen) and subcultured on a 35-mm tissue culture dish in
the presence of MEF feeder cells under a humidified atmosphere of 5%
CO2 at 378C. After colony expansion, the LIF concentration in ESC
culture media was reduced to 1000 units/ml, and subpassage was con-
ducted at intervals of 4 days, when the cultured ESCs had reached
70–80% confluency. The medium was changed daily during subculture.
R1 nfESCs purchased from ATCC were subpassaged with the standard
protocols of our laboratory (Lee et al., 2008).

Characterization of established ESCs
For characterization using stem cell-specific markers, ESCs collected at the
20th subpassage were fixed in 4% (v/v) formaldehyde (Sigma-Aldrich) at
room temperature for 10 min. The reactivity of the ESCs to alkaline phos-
phatase was assessed with Fast Red TR/naphthol AS-MX phosphate
(Sigma-Aldrich). Antibodies against Oct-4 (BD Biosciences, San Jose,
CA, USA), stage-specific embryonic antigens (SSEA)-1 (Developmental
Studies Hybridoma Bank, Iowa City, IA, USA), SSEA-3 (Developmental
Studies Hybridoma Bank), SSEA-4 (Developmental Studies Hybridoma
Bank), integrin a6 (Santa Cruz Biotechnology, Santa Cruz, CA, USA)
and integrin b1 (Santa Cruz Biotechnology) were provided for the
marker staining. Localization of SSEA-1, SSEA-3, SSEA-4, Oct-4, integrin
a6 and integrin b1 was performed using the Alexa Fluor 488-conjugated
anti-mouse antibody (Molecular Probes, Eugene, OR, USA), the Alexa
Fluor 568-conjugated anti-mouse antibody (Molecular Probes), and the
DakoCytomation kit (DakoCytomation, Carpinteria, CA, USA).

To confirm spontaneous differentiation in vitro, the ESCs were treated
with 0.04% (v/v) trypsin–EDTA (Gibco Invitrogen), and the dissociated
cells were subsequently transferred to 100-mm plastic Petri dishes that
contained LIF-free DMEM (Gibco Invitrogen) that was supplemented
with 10% (v/v) FBS. The cells were grown until the embryoid bodies
(Ebs) formed. The EBs were seeded separately into 4-well culture plates
and cultured for 10–14 days. The EBs were stained with the following
specific markers for the three germ layers: nestin (Santa Cruz Biotechno-
logy) and S-100 (Biodesign International, Saco, ME) for ectodermal cells;
muscle actin (Biodesign International) and desmin (Santa Cruz Biotechno-
logy) for mesodermal cells and a-fetoprotein (Biodesign International) and
troma-1 (Developmental Studies Hybridoma Bank) for endodermal cells.
Antibody localization was performed with the DakoCytomation kit (Dako-
Cytomation). For monitoring ESC capacity to differentiate in vivo, 1�107

ESCs retrieved at the 20th subpassage were injected s.c. into adult
NOD-SCID (non-obese diabetic/severely compromised immunodefi-
cient) mice. Teratomas that formed in the subcutaneous region were
collected 8 weeks post-transplantation and fixed with 4% (v/v) parafor-
maldehyde (Sigma-Aldrich). After embedding in paraffin blocks, the
tissues were stained with hematoxylin and eosin for examination under
a phase-contrast microscope (BX51TF; Olympus, Kogaku, Japan).

Generation of Affymetrix chip data
All analyses were performed in triplicate. The generation of Affymetrix
data from the three different stem cell samples was performed by
Seoulin Bioscience Cooperation (Seoul, Korea). About 4 mg of total
RNA from the samples were used for labeling. Probe synthesis from
total RNA samples, hybridization, detection and scanning were performed
according to standard protocols from Affymetrix, Inc. (Santa Clara, CA,
USA). Briefly, complementary DNA (cDNA) was synthesized using the
One-Cycle cDNA Synthesis Kit (Affymetrix). Single-stranded cDNA was
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synthesized using Superscript II reverse transcriptase and T7-oligo (dT)
primers at 428C for 1 h. Double-stranded (ds) cDNA was obtained
using DNA ligase, DNA polymerase I and RNase H at 168C for 2 h, fol-
lowed by T4 DNA polymerase at 168C for 5 min. After cleanup with a
Sample Cleanup Module (Affymetrix), ds-cDNA was used for in vitro tran-
scription (IVT). cDNA was transcribed using the Affymetrix GeneChipw

IVT Labeling Kit in the presence of biotin-labeled CTP and UTP. The
biotin-labeled IVT-RNA was then fragmented. Fragmented cRNA was
hybridized to the Mouse Genome 430 2.0 Array, which has 45 000
gene probes for over 34 000 well-characterized mouse genes, at 458C
for 16 h according to the manufacturer’s instructions. After hybridization,
the arrays were washed in a GeneChipw Fluidics Station 450 with a non-
stringent wash buffer at 258C followed by a stringent wash buffer at 508C.
After washing, the arrays were stained with a streptavidin–phycoerythrin
complex. After staining, intensities were determined with a GeneChip
scanner, which was controlled by GeneChipw Operating Software
(Affymetrix).

Analysis of DNA microarrays
The quality of the array image was assessed as described in the Affymetrix
GeneChip expression analysis manual. All arrays were processed by robust
multi-array average (RMA) using the R package Affy. Expression values
were computed in detail from raw CEL files by applying the RMA model
of the probe-specific correction of perfect-match probes. These corrected
probe values were then normalized via quantile normalization, and a
median polish was applied to compute one expression measure from
all probe values. The resulting RMA expression values were log2-
transformed. The individual gene expression levels were compared using
an unpaired Welch t-test. The Benjamin–Hochberg correction for false
discovery rate (FDR) was used for all probe-level normalized data. We
selected differentially expressed genes (DEGs) that met a FDR-adjusted
P-value of less than 0.05 (compatible with a 1.2- to 1.4-fold difference in
gene expression) using an unpaired Welch t-test. The gene ontology anno-
tation was conducted using the NetAffy tool (http://www.affymetrix.com)
and DAVID bioinformatics resources (http://david.abcc.ncifcrf.gov).

Construction of reference gene network
Data set consisting of 180 Affymetrix GeneChip Murine Genome U74
Version 2 Set MG-U74A Array data that were derived from six different
tissues (skeletal muscle, heart, fetal heart, myoblast, bone marrow, lung
and skin) were used. Relative expression intensity (log2-transformed) for
microarray data for all probes was estimated using the RMA algorithm
within the ‘affy’ package in Bioconductor (Irizarry et al., 2003), which per-
forms background correction, normalization, probe-specific correction
and summary. The Pearson correlation coefficients obtained for all pair-
wise comparisons of the expression data were then converted into a coex-
pression matrix by defining a similarity matrix function, which is a signum
function with a thresholding parameter t.

aij ¼ signumðsij; tÞ ;
1 if jsijj � t

0 if sij , t

�

Nodes and edges for the DEGs were identified using this signum function,
where t was 0.7. The gene-coexpression network was visualized using the
Cytoscape spring-embedded layout algorithm (Shannon et al., 2003).

Quantitative real-time PCR
Primary3 software (Whitehead Institute/MIT Center for Genome
Research, Cambridge, MA, USA) was used to design all specific primers
used in these experiments. All PCR primers were designed based on
mouse cDNA sequences obtained from GenBank. The primer sequences

and annealing temperatures are listed in Supplementary data, S1. Total
RNA was extracted from each sample using the RNeasy Plus Mini Kit
(Qiagen, Valencia, CA, USA) according to the manufacturer’s instructions.
cDNA was synthesized from �1 mg of each RNA sample using the
Reverse Transcription System (Promega, Madison, WI, USA). Sub-
sequently, the expression of specific genes in each sample was quantified
by real-time PCR using the DyNAmo HS SYBRGreen qPCR Kit
(Finnzymes, Espoo, Finland). PCR amplification was performed in a final
volume of 25 ml using the ABI PRISM 7700 sequence detection system
(Applied Biosystems) with the following cycling parameters: 2 min at
508C, 15 min at 958C, followed by 40 cycles of 15 s at 958C, 30 s at
608C and 1 min at 728C. A dissociation curve was recorded to check
the specificity of the amplification. The final optimized concentration of
each primer was 300 nM, and the absence of inter- and/or intra-molecular
duplex formation between the primers was confirmed in a control real-
time PCR run that lacked a template. The mRNA level of each gene in
the samples was normalized to that of b-actin. The relative mRNA level
was defined as 22DDCt, where Ct = the threshold cycle for target amplifi-
cation, DCt = Cttarget gene 2Ctinternal reference (b-actin) and DDCt =
DCtsample 2DCtcalibrator.

Results
Before analysis, the ESC lines used for this study were characterized
with our standard protocols. The nfESC, pESC-1 and pESC-2 of
B6D2F1 line were characterized by ESC-specific markers for alkaline
phosphatase (+), and anti-SSEA-1 (+), SSEA-3 (2), SSEA-4 (2),
Oct-4 (+), integrin a6 (+) and integrin b1 (+) antibodies, in vitro-
differentiation into the EB, and in vivo-differentiation into teratomas
(Fig. 1).

Analysis of microarray data
In the first set of comparisons, we monitored the number of genes
(gene probes) differentially expressed between B6D2F1 nfESCs and
R1 nfESCs, between B6D2F1 pESCs-1 and R1 nfESCs, and B6D2F1
pESCs-1 and B6D2F1 nfESCs (Fig. 2). Of total 45 000 gene probes
monitored, the expression of 15 750, 14 187 and 11 347 probes
changed, respectively, and a gradual decrease in the number was
detected as variables (strain and origin) between nfESCs and pESCs
were reduced (B6D2F1 nfESCs versus B6D2F1 pESCs ,R1 nfESCs
versus B6D2F1 pESCs). In all three comparisons, 4984 gene probes
were simultaneously changed. In the second comparison consisting
of the same procedure except for using of pESC-2, the expression
of 14 944, 15 381 and 15 454 gene probes were different, respect-
ively. Total 5391 gene probes were simultaneously changed in all com-
parisons. Level of correlation in each comparison was subsequently
monitored to statistically evaluate the extent of the change after
parthenogenesis. As shown in Fig. 3, overall levels in each replicate
of comparisons were higher in the comparisons between normal fer-
tilization (B6D2F1 nfESCs) and parthenogenesis (B6D2F1 pESCs) than
in the comparisons between strains (R1 nfESCs and B6D2F1 nfESCs)
(0.974–0.985 versus 0.97–0.971).

Consequently, for each probe set we determined the genes
showing different expression between pESCs and nfESCs (Table I).
In the comparison of B6D2F1 pESCs-1 versus nfESCs of the same
strain, 7776 genes showed significantly altered expression after parthe-
nogenesis. Of those, 53% (4096 genes) were up-regulated in pESCs-1,
whereas the rest were down-regulated. The number of genes that had
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significantly different expression after parthenogenesis increased when
pESCs-1 were compared with nfESCs of different strain (R1). In
total, 8943 genes were expressed differently in pESCs-1 and R1
nfESCs; approximately half of the genes (4490/8943) were
up-regulated after parthenogenesis. Only 3276 genes were
expressed differently in both comparisons, which consisted of 1878
up-regulated and 1398 down-regulated genes. In addition, total
2766 genes were up-regulated in one comparison and down-
regulated in another, which consisted of 1618 genes up-regulated
in B6D2F1 nfESCs and down-regulated in R1 nfESCs, and 1148

genes up-regulated in R1 nfESCs and down-regulated B6D2F1
nfESCs. Thus total 6042 genes were changed after parthenogenesis,
regardless of up- and down-regulation. In the second comparison
employing pESCs-2, 7633 genes showed significantly different
expression after parthenogenesis, while 9074 genes were expressed
differently in pESCs-2 and R1 nfESCs. Total 3329 genes were
expressed differently in both comparisons and 2029 genes were
up-regulated in one comparison and down-regulated in another.
Thus, total 5358 genes were changed after parthenogenesis, regard-
less of up- and down-regulation.

Figure 1 Characterization for two types of mouse ESC that are derived from normal fertilization (nfESCs) and parthenogenesis (pESCs-1 and
pESCs-2) of B6D2F1 strain.
(A) Identification of ESC-specific markers by immunostaining. Bar = 50 mm. (B) in vitro-differentiation. Bar = 100 mm. (C–E) in vivo differentiation. (C1)
Keratinized stratified squamous epithelial cells. Bar = 50 mm. (C2) Neuroepithelial cells. Bar = 100 mm. (C3) Adipose tissue (arrow) and muscle (arrow-
head). Bar = 100 mm. (C4) Cartilage. Bar = 100 mm. (C5) Glandular epithelium with goblet cells. Bar = 50 mm. (C6) Pancreatic tissue. Bar = 50 mm.
(D1) Pigmented and keratinized epithelial cells. Bar = 100 mm. (D2) Neuroepithelial cells. Bar = 100 mm. (D3) Muscle and blood vessels.
Bar = 50 mm. (D4) Cartilage. Bar = 50 mm. (D5) Pancreatic tissue. Bar = 50 mm. (D6) Ciliated columnar epithelial cells (arrow). Bar = 50 mm. (E1)
Glandular epithelium-Goblet cell-like (arrow head). (E2) Exocrine pancreas. (E3) Stratified squamous epithelium (arrow). (E4) Neuroepithelial rosettes.
(E5) Skeletal muscle bundles. (E6) Bone tissue (arrow). All bars in (E) are 50 mm. (F) Identification of ESC-specific gene expression by RT–PCR. AP,
alkaline phosphatase; EB, embryoid body; ESC, embryonic stem cells; MEF, mouse embryonic fibroblasts; SSEA, stage-specific embryonic antigens.
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Gene ontology annotation
The genes expressed differently in pESCs compared with both nfESCs
were further analyzed by the percentage distribution of gene ontology.
As listed in Table II, the DEGs fall into various functional categories
when distributed into biological processes, molecular functions or cel-
lular components in gene ontology term level 2. In two comparisons,
an overall 88% (96/109) of the major functional genes differentially
(P , 0.01) expressed in one comparison also showed the difference
in the other. Eighty-nine percent (48/54) of the annotated genes
listed in the first comparison set was repeatedly listed in the second
comparison, while 87% (48/55) of the genes listed in the second
set was listed in the first comparison.

Imprinted genes
Of those genes differentially expressed after parthenogenesis in the
first comparison, 16 were imprinted genes consisting of eight pater-
nally imprinted genes (Mcts2, Mest, Zfp264, Snrpn, Nap1l5, Impact
and Dlk1 were up-regulated, whereas Igf2 was down-regulated) and
eight maternally imprinted genes (Pon2, Cdkn1c, Grb10, Rian, Igf2r,
Gnas, Ube3a and Phlda2 were down-regulated; Table III). On the
other hand, 15 imprinted genes consisting of eight paternally imprinted
genes (Mcts2, Mest, Zfp264, Snrpn, Impact, Dlk1 and Ddc were
up-regulated, whereas Igf2 was down-regulated) and seven maternally
imprinted genes (Pon2, Cdkn1c, Grb10, Igf2r, Gnas, Ube3a and Phlda2,
all were down-regulated) showed different expression after partheno-
genesis in the second comparison. In two comparisons, however,
parthenogenesis altered the expression of only nine paternally imprint-
ing and eight maternally imprinting genes because of the similarity of
the gene listing. Four imprinted genes (Snrpn, Mest, Ndn and Phlda2)
which showed altered expression after parthenogenesis were ran-
domly selected from the database, and their expression level was
quantified by real-time PCR. As shown in Fig. 4, 88% (14/16) of the
microarray results was consistent with the results of mRNA quantifi-
cation by real-time PCR.

Analysis of 3276 genes that were expressed
differently in pESCs by reference gene
network
A gene-coexpression network using the data sets derived from six
tissues was constructed. Using the reference gene network, the
3276 genes up-regulated or down-regulated after parthenogenesis in
the first comparison using pESC-1 were determined (Supplementary
data). The hub genes were subdivided into stimulatory or inhibitory
based on their promotion or repression of networked gene
expression, respectively. Up to 20 up-regulated and down-regulated
hub genes were ranked according to the number of correlations
among genes from the following four groups; genes that are
up-regulated in pESCs relative to both nfESCs and have a stimulatory
correlation with other genes, genes that are up-regulated in pESCs and
have an inhibitory correlation with other genes, genes that are down-
regulated in pESCs and have a stimulatory correlation with other genes
and genes that are down-regulated in pESCs and have an inhibitory

Figure 2 Sequential comparison of gene expression of ESCs
derived from different origins.
Two sets (A and B) of comparison were attempted using two lines of
pESCs [pESC-1 and pESC-2 for (A) and (B), respectively]. In each set,
gene expression of nfESCs derived from R1 strain was first compared
with that of nfESCs derived from B6D2F1 strain. Comparisons were
subsequently made between pESCs and nfESCs of the same strain
(B6D2F1) and between pESCs and nfESCs of different strain (R1).
In the first comparison (A), the change in gene expression after
parthenogenesis was less than the change induced by strain differ-
ence, while the number of genes with altered expression was
similar among all comparisons in the second set (B).
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correlation with other genes. As shown in Supplementary data, S2,
Ndufb10, Ndufb11, Etfa, Atp5k, Idh3g, 1810013D10Rik, Ndufa11,
Acyp2, Pdha1, Slc25a20, Ankrd40, Art3, Slc25a4, Deb1, Cstf2, Smyd1,

Pdk3, Sec61a1, Pxmp2 and Lama2 were stimulatory hub genes, and
Dazl, 5430432M24Rik, Skap2, Gltp, Slc10a3, Cggbp1, Sema5b,
1110004F10Rik, Bcap31, Etfb, Dmrtb1, Sult4a1, Grid2, Sec61a1,

Figure 3 Similarity of gene expression in different lines of nfESC or pESC.
Similarity was evaluated by the comparison of correlation coefficients in each set of DNA microarray data and this figure subsequently shows bivariate
normal ellipse and correlation coefficient between all pairs compared. High levels of correlation (more than 0.97) were detected between all cell lines,
but correlation coefficients were higher in the comparisons between nfESCs and pESCs of the same strain than in the comparisons between nfESCs of
different strains.

...............................................................................................................

.............................................................................................................................................................................................

Table I DEG from the comparisons between mouse B6D2F1 pESCs and B6D2F1 nfESCs, and between B6D2F1 pESCs
and R1 nfESCs

Sets of comparison No. of genes expressed differentially in pESCs

Up-regulated Down-regulated Total

First comparison using pESCs-1

B6D2F1 pESCs-1 versus B6D2F1 nfESCs 4096 3680 7776

B6D2F1 pESCs-1 versus R1 nfESCs 4490 4453 8943

Botha 1878 1398 3276 (2766)b

Second comparison using pESCs-2

B6D2F1 pESCs-2 versus B6D2F1 nfESCs 4094 3539 7633

B6D2F1 pESCs-2 versus R1 nfESCs 4599 4475 9074

Botha 1923 1406 3329 (2029)c

aNumber of DEGs concomitantly in two comparisons of B6D2F1 pESCs versus B6D2F1 nfESCs and B6D2F1 pESCs versus R1 nfESCs; b,cNumber in parenthesis indicates the number of
the genes up-regulated and down-regulated in different comparisons (1618b and 1127c genes up-regulated in B6D2F1 nfESCs and down-regulated in R1 nfESCs, and 1148b and 902c genes
up-regulated in R1 nfESCs and down-regulated in B6D2F1 nfESCs, respectively). DEG, differentially expressed genes; nfESCs, normally fertilized ESCs; pESCs, parthenogenetic embryonic
stem cells.
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Nkiras1, Cstf2, Pxmp2, Dnajb5, Art3 and Sptlc2 were inhibitory hub
genes, which networked with 67–96 genes and with 28–54 genes,
respectively; these genes were listed as up-regulated and highly net-
worked genes. In contrast, Vegfb, Fh1, 1500032D16Rik, Ogdh, Grsf1,
Sdha, 2410003P15Rik, Phyh, Coq5, Myl3, Acadl, Hrc, Golga4, Spag7,
Higd2a, Gbe1, Foxh1, Src, Ndrg2 and Hspb2 were stimulatory hub
genes, and Arl4c, Foxh1, Elovl1, Mlycd, Cdc42se1, Runx1, Klc2,
Atp1a2, Hif3a, Iqgap1, 9030612M13Rik, Hrc, Gnai3, Rbm39, Tuft1,
Vegfb, Ndrg2, Litaf, Src and Zfp207 were inhibitory hub genes, which
networked with 57– 88 genes and with 28– 64 genes, respectively;
these genes were listed as down-regulated genes (Supplementary
data, S3). The hub genes that ranked within the top 20 based on
their networking mainly controlled protein transport, metabolism
and ATP production, whereas several development-related genes

including Tuft1, Foxh1, Cdc42sel, Src, Ndrg2, Runx1 and Vegfb were
either down-regulated or inhibitory to other networked genes in
pESCs. Seven major genes that are considered as regulatory factors
in pESCs-1 or nfESCs in the first comparison were randomly selected
from the database, and their expression level was quantified. Of those
genes selected, the patterns of 11 (79%) pairs from 14 total compari-
sons were consistent with results obtained from the DNA microarray
(Supplementary data, S4). Lists of genes differentially expressed in
each comparison are provided in Supplementary data, S5.

Discussion
Gene expression profiles of various pluripotent cells have been exam-
ined to reveal the molecular regulation of stem cells from somatic

................................................................................... .....................................................................................
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Table II Gene ontology annotation of the common up-regulated or down-regulated DEGs in pESCs comparing with
B6D2F1 and R1 ESCs derived from normal fertilization

Category Function annotation of common DEGs in pESCs-1 Function annotation of common DEGs in pESCs-2

Up-regulated DEGs Down-regulated DEGs Up-regulated DEGs Down-regulated DEGs

Biological
process

Primary metabolic process/
cellular metabolic process/
macromolecule metabolic
process/regulation of cellular
process/cellular component
organization and biogenesis/
regulation of biological
process/regulation of
metabolic process/
regulation of gene
expression/transcription/
cell proliferation

Cellular developmental process/
primary metabolic process/cellular
component organization and
biogenesis/anatomical structure
development/cellular metabolic
process/regulation of biological
process/cell development/
regulation of cellular process/
regulation of developmental
process/macromolecule metabolic
process/multicellular organismal
development/cell cycle/anatomical
structure morphogenesis/cell cycle
process/death/cell motility/
localization of cell/regulation of a
molecular function/cellular
localization/establishment of cellular
localization/catabolic process/
establishment of protein localization

Primary metabolic process/cellular
metabolic process/macromolecule
metabolic process/cellular
component organization and
biogenesis/regulation of cellular
process/regulation of biological
process/regulation of metabolic
process/catabolic process/cell
proliferation/transcription/cell
development/localization
establishment

Cellular developmental
process/cell development/
anatomical structure
development/cellular
component organization and
biogenesis/regulation of
biological process/regulation
of cellular process/regulation
of developmental process/
death/multi-cellular organ
development/anatomical
structure morphogenesis/
primary metabolic process/cell
cycle/cellular metabolic
process/macromolecule
metabolic process/cell cycle
process/cell motility/
localization of cell/regulation
of a molecular function/cellular
localization/establishment of
cellular localization/cell
proliferation

First versus
second

8/10 (80%) of identity 20/22 (91%) of identity 8/12 (67%) of identity 20/21 (95%) of identity

Molecular
function

Protein binding/nucleic acid
binding/transferase activity

Protein binding/nucleotide binding Protein binding/nucleotide binding Protein binding/nucleotide
binding

First versus
second

1/3 (33%) of identity 2/2 (100%) of identity 1/2 (50%) of identity 2/2 (100%) of identity

Cellular
component

Intracellular/intracellular
part/membrane-bound
organelle/intracellular
organelle/organelle part/
intracellular organelle part/
organelle envelope/protein
complex/organelle
membrane/organelle lumen

Intracellular part/intracellular/
intracellular organelle/
membrane-bound organelle/cell
projection/cell part/leading edge

intracellular/intracellular part/
membrane-bound organelle/
intracellular organelle/organelle
part/intracellular organelle part/
organelle envelope/protein
complex/organelle membrane/
organelle lumen/
non-membrane-bound organelle

Intracellular part/intracellular/
intracellular organelle/
membrane-bound organelle/
cell projection/leading edge/
cell part

First versus
second

10/10 (100%) of identity 7/7 (100%) of identity 10/11 (91%) of identity 7/7 (100%) of identity

This table shows only the terms satisfying P-value of ,0.01 from the result of gene ontology term level 2 by DAVID annotation tool.
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tissue (Phillips et al., 2000; Ivanova et al., 2002; Park et al., 2002;
Ramalho-Santos et al., 2002; Bhattacharya et al., 2004; Blanpain
et al., 2004; Tumbar et al., 2004; Byrne et al., 2006). ESCs derived
from parthenogenesis have a homozygous genome with minimal
crossover-associated heterozygosity (Kim et al., 2007), so they can
be used for autologous cell and tissue therapy. However, the molecu-
lar signature of pESCs has been poorly investigated to date.

In our results, differences in the origin of ESCs (normal fertilization
with spermatozoa versus parthenogenetic activation in the same
strain) significantly affected the gene expression profile of ESCs; of
34 000 genes evaluated by microarray, 22.6% (7776 genes) had
altered expression in pESC-1. A concomitant change of strain
(B6D2F1 versus R1) with alteration of ESC origin induced further
change in gene expression profile (8943 genes; 26.5% of the genes
tested). However, a change of ESC strain derived from normal fertili-
zation affected gene expression more profoundly (15 750 gene
probes; equivalent to 10 414 genes; 30.6% of the genes tested). In
the second comparison using pESC-2, the change in gene expression
after parthenogenesis was similar to that between strains. These
results suggest that the alteration of gene expression induced by
parthenogenesis is similar to, or quantitatively less, than that
induced by strain differences. Parthenogenesis may therefore be less
likely to affect the clinical feasibility of using ESCs for autologous cell
therapy than genetic background. This suggestion was supported by
statistical analysis to evaluate correlation coefficient. Our previous
results showing that no significant difference in stem cell character-
istics, including self-renewal and differentiation, was detected in
pESCs when compared with nfESCs (Lee et al., 2008) also supported
this hypothesis.

Parthenogenesis-derived ESCs are generated from homozygous
embryos consisting only of a diploid female genome. It has been
reported that the absence of paternal alleles in parthenotes results
in the loss of paternally imprinted genes, which may restrict the devel-
opment of parthenogenetic embryos (Kaufman et al., 1977; Barton

et al., 1984). We, however, paradoxically detected expression of 17
paternally imprinted genes (Mcts2, Mest, Nap1l5, Peg3, Usp29,
Zfp264, Snrpn, Ndn, Mkrn3, Peg12, Impact, Dlk1, Nnat, Slc38a4, Ins1,
Nespas and Ddc) in pESCs. Our results are consistent with previous
results (Jiang et al., 2007) finding expression of the paternally imprinted
genes Snrpn, U2af1-rs1, Peg3, Impact, Zfp127, Dlk1 and Mest in
parthenogenesis-derived ESCs. pESCs in various species have been
established to date (Allen et al., 1994; Cibelli et al., 2002; Fang
et al., 2006; Revazova et al., 2007; Sritanaudomchai et al., 2007) and
in some species, paternally imprinted genes are expressed in pESCs.
From these results, aberrant expression of paternally imprinted
genes after parthenogenesis may have little or no effect on ESC estab-
lishment and self-renewal in specific lines. Otherwise, transcription
activity of paternally imprinted genes may be modified to adversely
affect embryo development after parthenogenesis.

We utilized FDR levels to compare the change of gene expression
after parthenogenesis, which has generally been used for statistical
analyzing of microarray data. An FDR level ,0.05 was equivalent to
1.2- to 1.4-fold difference in the strength of gene expression in our
statistical analysis. Employing this system, we obtained 83% similarity
between microarray and qRT–PCR, a level which was quite accepta-
ble compared with other reports employing bioinformatics tool (Bhat-
tacharya et al., 2005; Goossens et al., 2007; Ushizawa et al., 2007).
The mRNA levels for Dazl, Vegfb,and Foxh1 detected by qRT–PCR
analysis did not match the microarray data, showing a 2.5-, 1.4- and
1.8-fold difference after parthenogenesis, respectively. If the signifi-
cance level of the FDR is adjusted for detecting more than a 2-fold
difference, the matching rate become significantly higher.

In this study, the two strains of nfESC were derived from blastocysts
growing in vivo, while pESCs originated from an in vitro-culture system.
Therefore, differences between in vivo and in vitro growth of embryos
may interfere with determining the net effect of parthenogenesis on
gene expression profile. Considering previous work reporting similar
gene expression between in vivo-derived and in vitro-derived

............................................................................. .............................................................
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Table III List of imprinted genes expressed differentially between pESCs and nfESCs of two strains

Sets of comparisons Paternally expressed imprinted genes expressed
differentially in pESCs

Maternally expressed imprinted genes
expressed differentially in pESCs

Up-regulated Down-regulated Up-regulated Down-regulated

First comparison using pESC-1

B6D2F1 pESCs-1 versus B6D2F1
nfESCs

Peg3, Usp29, Ndn, Mkrn3 Nnat, Peg10, Ins2,
Slc38a4

Dlx5, Tssc4, Mirg Copg2, H19, Gtl2

B6D2F1 pESCs-1 versus R1 nfESCs Nnat, Slc38a4 Sgce, Ndn, Inpp5f, Igf2as Gatm, H19, Gtl2 H13, Asb4, Atp10a, Cd81,
Tssc4

Botha Mcts2, Mest, Zfp264, Snrpn, Nap1l5,
Impact, Dlk1

Igf2 – Pon2, Cdkn1c, Grb10, Rian,
Igf2r, Gnas, Ube3a, Phlda2

Second comparison using pESC-2

B6D2F1 pESCs-2 versus B6D2F1
nfESCs

Peg3, Usp29, Ndn, Mkrn3, Peg12 Nnat, Peg10, Slc38a4 Tssc4, Mirg Copg2, H19, Gtl2, Ascl2, Rian

B6D2F1 pESCs-2 versus R1 nfESCs Nnat, Slc38a4, Ins1, Nespas, Nap1l5 Sgce, Ndn, Inpp5f, Igf2as,
Peg12

Gatm, H19 H13, Asb4, Atp10a, Cd81,
Tssc4

Botha Mcts2, Mest, Zfp264, Snrpn, Impact,
Dlk1, Ddc

Igf2 – Pon2, Cdkn1c, Grb10, Igf2r,
Gnas, Ube3a, phlda2

aDEGs concomitantly in two comparisons of B6D2F1 pESCs versus B6D2F1 nfESCs and B6D2F1 pESCs versus R1 nfESCs.
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blastocysts (Whitworth et al., 2005), however, such a difference may
only minimally affect the results obtained in this study. A report from
Giritharan et al. (2007) demonstrated that the difference in gene
expression between in vivo-growing and in vitro-growing blastocysts
was not as great as that between in vivo-fertilized and in vitro-fertilized
blastocysts. It is possible that the variation in expression of the hub
genes found when comparing nfESCs of different strains is simply
part of the natural variation between ESC lines. From a different view-
point, it is possible that a greater change in gene expression may be
induced by parthenogenesis under a different genetic background
from B6D2F1.

We used two lines of ESC derived from parthenogenetic activation
for DNA microarray analysis, and the use of only two lines limits the
final conclusions from this study. Nevertheless, we carefully conclude
that parthenogenesis consistently influences the expression of certain
imprinted genes. This hypothesis is supported by the fact that the
difference between gene expression of nfESCs and that of pESC was
constant in all comparisons and that expression pattern of each
pESC is very similar. It is possible that these imprinted genes, changing
their expression after parthenogenesis, may be the key for elucidating
the functional alteration of parthenogenesis-derived stem cells. The
importance of imprinted genes for understanding characterization of
parthenogenetic ESCs has been raised (Jiang et al., 2007).

In conclusion, we found alteration of gene expression in ESCs after
parthenogenesis, but this was either similar to, or less than, that
observed after a change of strain without altering the derivation of
ESCs under a certain genetic environment. Accordingly, these
results may imply that the same protocol utilized for nfESCs can be
applied for pESCs. For evaluating the feasibility of use of pESCs,
however, it is necessary to further examine the function of the
imprinted genes with altered expression in every case of parthenogen-
esis. Large-scale experiments using multiple lines of pESC may also be
required. The analytical system developed from this study may be
useful for monitoring the clinical feasibility of various autologous
stem cells, such as induced pluripotent stem cells (Revazova et al.,
2007; Takahashi et al., 2007; Yu et al., 2007; Park et al., 2008), as
well as pESCs.

Supplementary material
Supplementary material is available at HUMREP Journal online.
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