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Abstract. The spatial domain of Molecular Dynamics simulations is usually a regular
box that can be easily divided in subdomains for parallel processing. Recent efforts
aimed at simulating complex biological systems, like the blood flow inside arteries,
require the execution of Parallel Molecular Dynamics (PMD) in vessels that have, by
nature, an irregular shape. In those cases, the geometry of the domain becomes an ad-
ditional input parameter that directly influences the outcome of the simulation. In this
paper we discuss the problems due to the parallelization of MD in complex geometries
and show an efficient and general method to perform MD in irregular domains.
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1 Introduction

Molecular Dynamics (MD) is a very popular simulation method to study many-body sys-
tems by looking at the motion of N individual particles. In essence, MD tracks the motion
of particles whose trajectories are the result of forces mutually exerted among them. The
temporal propagation of the particle positions obeys Newton’s equations of motion, by
applying a time-discretization procedure of the differential equations followed by an in-
tegration in time [1, 2].
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Since its inception, MD has benefited from several algorithmic advances that nowa-
days permit the simulation up to billions of particles with O(N) complexity. Multi-
ple techniques for Parallel Molecular Dynamics (PMD) have been put forward over the
years. In particular, PMD has now reached a high degree of efficiency when dealing
with regular geometries, that is, with bulk systems whose computational domain can
be subdivided in terms of cubes, slabs, or other regular subdomains. Several imple-
mentations of PMD are freely available and run on both supercomputers, such as the
IBM Blue Gene, and high-performance commodity hardware, such as clusters of Graph-
ical Processing Units (GPUs). Among the most popular packages are NAMD [3] and
LAMPPS [4], softwares that are known to scale over thousands of processors. Moreover,
we recall ACEMD, a production bio-molecular dynamics software specially optimized to
run on NVIDIA GPUs [5]. Finally, AMBER [6] is another molecular simulation program
featuring NVIDIA GPU acceleration support [7].

Recently, there has been growing interest in employing MD for the multi-scale sim-
ulation of particles suspended in a fluid. In the multi-scale framework, solute particles
are handled according to the conventional MD scheme whereas the solvent is handled
by means of conventional fluid dynamics solvers, such as the popular Lattice Boltzmann
(LB) method. The non-conventional aspect of the multi-scale approach enters in the cou-
pling between scales, an aspect that takes into account the physical level of both the
solute, the solvent and their mutual interaction. In the case of the LB-MD multi-scale
system, such design involves the kinetic level to account for the microdynamics of the
solvent. As a result, the LB-MD method enjoys the sameO(N) complexity of stand-alone
MD for systems with uniform distribution of solute particles.

In the last few years, our group has been devising and deploying multi-scale methods
to study the transport of molecular systems [9] and, more recently, the suspension of red
blood cells, an important topic in computational hemodynamics [10]. The latter consti-
tutes a strategic field since it allows to understand the physical behavior of blood from a
bottom-up standpoint, that is, by following the motion of red blood cells and plasma. The
wealth of information accessible from the multiscale approach and the ensuing biomedi-
cal implications are beyond question.

When simulating large cardiovascular systems, the typical geometrical layout con-
sists of several interconnected blood vessels spreading in space with an irregular pattern.
Consequently, a parallel algorithm for both the LB and MD components needs to account
for the geometric sparsity of the vasculature. The optimal approach to parallelism is to
decompose the computational space into subdomains where the fluid and the particles
are handled on the same footing. In this way, the solution of the fluid-dynamic equa-
tions, the calculation of inter-particles and fluid-particle interactions are mostly local on
the processor responsible for the subdomain.

A possible approach to handle complex cardiovascular systems could be, by analogy
with large scale stand-alone PMD in a simple regular box, to use a decomposition into
box-shaped subdomains. Such approach is highly discouraged since it leads to poorly
balanced subdomains, both in terms of number of active (from the fluid dynamics view-
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Figure 1: Example of domain partitioning as obtained by the SCOTCH software [12]. The domain represents a
bifurcation of a human artery partitioned in 8 (left panel) and 24 (right panel) subdomains.

point) mesh points and average number of red blood cells. The end result would be a
rapid degradation of performances on highly scalable architectures for both the LB and
the MD components. The demand for load-balanced subdomains requires to decompose
the highly irregular geometry by means of more sophisticated partitioning methods.

Several tools are available to achieve high-quality domain decompositions. In partic-
ular, we refer to tools that we customarily employ in our research, such as the METIS [11]
and SCOTCH [12] packages. Both tools do not consider the geometrical shape of the do-
main, but rather employ the LB connectivity graph of the underlying mesh in order to
construct a graph-based partitioning according to some heuristics (e.g., recursive multi-
level bisection). The typical appearance of a domain partitioning is shown in Fig. 1 for
the case of an arterial system subdivided in a small number of domains (8 and 24).

In presence of highly-irregular domains, several critical issues arise related to the cal-
culation of forces and migration of particles among subdomains. For instance, irregular
subdomains imply irregular contact surfaces and, in principle, irregular communication
patterns. The geometrical tests for particle ownerships and exchange of particles between
domains require strategic decisions that affect the efficiency of stand-alone MD as much
as the LB-MD multi-scale method.

The purpose of the present work is to describe a novel PMD method for generic irreg-
ular subdomains that features the same O(N) capability of PMD for regular decomposi-
tions. The proposed method relies on two basic notions, proximity and membership tests.
These tests are used to discriminate particles according to their positions relative to the
geometry of the domains. Proximity tests are used to select the particles that have out-
of-domain interactions and are used to perform inter-domain forces computation. The
membership tests regard the assignment of particles to domains and exploit a tracking
method to associate particles position to the domains’ morphology. Armed with these
tools, the different stages of the PMD algorithm can be derived. Even if our primary
purpose is to define a computational strategy for hemodynamics, we underscore that the
present treatment of irregular domains is usable for more microscopic systems. A typi-
cal scenario of sparsely distributed computational domain is the simulation of atomic or
molecular systems confined in porous environments. Besides that, it is important to re-
alize that our approach is completely independent from the partitioning strategy. As an
example, other hemodynamic codes, as for instance HemeLB [8], even if adopting a dif-

https:/www.cambridge.org/core/terms. https://doi.org/10.4208/cicp.140810.021210a
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 17:53:08, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.4208/cicp.140810.021210a
https:/www.cambridge.org/core


1074 M. Bisson, M. Bernaschi and S. Melchionna / Commun. Comput. Phys., 10 (2011), pp. 1071-1088

ferent partitioning technique (a variant of the so-called Graph Grow Partitioning), could
implement our technique to include the motion of red blood cells.

In this paper we illustrate the general aspects of the PMD and the specifications of
these aspects for our simulations of coupled LB-MD. We focus on simulations of particles
without topological connectivity, as e.g., in the case of molecules. On the other hand,
our treatment can be extended to molecules in irregular domains without major modifi-
cations. In a forthcoming paper we will describe the practical implementation of these
notions for multi-CPU/multi-GPU clusters.

2 Molecular dynamics

Molecular Dynamics is a general term that indicates the numerical technique for the sim-
ulation of a wide range of physical phenomena, from the atomic to the cellular scale, in
presence of interacting particles. On general grounds, we define a system of N particles

by using the set of particle positions R≡{~r}i=1,N and forces F≡{~f }i=1,N acting on them.
Several physical quantities are further associated to the particles, such as their masses,
velocities and other quantities. For instance, in the case of red blood cells, particles are
bodies having a moment of inertia, angular velocity, orientation that interact via mutual
forces and torques.

The physical model considered here is encoded by the interparticle pairwise forces
that depend only on particle positions, such that the force acting on particle i is given by

~fi = ∑
j( 6=i)

~fij,

where ~fij = ~fij(rij) and with rij being the distance between particles i and j. Hereafter

we assume that forces are short-ranged, so that there is a cutoff rmax, such that ~fij =0 for
rij > rmax. Besides the interparticle interactions, an additional force avoids particles from
crossing the confining walls. This is achieved by treating the wall nodes as fictitious fixed
particles, that act on the moving particles via a short-ranged repulsive interaction.

The simulation method consists of a step-by-step numerical solution of the classical
equations of motion. At each step, forces acting on the particles are computed and the
new state of the system is updated by integrating Newton’s law of motion. There are
three main components in a MD program:

1. A model for the interaction among system constituents (atoms, molecules, etc). It
specifies the physical observables by which particles are represented and the force
exercised between pairs.

2. An integrator, which propagates particle positions and velocities from time t to
t+δt. Usually, it is a finite difference scheme which moves trajectories discretely in
time.

3. A statistical ensemble, where physical observables like pressure, temperature or the
number of particles are controlled. This is used at each simulation step to verify that
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the system evolves in a correct way and, at times, to decide when the simulation
ends (for example when a quantity reaches a given threshold).

These steps essentially define the MD simulation. From a computational viewpoint
they specify the calculations executed at each step of the simulation to compute the forces
acting on the particles, to advance their dynamic quantities in time and to decide when
the simulation should end. Clearly, different phenomena may require a different imple-
mentation of these steps.

In the following, we discuss computational problems common to most MD imple-
mentations regardless of the details of the physics involved. We consider an abstract
physical system that can represent the most common models used in MD simulations.
The implementation of the forces and the integration step will be abstracted with generic
function calls. Finally, the simulation is supposed to run as long as the system verifies a
generic property P which represents the statistical ensemble of finite size.

2.1 Parallel MD

The parallelization of Molecular Dynamics requires the partitioning of the simulation
system into subdomains, each assigned to a different processor. Traditionally, two dif-
ferent strategies are used, particle decomposition (PD) and domain decomposition (DD).
In the first strategy, particles are assigned to processors according to an ordering index
(given N particles and K processors, each processor receives N/K particles, regardless of
their position) whereas in the second strategy the assignment is based on the position of
particles. In large scale systems DD provides a better solution since it ensures a high de-
gree of local operations on each processor. The reason is apparent: particles assigned to a
processor are spatially close to each other and thus most of pair interactions are intrado-
main. In the case of PD, on the other hand, spatial locality of particles is not guaranteed.
In the case of DD, particle motion does not affect the average number of local interact-
ing pairs while can have a strong impact in case of PD. Lastly, another advantage of DD
is to keep local any operation between different physical methods coupled in the same
simulation. This is the case of multi-scale simulations where particles interact with an
underlying fluid (or solvent) whose dynamics is described, for instance, by means of the
Lattice Boltzmann method. In the following we consider DD as the reference partitioning
scheme and describe some critical issues that arise in presence of irregular subdomains
along with our proposal to overcome them. The end result is that parallel MD simula-
tions can run with high efficiency also in presence of generic partitioning.

The parallelization of a MD code, while allowing to scale the size of the system by
using multiple processors, requires the solution of, at least, two problems related to in-
terdomain pairs and particle migration.

Interdomain pairs are pairs of particles located in different subdomains (processors)
at distance smaller than the cutoff rmax. In order to compute interdomain forces, a pro-
cessor requires to fetch information about all external particles that are close enough to
interact with its own particles. Similarly, each processor must identify the set of particles
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in its subdomain that can interact with those belonging to neighboring processors, and
exchange such set. We identify the sequence of operations required to handle interdo-
main pairs as ”frontier management”.

In a similar way, once particle positions are updated, particles that depart from a
subdomain need to be sent to the processors in charge of the destination subdomains.
This requires that processors identify their own departing particles and exchange them
with neighbors. The sequence of operations that handle particle migration is identified
as ”migration management”.

We define the simulation system as S=(D,R0,P,rmax) where D is the spatial domain
in which particles move, R0 is the set of particles positions at time t=0, P={p1,··· ,pn} is a
set of processors and rmax is the cutoff distance for the forces. The parallel MD code can be
represented as a couple of algorithms, (ADEC,APMD). ADEC is a serial algorithm executed
only once, before the simulation starts, to perform the domain decomposition and to
identify the subdomains containing putative interacting particles. APMD is a parallel
algorithm executed by every processor to perform the MD simulation. ADEC takes as
input the system S and produces a decomposition:

{(

D1,R0
1,N1

)

,
(

D2,R0
2,N2

)

,··· ,(Dn,R0
n,Nn)

}

,

where D1,··· ,Dn and R0
1,··· ,R0

n are partitions of the spatial domain D and the initial posi-
tions R0, respectively, and N1,··· ,Nn is a subset of P. Di is the spatial subdomain assigned
to processor pi, R0

i is the set of particles with initial position inside Di and Ni is the set of
processors whose subdomains are at distance smaller than rmax from any point of Di.

In our LB-MD simulations the domain D is identified by the underlying LB mesh
used for the simulation of the solute surrounding the particles. The mesh has an irreg-
ular shape (embedded in a much larger bounding box) and typically covers the extension
of multiple intersecting vessels in extended hemodynamics simulations. Let us define a
mesh by the set of cartesian pointsM≡{n}⊂N

3. The spatial domain D in which particles
move is the set of points at distance at most 0.5 (the mesh spacing step is conventionally
chosen as 1) from a point in M. What we formalized as ADEC, is implemented as fol-
lows. In the first step, a graph partitioning tool (e.g., SCOTCH [12]) is run on the mesh
M in order to produce a partition M1,··· ,Mn. The set of particles is then divided by
assigning to partition i all particles in the subdomain identified byMi (more about that
later in this section). As a final step, we need to identify the set Ni, a non-trivial task that
in principle requires an awkward number of geometrical tests. The problem is that, with
subdomains of arbitrary shape, the particles in two subdomains may be in interaction
even if their surfaces are not in direct contact (for instance one can imagine two subdo-
mains in 2D separated by a long thin stretch of a third subdomain). A possible solution,
specific to our case, could be to leverage the granularity of each subdomain and compute
the relative distance between cartesian mesh points belonging to all subdomains. These
tests require to broadcast all mesh points among processors and perform operations with
a computational cost of O(n2), with n the number of mesh points. However, we have
devised a method to determine domains in interaction based on a reliable, yet simple
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Algorithm 1 Identification of subdomains within the cutoff distance.

Require: rmax

Require: xm, xM, ym, yM, zm, zM

1: Ni←∅

2: Gather(x[],xm−rmax,X[],xM +rmax)
3: Gather(y[],ym−rmax,Y[],yM +rmax)
4: Gather(z[],zm−rmax,Z[],zM +rmax)
5: for j=1 to n do

6: if j== i continue
7: if (xM < x[j]) || (xm >X[j]) continue

8: if (yM <y[j]) || (ym >Y[j]) continue

9: if (zM < z[j]) || (zm >Z[j]) continue

10: Ni←Ni∪{j}
11: end for

criterion, that does not require such massive circulation of data among processors and
can be performed in full generality. In Algorithm 1, we describe the operational pro-
cedure executed by processor pi to construct the set Ni in the practical implementation
of the method. We assume that every processor can compute the bounding box of its
subdomain. This substep requires just a single scan of the meshMi.

At first, each processor initializes the set Ni and broadcasts to the other processors
the bounding box of its domain augmented by the cutoff distance rmax (lines 1-4). As a
result of the gathering function, the minimum and maximum coordinates of the boxes
are stored in vectors indexed by the processor id, named with lowercase and uppercase
letters, respectively. Now, processor pi loops through the vectors to find the boxes that
have a non-empty intersection with its own, non-augmented, box. The processor ids
corresponding to the indices of the intersecting boxes are then added to the set Ni. Al-
though this procedure may generate a superset of the actual neighbors, we consider it an
acceptable tradeoff given the limited computational effort it requires.

Once the initial stage of the domain decomposition and identification of interacting
subdomains is completed, the parallel algorithm APMD is executed by every processor pi

on the set (Di,R
0
i ,Ni).

Algorithm 2 shows the pseudocode for APMD that implements the MD method on
the subdomain Di. The first half of the loop implements frontier management (lines 3-
15). In the first part (lines 3-9) particles at a distance less than rmax from the surface of
Di, S(Di), are selected and transmitted to the neighboring processors (line 9). The second
part handles external particles received from neighbors (lines 10 to 15). For each received
particle, its distance from Di is first checked (line 12). If it is greater than rmax the particle
does not interact with the subdomain and is discarded (line 13). After this check, set E
contains the received particles that putatively interact with the internal ones.

Computation of forces and integration of Newton’s equation of motion are performed
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Algorithm 2 Parallel MD algorithm.

Require: rmax, (Di,R
0
i ,Ni)

1: t←0
2: while not P do

3: S←∅

4: for each −→r in Rt
i do

5: if d(−→r ,S(Di))≤ rmax then

6: S←S∪{−→r }
7: end if

8: end for

9: S→mcast(Ni)
10: E← recv(Ni)
11: for each −→r in E do

12: if d(−→r ,S(Di))> rmax then

13: E←E\{−→r }
14: end if
15: end for

16: RUP
i ←ForcesAndIntegrate(Rt

i ,E)
17: S←∅

18: for each −→r in RUP
i do

19: if −→r /∈Di then

20: RUP
i ←RUP

i \{
−→r }

21: S←S∪{−→r }
22: end if

23: end for

24: S→mcast(Ni)
25: E← recv(Ni)
26: for each −→r in E do

27: if −→r ∈Di then

28: RUP
i ←RUP

i ∪{
−→r }

29: end if

30: end for

31: Rt+1
i ←RUP

i
32: t← t+1
33: end while

by the function call ForcesAndIntegrate(Rt
i ,E) that returns the set of updated particle po-

sitions RUP
i (line 16). Although the actual implementation depends on the particular

physical model under consideration, particles within set E should only be considered
for their influence over internal particles, i.e., interaction pairs should be searched in
Rt

i×(Rt
i∪E). After the position of internal particles has been updated, particle migration
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is handled in the second half of the main loop (lines 17 to 32). All particles in the updated
set RUP

i that moved outside Di are removed from the set (line 20), collected together (line
21) and then transmitted to the neighboring processors for possible admission (line 24).
Lastly, particles received from neighboring processors (line 25) are scanned to identify
new entries and each particle that moved inside Di is added to the set RUP

i (line 28). Fi-

nally RUP
i is assigned to Rt+1

i and a new iteration starts.
The efficiency of PMD is strongly influenced by the frontier and migration manage-

ment (lines 4-15 and 18-30) that can be measured by looking at the number of executions
of two basic tests on particles:

• Proximity test: d(−→r ,S(Di))≤
? rmax

• Membership test: −→r ∈? Di

These tests, in turn, depend heavily on the representation of the domain and usually
the efficiency of their implementation is tied to the ”degree” of regularity of the spatial
domain. For regular subdomains, like cubes or parallelepipeds, these tests can be eas-
ily implemented as computations of distances between points and planes, or, in case of
axes-alignment, as simple differences. However, when there is no regularity, these tests
can become time consuming and an effort to limit the number of executions is highly
desirable. For example, Algorithm 2 is quite inefficient since it performs the tests on all
particles at every iteration.

When the domain is represented by a Cartesian meshM, the membership test can be
written as:

−→r ∈Di⇐⇒ round(−→r )∈Mi ,

where round(−→r ) represents the vector whose components are obtained by rounding to
the nearest integer the real components of vector −→r . At first sight, due to the irregu-
larity of the mesh, this operation requires scanning all mesh points in Mi with a lin-
ear search method. Actually, an efficient search can be performed by using a binary
search algorithm or by a hash table. In our case, we store the mesh as a compact, one-
dimensional array and sort the mesh points in ascending order according to a 1D-index
equal to k∗nx∗ny+ j∗nx+i, where nx,ny,nz define the bounding box. The binary search
has logarithmic cost so that the membership test is much more affordable from the com-
putational viewpoint. For what concerns the proximity test, it can be viewed as another
membership test run on the subset ofMi that covers the frontier region of Di.

Another crucial issue that influences the efficiency is the communication scheme used
to exchange particles among processors in both the frontier and migration management
steps. For these steps, there are two possibilities:

1. multicast transmissions;

2. point-to-point transmissions.

In the multicast scheme (used in Algorithm 2) each processor sends groups of particles
to all neighbor processors whereas, in the point-to-point scheme, a processor sends to
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each neighbor only its particles that interact with those in the domain of the receiver.
From the communication viewpoint, the latter has the clear advantage of imposing much
less overhead on the network since processors receive only data strictly required. Nev-
ertheless, to implement such a communication scheme it is necessary for the processors
to associate frontier and migrated particles to external domains. This requires multiple
executions of proximity and membership tests for each neighboring subdomain which,
in turn, requires knowledge of the geometry of the neighbors, typically consisting of a
region of size rmax. This operation results in an increase of memory requirements per
processor and, more importantly, in a greater number of tests performed per particle.

In the multicast approach, as shown in Algorithm 2, processors do not need to know
the geometry of neighboring subdomains but received particles must be processed to
identify those that are of interest for the receiver.

To summarize, the differences between the two approaches are:

1. multicast: higher network overhead, only-local geometry required, simple test im-
plementation;

2. point-to-point: lower network overhead, non-local geometry handling, complex
test implementation.

These are general considerations and there may be exceptions. For instance, in the most
favorable case of a regular Cartesian decomposition, each processor easily identifies the
subdomains to which a given particle needs to be sent by using only its position and
the global decomposition rules. For the regular case it is possible to combine the advan-
tages of both approaches, point-to-point transmissions by using only local geometry and
efficient tests implementations.

Algorithm 3 Frontier management algorithm according to the point-to-point model.

1: Sj←∅, ∀j∈Ni

2: for each −→r in Rt
i do

3: for each j in Ni do

4: if d(−→r ,S(Dj))≤ rmax then

5: Sj←Sj∪{
−→r }

6: end if

7: end for

8: end for

9: for each j in Ni do

10: Sj→ send(j)
11: end for

12: for each j in Ni do

13: Ej← recv(j)
14: end for

15: E←
⋃

j∈Ni
Ej
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Algorithm 4 Migration management algorithm according to the point-to-point model.

1: Sj←∅, ∀j∈Ni

2: for each −→r in RUP
i do

3: if −→r /∈Di then

4: for each j in Ni do
5: if −→r ∈Dj then

6: Sj←Sj∪{
−→r }

7: RUP
i ←RUP

i \{
−→r }

8: end if

9: end for

10: end if

11: end for

12: for each j in Ni do

13: Sj→ send(j)
14: end for

15: for each j in Ni do
16: Ej← recv(j)
17: end for

18: Rt+1←RUP
i ∪

⋃

j∈Ni
Ej

Algorithms 3 and 4 implement the frontier and migration management sections of
Algorithm 2 for the point-to-point solution.

In the following section we introduce a domain decomposition scheme that, applied
to the subdomains, allows to substantially reduce the number of proximity and member-
ship tests performed at each iteration.

2.2 Cell tiling

We present now a general technique to reduce the number of proximity and membership
tests performed at each iteration, that does not depend on the representation and shape
of the subdomains. Moreover, this approach allows to implement proximity tests as table
lookups at the cost of a limited overestimation of the number of frontier particles.

As anticipated, our simulations make use of subdomains of arbitrarily complex ge-
ometry and a decomposition algorithm that is executed only once, before the simulation
starts. It produces subdomains that require a new formulation of the proximity tests.
Due to the lack of regularity in the subdomains, we employ the multicast scheme for the
communications and design a more general scheme for the proximity and membership
tests.

The basic idea is to approximate the critical regions around the contact surfaces of
the subdomains in such a way that is computationally simple to find a superset of the
particles located inside those regions and to apply the tests only to those particles. This
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Figure 2: Initially the domain decomposition algorithm ADEC is run on the simulation system to partition the
domain in subdomains. Each processor then executes the tiling algorithm ALDEC on its subdomain and, finally,
the iterative phase of the simulation starts by running the parallel MD algorithm APMD.

is possible by covering each subdomain with identical box-shaped cells. The cells tile a
larger region as compared to the original subdomain extension. The tiling is computed
by the algorithm ALDEC (Fig. 2) that processor p runs on its subdomain Di to produce the
tiling (C, Ic,Fc,Ec), where C={C1,··· ,Ck} is the associated set of cells, Ic⊆ [k], Fc⊆ [k] and
Ec⊂ [k] represent, respectively, the set of internal, frontier and external cells. Sets Ic, Fc

and Ec form a partitioning of C.
The tiling verifies the following properties:

1. Every point of Di is within either an internal or a frontier cell.

2. Internal cells contain only points of Di at distance greater than rmax from the domain boundary.

3. Frontier cells contain all points of Di at distance less than or equal to rmax from the domain

boundary.

4. External cells contain only points outside Di.

5. All external points at distance less than or equal to rmax from the domain boundary lie within

either an external or a frontier cell.

The tiling is built in the following way. The bounding box of Di, having size nx×ny×nz,
is initially divided in mx×my×mz identical, regular cells, such that

mx =
⌊ nx

rmax

⌋

, my =
⌊ ny

rmax

⌋

, mz =
⌊ nz

rmax

⌋

.

As a consequence, all cells have the same size cx×cy×cz, that verifies the following con-
ditions

cx =
nx

mx
≥ rmax, cy =

ny

my
≥ rmax, cz =

nz

mz
≥ rmax.
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As a result, the bounding box is divided in the maximum number of cells whose size is
greater or equal to rmax in each direction. The pool of cells is then augmented by includ-
ing a layer of cells external to the bounding box (Fig. 3(a)) and to each cell is assigned a
unique identifier. This pool of cells forms the initial set C from which sets Ic, Fc and Ec

are subsequently built. Initially, all cells containing at least one point of Di are selected
(Fig. 3(b)). From those cells, sets Fc and Ic are built by assigning to Fc the cells that con-
tain at least one point at distance less than or equal to rmax from the frontier of Di, and
to Ic the remaining set (Fig. 3(c)). Finally, the unselected cells of C are scanned, assign-
ing to Ec the cells with a neighbor in Fc. The remaining cells are then discarded from
C (Fig. 3(d)). There are a number of issues in the process of building Ec that are worth
mentioning. Choosing external cells based on the proximity of frontier cells may lead
to picking cells that contain only external points at distance greater than rmax from Di.
Nevertheless, this construction guarantees that every frontier cell has all 27 neighbors in
C. Moreover, when building Ec, the case of periodic boundary conditions needs to be
properly managed while searching for neighboring frontier cells. In case of a periodic
domain, for each periodic dimension, if the subdomain fully extends along that direc-
tion, then the searched neighborhood must account for the periodicity. Fig. 4 shows an
example of tiling of a subdomain with periodicity along the horizontal axis.

Algorithms 5 and 6 show two pseudocodes for frontier and migration management
that rely on the subdomain tiling.

We assume that Algorithm 5 receives the particles binned into the cells. In the first two
lines of Algorithm 5 frontier particles are sent (in multicast) to neighboring processors.
This is done by simply transmitting all particles inside frontier cells. External particles
received from neighbors must be checked for putative interdomain interacting pairs. For
each received particle the index of the containing cell is computed (line 5). If it identifies
an external or a frontier cell (line 6) then the particle is inserted into the cell (line 7),
otherwise it is ignored.

The proximity tests required to spot frontier particles that need to be transmitted are

Algorithm 5 Frontier management using the subdomain tiling.

Require: Ni

Require: C, Ic,Fc,Ec

1: S←
⋃

cid∈Fc
Ccid

2: S→mcast(Ni)
3: E← recv(Ni)
4: for each −→r in E do

5: cid← coo2cell(−→r )
6: if cid∈Fc∪Ec then

7: Ccid←Ccid∪{
−→r }

8: end if

9: end for
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(a) Initial set C (b) Ic∪Fc
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(c) Ic and Fc (d) Ic, Fc, Ec and the final C set

Figure 3: Example of the tiling of a 2D subdomain, as irregular as presenting an internal hole. The continuous
line represents the perimeter of the subdomain and the dashed lines mark the internal and external regions at
distance less than or equal rmax to the perimeter.

��

�

�

Figure 4: Example of the tiling of a subdomain taking into account periodic boundary conditions. In this case
the selection of external cells must follow the periodicity.
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Algorithm 6 Migration management using the subdomain tiling.

Require: Di, Ni

Require: C, Ic,Fc,Ec

1: S←
⋃

cid∈Ec
Ccid

2: Ccid←∅ , ∀cid∈Ec

3: for each cid in Fc do

4: for each −→r in Ccid do

5: if −→r /∈Di then

6: S←S∪{−→r }
7: Ccid←Ccid\{

−→r }
8: end if
9: end for

10: end for

11: S→mcast(Ni)
12: E← recv(Ni)
13: for each −→r in E do

14: cid← coo2cell(−→r )
15: if cid∈Fc then

16: if −→r ∈Di then

17: Ccid←Ccid∪{
−→r }

18: end if

19: end if
20: end for

replaced by the selection of particles in frontier cells. Property 3 of the tiling procedure
ensures that all internal particles potentially involved in interdomain interacting pairs
are transmitted. Since frontier cells cover a superset of the internal frontier, some inter-
nal particles that could never interact with neighboring domains are also transmitted,
resulting in an communication overhead that is expected to be limited. On the receiving
side, proximity tests are performed by checking that received particles are located inside
external and frontier cells. For property 4, all external particles potentially involved in
interdomain interacting pairs are retained. As in the previous case, since external and
frontier cells together represent a superset of the external frontier, some external parti-
cles that do not interact with the subdomain are kept. This may result also in a limited
computation overhead when searching external cells for interacting pairs.

There may be cases in which either the communication or the computation overhead
becomes too high. However, the communication overhead can be eliminated by per-
forming the proximity test on frontier particles before the transmission. As per the com-
putation overhead, it can be avoided by performing the proximity test on the subset of
the received particles that lie within external or frontier cells. In either cases the test is
performed only on a limited superset of the internal and external particles that can be
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involved in interdomain interacting pairs.

After frontier particles have been exchanged, forces can be computed and particles
positions updated. The tiling allows to perform these operations by using a link-list al-
gorithm [2]. The update can be done by scanning all internal cells and, for each particle
in each cell, by searching for all interacting particles inside the 27 neighboring cells. The
procedure is similar for frontier cells, with the difference that interacting pairs must be
searched only for elements belonging to the domain. This distinction usually does not re-
quire membership tests. For example, if cells are implemented as lists, then it is sufficient
to maintain two distinct lists for internal and external particles in each frontier cell.

After positions have been updated, Algorithm 6 is executed to handle particles migra-
tion. We assume that the update algorithm returns the cells containing only the updated
internal particles without the external ones (that can be safely discarded after forces have
been computed). In the first part of the algorithm, particles that departed from Di are
searched (lines 1 to 10). From property 5, it follows that all particles that moved to ex-
ternal cells have left Di, so that they can be added to set S and removed from the cells
(lines 1 and 2). Within the frontier cells, particles that actually departed from Di must
be found. This step requires the execution of the membership test on all particles inside
frontier cells (lines 3 to 10). Clearly, for property 2, internal cells can be ignored. At this
point, particles that left Di are sent in multicast to neighboring processors (line 11). In
the second part of the algorithm, particles that left neighboring subdomains are received
(line 12) and searched for new entries (lines 13 to 20). For each received particle, the index
of the containing cell is first computed (line 14). If it is an external cell, then the particle
is ignored because it can not belong to Di. If it is a frontier cell then the membership
test is performed (line 16). If it enters Di, it is added to the cell (line 17), otherwise it is
discarded.

With this procedure, we limit the communication overhead in frontier and migration
management by having processors exchange a limited superset of the particles involved
in those operations. To assess the advantage of our solution, we run a parallel simulation
on an irregular domain and applied the tiling to the resulting subdomains. We measured
the amount of data transferred to exchange particles during both frontier and migration
management. In Table 1 we report the average number of particles sent by processors
compared to the total number of particles in their subdomains. With 8 subdomains, pro-
cessors exchange only 5.4% of the their data, resulting in a bandwidth saving of ∼ 95%.
In our tests, the percentage of transferred data increases with the number of processors
up to 10.9%, with 24 processors.

From the computational viewpoint, frontier management requires only table lookups
that are performed on particles received by neighboring processors. For what concerns
migration management, it requires both table lookups and membership tests. Before
data exchange, particles to be sent are found by applying a membership test for each
particle in frontier cells. After the exchange, a table lookup is performed on each particle
received and, only to those located in a frontier cell, is applied the membership test. Table
2 shows the average number of cells resulting from the tiling procedure. We used the
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Table 1: Number of particles transferred vs total number of particles per processor, for frontier and migration
management using the cell tiling. The system is an irregular domain 342×228×600 with 500000 particles evenly
distributed partitioned in 8, 16 and 24 subdomains. Data is averaged over 1000 iterations.

tasks sent particles total particles sent %
8 3434 62500 5.4%

16 2708 31250 8.6%
24 2300 20832 10.9%

Table 2: Average number of internal, frontier and external cells, per processor, with an irregular domain
342×228×600 partitioned in 8, 16 and 24 subdomains. The upper part contains the number of cells obtained
with rmax =0.81, corresponding to a much finer cell tiling, while the lower part is obtained with rmax =1.62.

tasks internal frontier external
8 891270 (77%) 170947 (15%) 91140 (8%)
16 429835 (72%) 107198 (18%) 58060 (10%)
24 277584 (69%) 82246 (20%) 45054 (11%)

8 95613 (60%) 41297 (26%) 23498 (14%)
16 44103 (52%) 25659 (30%) 15072 (18%)
24 27316 (46%) 19485 (34%) 11719 (20%)

same domain of Table 1, partitioned in 8, 16 and 24 subdomains, tiled with two different
cutoffs. In both cases the percentage of frontier cells that contains particles to which tests
are applied, is quite stable with any number of processors.

3 Conclusions

To the best of our knowledge, the present work is the first effort to define a general
method to perform parallel Molecular Dynamics in presence of irregular domains. The
end result is a scheme that features O(N) complexity together with a general way to
handle particle migration and computation of forces among irregular subdomains. The
presented method is implemented in a multi-GPU code, by using CUDA and MPI pro-
gramming paradigms, and integrated into the package MUPHY, one of the first examples
of high performance parallel code for the simulation of multi-physics/scale bio-fluidic
phenomena. Details of the implementation and the corresponding results will be the
subject of a forthcoming paper.
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