FREQUENCY OF OSCILLATIONS OF AN ERROR
TERM RELATED TO THE EULER FUNCTION

Y.-K. LAU anp Y.-F. S. PETERMANN

Abstract.  Let ¢ be the Euler function, and consider the error term H in
the asymptotic formula

M:%X+H(x).
i

n=sx

It is proved that, for any fixed real number A, there are at least C,T+ O(1)
integers ne[l, T such that (H(n) — AXH(n+1)—A)<0, where 0<C, <1 is a
constant depending on 4.

Let ¢ be the Euler function (i.e., ¢(n) denotes the number of integers not
exceeding n which are relatively prime to n), and define

H(x)= ¥ M—%x.

n<x N

In [2], it is shown that H(x) has a large number (of order T') of sign changes
on integers n<T. In this note, we prove that this phenomenon occurs as well
for the changes in sign of H,(n) = H(n) — A, where A is any fixed real number.
The value 4 =3/n* plays a special role. It is indeed known that the distri-
bution function A of the values taken by H;,,2 at integers is symmetric [3],
whence in particular A(0) = 1/2, so one would expect the number of changes
in sign of H,(n) to be particularly important when 4 = 3/n°. But the slightly
surprising fact is that the only value of 4 for which a straightforward modifi-
cation of the argument in [2] is inefficient is precisely 4 = 3/7°.

THEOREM. Let A be a fixed number. For all sufficiently large T,
{ne(l, T: (H(n) — AY(H(n + 1) — A) < 0}|= C4T,

where |{---}| denotes the cardinality of the set and 0<C,4<1 is a constant
(depending on A).

We separate the proof into three cases: (i) 4<3/n’% (i) 4 =3/n’ and
(iii) 4>3/n". Cases (i) and (iii) can be treated as in [2], §3. For case (i)
replace  D(0) in the  argument there by D(A), where
D(u) = lim,_,.,. x”'[{n<x: H(n)<u}|, and note that, if H(n)<A and H(m)< A
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for all integral me[n, n+ 2h], then, for any real te[n, n+ /), we have

t+h

J H(u)du 2(%—A>h,
T 2

t

as soon as £ is large enough. This comes from the fact that H(x) is a straight
line of slope —6/7> in every interval [m, m + 1) when m is an integer. For case
(ii1) consider instead the proportion (1 — D(A4)) of integers n for which H(n) > 4,
and similarly note that, if H(r)> A and H(m)> A for all integral me([n, n+ 2h),
then, for any real t€[n, n+ h), we have

t+h

J H(u)du 2<A —i,)ﬁ,
)2

t

as soon as 4 is large enough. It is now clear why this method does not work
when 4 =3/7°.

From [1] and [3], we know that the distribution function D(u) exists,
D@3/m*) =1/2 and D(u) is a continuous function of u. Hence, if C is a con-
stant, then for all sufficiently large 7 we have

T
HT<n<2T-C: H(n)ss/n2}|>§8~. (1)

Let 4 be a large constant, which will be chosen later, and assume that 7' is
large enough to satisfy (1) for C=104. We divide the interval [7,2T) into
divisions [T, T+ h), [T+h, T+2h),... of length h, discarding the remaining
interval of length T —[T/hlh, and group every 8 divisions to form an interval
I, discarding the last [77/h] — 8[T/(84)] divisions. Then these newly formed inter-
vals I cover the interval [T, 27 — 84), and their number is [T/(8h)] < T/(8%). For
convenience, we use the symbol . 7 to designate a subinterval of / consisting of
the initial 6 divisions. We define

< ={I. Hmn)<3/n" forsome integerne s},

and, for each 7 in #, we choose one associated integer ng = ny(I) in . with
H(no)<3/n” (for instance the smallest such integer). By (1), if T is large
enough, we have

_(3T/8—Q2h+1)(T/8h) _ T(h-1)
- 6h+ 1 T Sh(6h+ 1)

]

so that | |=T/(50h) if h=29. From the continuity of D(u), we can find £ >0
such that the set §= {n<2T:3/n° —e<H(n)<3/n"} has cardinality |S|<T/
200. Consider J, = {Ie v : |InS|<h/2}. Then

h T
- \J=s Y [InS|s|S|=s—.
2 Te \J) 200
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From this, we have |J;|= T/(100/). Then we can proceed with the argument
in [2] on the collection J,. Define

J> = {IeJ,: Hm)<3/n’ for all integers me [ny, no + 2h)}.

We have, when £ is a sufficiently large constant,

o+ e p 2 2T ji+h 2

2]3
1le%$ h) j J H(u)du | di=< j JH(u)du dr.
leJ>
ny t T 1

The first inequality comes from the facts that /e J, has at most 4/2 elements
in S, that H(m)<3/n’ —¢ if mesS, and that H(x) is a straight line of slope
—6/n” in every interval [m, m+ 1) when m is an integer. But the last integral

at most KTh for some constant K by [2, Main Lemma). Thus, when 4 is a
sufficiently large constant,

T 16KT_ T
— =

AVAES =
i\ 100k &K 200k

In order to conclude the proof of the theorem, it is now of course sufficient to
invoke the fact that H(n)#3/n” when n is an integer. But, in view of the other
error term £(x) in the remark just below for which the equivalent property is
not easy to establish (and may not be true), we may also argue that, by contin-
uity of the distribution function D, if T is large enough then the set of integers
n<2T for which H(n)=3/n"is less than T/(400A).

REMARK. This method can be applied to the error term

2
O-—(n—)~lx+flogx
6 2

E)= X

n=x N

associated with the sum-of-divisors function o as well. In this case, the critical
value for which the argument of case (ii) applies is 4 = °/12.
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