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S U M M A R Y
In this paper, we propose a novel theoretical model for the dielectric response of variably satu-
rated porous media. The model is first constructed for fully saturated systems as a combination
of the well-established Hashin and Shtrikman bounds and Archie’s first law. One of the key
advantages of the new constitutive model is that it explains both electrical conductivity—when
surface conductivity is small and negligible—and permittivity using the same parametrization.
The model for partially saturated media is derived as an extension of the fully saturated model,
where the permittivity of the pore space is obtained as a combination of the permittivity of the
aqueous and non-aqueous phases. Model parameters have a well-defined physical meaning,
can be independently measured, and can be used to characterize the pore-scale geometrical
features of the medium. Both the fully and the partially saturated models are successfully tested
against measured values of relative permittivity for a wide range of porous media and saturat-
ing fluids. The model is also compared against existing models using the same parametrization,
showing better agreement with the data when all the parameters are independently estimated.
An example is also presented to demonstrate how the model can be used to predict the relative
permittivity when only electrical conductivity is measured, or vice versa.

Key words: Electrical properties; Hydrogeophysics; Microstructures; Permeability and
porosity.

1 I N T RO D U C T I O N

Many problems of environmental and geological interest are linked
to the presence and flow of water and other fluids in porous media.
The effective use of geophysical techniques to approach these prob-
lems is dependent on the availability of reliable constitutive laws.
These models typically link the distribution of fluids in the pores
to the bulk physical properties of the medium as measured at the
field or laboratory scale. In recent years, electromagnetic methods,
such as ground penetrating radar (GPR), time domain reflectome-
try (TDR) and electrical resistivity tomography (ERT) have been
widely utilized in hydrogeology, civil engineering, etc. (Vereecken
et al. 2002, 2005, 2006; Butler 2005; Rubin & Hubbard 2005). In
these applications, the electromagnetic properties inferred at the
field-scale are translated, via constitutive models, into quantities of
practical interest, such as moisture content, solute concentration,
petrophysical and geotechnical properties of the porous medium.
Constitutive laws are often empirical equations recovered from fit-
ting experimental data, for example, the well-known Topp et al.
(1980) model. An alternative approach consists of using weighted
averages of the electromagnetic properties of the constituents, such

as the ‘Lichteneker–Rother (LR) equation’ (Guéguen & Palciauskas
1994):

εα
b =

n∑
i=1

φiε
α
i , (1)

where εb is the bulk relative permittivity of the porous medium,
ϕi and εi are, respectively, the volume fraction and the (complex)
relative permittivity of the ith phase, n is the total number of phases
of which the medium is composed and the exponent α is a fitting
parameter (–1 ≤ α ≤ 1). For α = 0.5, eq. (1) reduces to the well-
known Complex Refractive Index Model (CRIM) (Birchak et al.
1974; Wharton et al. 1980; Dobson et al. 1985; Heimovaara et al.
1994; Rubin & Hubbard 2005). The main advantages of the LR
equation are its simplicity and the presence of fitting parameters
(εs and α) that help to adequately match the experimental data. The
LR mixing model (eq. 1) and particularly the CRIM are not purely
arbitrary fitting relationships, but have also some physical justifica-
tions (Birchak et al. 1974; Zackri et al. 1998). Model parameters
are however not clearly connected to the petrophysical properties
of the medium, and their estimation might be difficult (Brovelli
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& Cassiani 2008). More theoretically sound are methods based
for example on effective medium or mean-field approximations
(e.g. Wagner 1924; Bergman 1978; Sihvola & Kong 1988, 1989;
Friedman 1997; Cosenza et al. 2003) and the volume averaging ap-
proach (e.g. Pride 1994). For example, Friedman (1998) proposed
a constitutive relationship for unsaturated soils as a linear combina-
tion of two effective medium models. The constitutive equation of
Friedman (1998) produces a reasonably good data fit for a number
of cases (e.g. Miyamoto et al. 2005; Blonquist et al. 2006; Chen
& Or 2006). More recently, the volume averaging approach was
used by Linde et al. (2006) to further extend the expression of Pride
(1994) for the dielectric response of soils, by accounting for the ef-
fect of variable water saturation. Although a convincing validation
of the model of Linde et al. (2006) against experimental data is
still missing, the proposed relationship is particularly attractive in
that it models electrical conductivity and dielectric properties using
the same parametrization, namely the electrical formation factor
F, the cementation factor m and the saturation exponent n. These
parameters depend on the geometrical properties of the pore-space
geometry (e.g. Revil & Glover 1998; Revil & Cathles 1999). It
can therefore be expected that models based on these parameters
might provide additional information regarding the structure and
topology of the porous medium. The impact of the pore-scale geo-
metrical properties on both the electrical and dielectrical response
of the porous medium has been investigated (Madden & Williams
1993; Jones & Friedman 2000; Robinson & Friedman 2001;
Friedman & Robinson 2002). All these studies concluded that
changes in particle distribution and size modify the tortuosity and
connectivity of the pore-space and therefore the bulk response of the
medium. It is also observed that these changes cannot be accounted
for by porosity variations only.

The aim of this paper is to develop a new constitutive law for
the electromagnetic response of saturated and unsaturated porous
media, including the effect of the pore-scale geometrical features
of the composite. The model is based on a linear interpolation
of analytical and exact upper and lower bounds. The model in-
volves only parameters that can be measured independently and are
related to the description of other physical properties of a multi-
phase porous medium such as electrical conductivity. The proposed
relationship is subsequently tested using experimental data taken
from the literature, and model predictions in terms of the micro-
geometrical parameters (Archie’s cementation factor and saturation
exponent) are compared with those obtained from alternative consti-
tutive models adopting the same parametrization and with literature
values.

2 T H E O R E T I C A L B A C KG RO U N D

The use of analytical expressions suitable to define bounds for cer-
tain properties of a mixture has been studied extensively (Hale
1976; Milton 1981; Tripp et al. 1998, and references therein). The
key advantage of bounds is that they provide the exact possible
range of variation for the property of interest, given the available
information. For example, the Hashin & Shtrikman (1962) bounds
that will be discussed and used in the following, provide the nar-
rowest possible range without information regarding the topology
and distribution of the phases, whereas the bounds proposed by
Miller (1969) incorporate the spatial geometrical information in the
form of a three-point correlation function. The Hashin & Shtrikman
(1962) bounds have been used in a variety of application to estimate
transport coefficients. Examples of successful relevant applications

are the prediction of the electrical conductivity of partially molten
earth mantle (e.g. Waff 1974; Park & Ducea 2003; Park 2004),
and the mechanical properties of soils and granular mixtures (e.g.
Watt & Peselnick 1980). In this context, it has been shown that a
combination of the upper and lower bounds can be used to estimate
the expected bulk properties of the mixture, for example, the elas-
tic constants (Hill 1952; Thomsen 1972; Watt & Peselnick 1980;
Berryman 2005). In this work, we follow a similar strategy but,
rather than taking the arithmetic or geometric mean of the upper and
lower bounds—as done in some of the works mentioned above—we
compute the bulk response of the mixture as a weighted average of
the upper and lower bound. The weighting factor explicitly incor-
porates some information about the geometry and topology of the
pore structure, and consequently we expect an improved estimate
of the bulk transport coefficient.

2.1 Relationship between bulk electrical conductivity
and permittivity of a porous medium

Due to the formal equivalence of the governing macroscale equa-
tions, transport processes in porous media can be modelled using
a unified treatment (Berryman 1992, 2005; Pride 1994; Revil &
Linde 2006). For example, the thermal conductivity λ, the electrical
permittivity ε (under quasi-static conditions) and the low frequency
electrical conductivity σ are described by similar boundary-value
problems (Guéguen & Palciauskas 1994; Pride 1994):

∇ · (λ∇T ) = 0 (2)

∇ · (ε∇V ) = 0 (3)

∇ · (σ∇V ) = 0, (4)

where V is the electric potential and T the temperature. Indeed,
while the boundary-value problem is identical in the case of ther-
mal conductivity and permittivity (Revil 2000; Berryman 2005),
the additional contribution to the total conductivity of the excess
charge at the interface between water and grain minerals further
complicates the problem for the effective electrical conductivity
(Brovelli et al. 2005). The surface conductivity is mainly due to
impurities (clays and oxides) lining the pores and to the presence of
electrically charged complexes on the surface of the silica grains,
and ultimately to excess of charge resulting from the electrical dou-
ble layer at the solid–water interface. This additional contribution is
usually quantified in terms of the specific surface conductivity �s

(Revil and Glover 1998; Brovelli et al. 2005).
The dielectric constant is in the high frequency limit less sen-

sitive to interfacial phenomena, because the intensity of the two
key mechanisms, dielectric loss and reduced permittivity of water
bond to clay minerals, is very limited. In fact, in the high frequency
limit the displacement of ions responsible for dielectric losses is
limited. The decrease in permittivity of water bond to clay particles
occurs because the water molecules in the diffuse layer are affected
by the electrostatic forces that develop near the charged surface,
and consequently their response to the external electrical field is
modified and reduced. The resulting effect is that the dielectric con-
stant of the water phase is locally reduced (Dobson et al. 1985;
Dirksen & Dasberg 1993; Saarenketo 1998; Lesmes & Friedman
2005) and consequently the water content is under predicted. This
effect is only visible in soils with a fine to very fine texture, and ad
hoc strategies have been developed to account for this effect (Knoll
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et al. 1995; Friedman 1998; Saarenketo 1998; Lesmes & Friedman,
2005).

For the applications of practical interest the frequency ranges
considered allows us to use eqs (3) and (4), respectively. For real
porous media, however, the treatment of electrical conductivity and
dielectric constant differs also because (i) the contrast in material
permittivity is small compared to that of electrical conductivity,
(ii) the lowest value for permittivity is the permittivity of vacuum
(that corresponds to a relative permittivity equal to 1), while elec-
trically insulating materials (e.g. quartz) have negligible electrical
conductivity. Nevertheless, the specific surface conductivity can
be converted into an equivalent grain conductivity σs = 3�s/R
(Brovelli et al. 2005; Linde et al. 2006), where R is the typical
length scale of the grains (for example, the average particle ra-
dius for porous media with non-uniform grain size distribution).
As a result of this transformation, the boundary value problems of
electrical conductivity and permittivity are similar, and a similar
approach can be used (Linde et al. 2006). The idea of exploiting
this similarity between the permittivity and electrical conductivity
to model these two electromagnetic properties in a unified frame
is not new. For example the model of Linde et al. (2006) was de-
veloped to motivate the assumption of structural similarity when
performing joint inversion of ERT and GPR data.

The electrical conductivity of a fully saturated porous medium is
often described using first Archie’s (1942) law. Assuming a negli-
gible surface conductivity (i.e. σ f � σ s, where σ f is the electrical
conductivity of the pore fluid), the bulk electrical conductivity of a
porous medium (σ b) is expressed as

σb = σ f

F
= σ f

φ−m
. (5)

This constitutive relationship describes the electrical conductivity of
granular porous media as a function of the pore-fluid conductivity
σ f , the porosity φ and the (electrical) cementation exponent m.
This latter is a parameter that summarizes the microgeometrical
properties of the pore-space affecting the electrical response of soils,
such as tortuosity and pore connectivity. The geometrical parameter
F is the electrical formation factor in the case of negligible surface
conductance. In conditions of partial water saturation, that is, in the
presence of an air phase, Archie’s law is modified to include water
saturation.

Even though Archie’s law (eq. 5) was originally developed as
a purely empirical model, theoretical justifications have been pre-
sented (Madden 1976; Sen et al. 1981). Sen et al. (1981) derived
eq. (5) using a self-consistent differential effective medium
approach. The Sen et al. (1981) model—often named
Sen–Hanai–Bruggeman (SHB) equation—was developed to de-
scribe the complex dielectric response of granular porous media; an
equivalent form of eq. (5) was derived for relative permittivity in the
limit εs → 0, where εs is the permittivity of the solid matrix. Due
to the analogy between eqs (3) and (5), eq. (5) can consequently be
adopted for permittivity if the underlying assumptions of Archie’s
equation are honoured, that is, the permittivity of the solid matrix
is small compared to that of the fluid phase. Therefore, based on
Archie’s formulation, it is possible to write an approximate rela-
tionship between bulk electrical conductivity σ b and permittivity εb

of a porous medium that involves the properties (σ f and εf ) of the
saturating fluid

σb

σ f
= φm =

(
εb

ε f

)
ε f �εs

. (6)

2.2 Bounds for the electromagnetic properties
of porous media

In order to develop the new constitutive model, we start by study-
ing some of the existing theoretical bounds for bulk properties of
porous media (e.g. electrical conductivity and permittivity). Ex-
act bounds—named Wiener bounds—are recovered considering an
equivalent porous medium composed of two materials (e.g. solid
and fluid phases) arranged in layers, conserving the relative volume
of each material. The two bounds are computed making the flux
perpendicular or parallel to the layers, respectively. In the first case,
the porous medium behaves like an electric circuit composed of re-
sistances in series, in the second case of resistances in parallel. The
configurations in series and in parallel correspond to the maximum
and minimum resistance, respectively. Hashin & Shtrikman (1962)
on the basis of a variational approach derived narrower bounds, al-
though valid for statistically isotropic (at the macroscale) granular
porous materials only (geological media, packing of beads, etc.).
The upper bound is the effective permittivity of a microstructure of
spherical grains, each coated by a shell of fluid. The ratio between
the volume of each grain and the volume of coating shell is in the
range φ to (1 – φ). The fluid is completely interconnected and forms
a percolation cluster, while the grains are isolated. The lower bound
is computed by interchanging the two materials. For a two-phase
mixture, the HS bounds have the following analytical forms:

εHSL = εs + φ

(ε f − εs)−1 + 1−φ

3εs

(7)

εHSU = ε f + (1 − φ)

(εs − ε f )−1 + φ

3ε f

. (8)

The subscripts HSL and HSU refer to the case εf > εs, while in
the opposite case (e.g. dry porous medium) the bounds are inverted.
Fig. 1 shows the Wiener and HS bounds as a function of matrix
permittivity. Both for the Wiener and HS bounds one can observe
that(

∂εb

∂εs

)
εs→ε f

= 1 − φ (9)

and consequently

∂εb

∂εs
≥ 1 − φ. (10)

This result is reported as being a general conclusion (Woodside &
Messmer 1961): the derivative of the bulk permittivity with respect
to a generic phase is always grater than or equal to the relative vol-
ume of the considered phase. As all the rigorous bounds have these
properties, any equation that is adopted to model the permittivity
should logically satisfy eq. (10). Note for instance that the LR model
(eq. 1) satisfies such constraint for any value of α.

3 . M O D E L D E V E L O P M E N T

3.1 Formulation of the new constitutive equation
for saturated conditions

Our approach to developing a new constitutive relationship for the
permittivity of porous media consists of finding a suitable combi-
nation of the HS bounds. Let us assume that the bulk permittivity εb

of a porous medium can be represented as a linear combination of
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Figure 1. The proposed model (eq. 13) (solid line) compared to the ranges predicted by the Wiener (shaded area, light grey) and Hashin-Shtrickman bounds
(shaded area, dark grey). The constitutive equation of Pride (1994) that uses the same parametrization is also shown for comparison. Porosity was set to 0.30
in all cases, while the cementation factor m and the fluid permittivity εf are varied to cover the range found in natural conditions.

the permittivities corresponding to the upper and lower HS bounds
εHSL and εHSU, where ψ is for now an arbitrary weighting factor:

εb = ψεHSU + (1 − ψ)εHSL. (11)

Note that if we interpret ψ as the volume fraction of a material
having permittivity ε = εHSU in a two-phase system, while the other
material has permittivity ε = εHSL, eq. (11) corresponds to the
permittivity of a system of phases connected in parallel. In order to
identify an analytical expression for ψ , we now use eq. (6). Under
the condition εf � εs (or εs/ε f → 0), εHSL → 0 and eqs (8) and
(11) can be combined

ψ0 = ψ(ε f � εs) = ε f

εHSU(ε f � εs)φ−m
= 3 − φ

2
φ(m−1).

(12)

The resulting weighting factor ψ0 is a function of the geometri-
cal factors only, namely the porosity φ and Archie’s cementation
exponent m. Substituting eq. (12) into eq. (11) we obtain

εb = 3 − φ

2
φ(m−1)εHSU +

[
1 + φ − 3

2
φ(m−1)

]
εHSL. (13)

eq. (13) is the new constitutive equation we propose in this work
to predict the dielectric response of two phase (solid matrix and a
saturating fluid) granular porous media. The conditions described
by eqs (9) and (10) are satisfied by eq. (13). The key assumption in
the derivation of eq. (13) is that the weighting factor ψ computed
in the limit εs/.ε f → 0 is used regardless the contrast between
solid and fluid permittivity. The impact of this assumption is how-
ever only limited, because in the condition εs/.ε f → 0, where our
model is exact, the upper and lower HS bounds differ the most under
the common condition that pore fluid (e.g. water) has permittivity
higher than the solid matrix (see Fig. 1). Adopting ψ = ψ0 is there-
fore equivalent to having an exact weight at the condition where the

weight matters more (εf � εs) and using this same value also at
less critical values of εs. To say in a slightly different manner, as εs

increases and the HS bounds get closer to each other, the impact of
choosing a limiting value ψ0 has a progressively smaller influence
on the value of eq. (13). This is visible in Fig. 1 where we com-
pare the behaviour of eq. (13) (solid line) with the corresponding
HS bounds (shaded area, dark grey), using two different values of
pore-fluid permittivity and two cementation factors. The values of
m and εs are chosen so as to cover the whole range that can be
found in natural conditions. Instead, a large range of solid matrix
permittivity is investigated although realistic (natural) values lay in
the range 4.5–10, being 4.5 the permittivity of quartz and 13–15
the permittivity of shale (Guéguen & Palciauskas 1994). The two
upper plots in Fig. 1 show the behaviour of the proposed model
when the solid matrix permittivity is larger than (or equal to) the
permittivity of the pore fluid, as for dry soils, while the lower graphs
display the opposite case. All plots show that the allowed bulk per-
mittivity range, as computed using the HS bounds, decreases as the
permittivity of the solid matrix approaches that of the pore fluid.

3.2 Formulation of the new constitutive equation
for variably saturated porous media

The HS bounds are not restricted to mixtures of two materials, but
they can be applied to any composite with an arbitrary number of
phases. It has however been observed that the HS bounds are op-
timal (i.e. provide the narrowest possible interval) only when the
mixture contains only two phases (Talbot et al. 1995). Furthermore,
it is possible to show that, as the volume fraction of one of the
components in the assemblage (the phase with largest and smallest
dielectric constants for the upper and lower bound, respectively)
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becomes small and eventually reduce to 0, the n-phase HS bounds
do not reduce to the equivalent bounds for (n – 1)-phases. This has
been pointed out as a limitation of the approach adopted by Hashin
& Shtrikman (1962) (Talbot et al. 1995). For our constitutive rela-
tionship, this would imply that the values estimated considering the
two-phase HS bounds (at water saturation of 1.0 and 0.0) would be
different from the same value estimated using the three-phase equiv-
alent relationship. To avoid this inconsistency, we have developed
an alternative approach that makes use of the two-phase bounds,
since these are optimal. We consider porous materials made of a
solid and a water phase, as for the two-component model discussed
in the first part of this paper, and an additional non-aqueous phase
(NAPL). This latter can be a gas phase (such as air) or a non-polar
liquid nearly insoluble and immiscible in water (such as hydrocar-
bons, solvents, etc.). In contrast to the solid immobile phase (soil
matrix), the water and non-aqueous phase will also be referred to
as mobile phases in the following.

We compute the bulk permittivity of an unsaturated porous
medium using the same constitutive model (13), but replacing the
permittivity of the single fluid phase with that of the mixture of the
2 mobile phases filling the pore space, εp

εb(εs, εp, φ, sw) = ψ · εHSU + (1 − ψ) · εHSL. (14)

The permittivity εp of the pore fluid is a function of the relative
amount and the permittivity of each phase, as well as of the geo-
metrical distribution of the two mobile components within the pore
space. For a given porous medium the spatial configuration of the
saturating phases is a function of the pore fluid saturation, of the
chemical and physical properties of the matrix surface (e.g. wet-
tability) and of the two mobile phases (e.g. Knight & Abad 1995;
Chen & Or 2006). In this work, we compute the bulk permittivity
of the two-phase mixture filling the pore-space with a relationship
similar to that we use for the two-phase porous medium

εp (εw, εNAPL, sw) = w · εHSU (εw, εNAPL, sw)

+ (1 − w) · εHSL (εw, εNAPL, sw) , (15)

where w is the weight function, computed as

w = εw

εHSUs−nε
w

. (16)

In eqs (15) and (16) porosity has been replaced by the degree of
water saturation, and Archie’s cementation factor with a permittivity
saturation exponent nε , still to be defined in detail. The model
for unsaturated porous media we propose in this work combines
eqs (15) and (16) to compute the effective permittivity of the pore-
space, which is subsequently used in eq. (13) to compute the bulk
permittivity of the medium. The derived equation relies upon two
main approximations: (i) we assume an exponential relationship
between water saturation and bulk permittivity of the water/NAPL
mixture filling the pore space and (ii) the weight function is exact
when εw � εNAPL only, that is, the NAPL dielectric constant is much
smaller than that of the water phase. In the frequency range we are
considering, the dielectric constant of the water phase is always
around 80, and it is only slightly affected by temperature and ionic
strength. Instead, the dielectric constant of numerous NAPLs often
found in natural and contaminated soils is small, including that
of air (Table 1). Very often it is found that εw > 20εNAPL, thus
the approximation at point (ii) is largely satisfied. Under the same
approximation, the Hashin–Strickman lower bound reduces to 0 and
eq. (15) simplifies to

εp (εw, sw) = w · εHSU (εw, sw) = εw · snε
w . (17)

Table 1. Dielectric permittivity of some common non-aqueous phases found
in natural and contaminated porous media, and used in this study.

Dielectric
Component constant [–] Source

Air 1.00 Roth et al. (1990)
TCE 3.35 Ajo-Franklin et al. (2004)
Synthetic motor oil 2.66 Persson & Berndtsson (2002)
Sunflower seed oil 3.06 Persson & Berndtsson (2002)
n-paraffin 2.32 Persson & Berndtsson (2002)

As discussed in Section 2, the electrical conductivity and the per-
mittivity can be described by equivalent equations. Electrical con-
ductivity of unsaturated porous media with negligible surface and
matrix conductivity is commonly described using second Archie’s
law

σb (sw) = σb (sw = 1) · sn
w, (18)

where σ b(sw) is electrical conductivity at water saturation level sw ,
σ b(sw = 1) is the electrical conductivity at full water saturation, and
n is a geometrical factor named Archie’s saturation exponent. The
same relationship is often expressed using the resistivity index R

R = σb (sw)

σb (sw = 1)
= sn

w. (19)

We can re-write (15) to have an analogous form as (19), defining by
analogy a permittivity index P

P = εb (sw)

εb (sw = 1)
, (20)

where εb(sw) is now the permittivity at a given water saturation
level sw , and εb(sw = 1) is the permittivity at full water saturation.
For the same analogy between permittivity and conductivity used in
Section 2, we will from now on assume that nε in eq. (17) is the same
as Archie’s saturation exponent, that is, that nε = n. As previously
discussed, the main assumption underlying the validity of the 1st
Archie’s law is that the electrical conductivity of the porous matrix
is negligible. Using for now the same assumption for permittivity
(εs = 0), and combining (14) and (20) we obtain

Pεs=0 = εb (εs = 0, sw)

εb (εs = 0, sw = 1)
= εp (sw)

φ−m
· φ−m

εp (sw = 1)
= εp (sw)

εw

(21)

and finally combining (17) and (21) we obtain

Pεs=0,εNAPL=0 = εw · sn
w

εw

= sn
w. (22)

Two simplifying assumptions are required to reduce the dependence
on saturation to eq. (22), that is, the permittivity of both the solid
phase and of the non-aqueous phase are assumed to be small as
compared to the permittivity of the water phase. This is largely
correct for the non-aqueous phase permittivity, while it is only
approximate for the solid matrix permittivity (recall that 4.5 <

εs < 6.5 in natural porous media). Therefore, we can conclude that
assuming that the permittivity saturation exponent is the same as the
equivalent Archie’s parameter introduces only a minor error. This
conclusion has an important consequence for practical applications:
measurements of the dependence of bulk electrical conductivity
on water saturation can also provide reasonable estimates of the
dielectric constant and vice versa.
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3.3 Model comparison with existing constitutive equations

The model we have developed is a combination of eqs (13), (15)
and (16). Eqs (15) and (16) are applied to recover the effective
permittivity of the mixture of the mobile phases, which is subse-
quently inserted in eq. (13) to compute the bulk relative permittivity
of the porous medium. In saturated conditions (two-phase systems)
the model reduces to eq. (13) only, and the permittivity of the pore-
space is replaced by that of the fluid phase. In three-phase conditions
the model has two calibration parameters, the cementation factor m
and the saturation exponent n, while for two-phase materials only m
can be adjusted. An equivalent parametrization is used in the model
proposed by Pride (1994) (two-phases) and Linde et al. (2006) (for
three-phases). This constitutive law is recovered using a volume
averaging approach. For unsaturated conditions, the bulk relative
permittivity is computed as (Linde et al. 2006)

εb = 1

F

[
sn
wεb + (

1 − sn
w

)
εa + (F − 1)εs

]
(23)

and the model for two-phases is recovered by setting sw = 1 in
eq. (23). Since the same parameters are involved in our model and
in eq. (23) (recall the formation factor is F = φ−m), we have com-
pared the behaviour of the two constitutive laws in a number of
different cases, changing m, n, porosity, matrix and fluid permittiv-
ities. Examples of this comparison are reported in Fig. 1 (for satu-
rated porous media) and Fig. 2 (three phase materials). In Fig. 1, we
also reported the expected intervals considering the Wiener (shaded
area, light grey) and HS bounds (shaded, dark grey). From our sen-
sitivity analysis, we have found that, for the same values of m, n the
two models have a different behaviour. Moreover, we have observed
that, in some situations, eq. (23) falls outside the range predicted
by the theoretical bounds (see for example, the left-hand panels of

Fig. 1). This indicates that the model of Pride (1994) and Linde
et al. (2006) fails under some conditions. It is however not possible
to determine from the results of this analysis whether the parameters
(i.e. m, n) estimated by fitting eq. (23) or our model are correct. This
will be done in the next section, although for the cementation factor
only.

We have also investigated how our model compares against the
well-known and widely adopted Topp and CRIM models for differ-
ent values of the parameters. The permittivities of the three compo-
nents were fixed (εs = 5.5, εf = 80.0 and εa = 1.0), while porosity
was set to 0.35. Note however that Topp’s equation only depends on
the water content, while the CRIM model also incorporates porosity
and phase permittivities.

Fig. 3 shows that overall the three equations have a similar be-
haviour. Nevertheless, our model (solid line), thanks to its two ad-
justable parameters, shows a much greater flexibility. While the
effective relative permittivity of the dry porous medium (sw = 0)
is nearly the same for all cases and all models, different values of
the cementation factor result in different permittivities at full water
saturation (sw = 1). This cannot be reproduced by the CRIM and
Topp model. This can only be achieved by adjusting the α exponent
of the CRIM equation, which is similar to changing the cementation
factor m, as these two parameters are inversely correlated (Brovelli
& Cassiani 2008). The saturation exponent n affects the slope of the
water saturation—bulk permittivity proposed relationship. When
the saturation exponent is set to 2 the proposed equation closely
reproduces the behaviour of Topp and CRIM models. This is an
interesting result, since both Topp and CRIM models often repro-
duce experimental data. Also, it is widely recognized that for the
electrical conductivity—water saturation relationship the Archie’s
saturation exponent is often close to 2 (Mualem & Friedman 1991;
Schön 1996; Ewing & Hunt 2006). As the value of the n exponent

Figure 2. The proposed model (eqs 13, 15 and 16) (solid line) compared to the model of Linde et al. (2006). The two models use the same parametrization
(Archie’s cementation factor m and saturation exponent n) but the predicted bulk relative permittivity is substantially different.
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Figure 3. Comparison of the proposed equation for multiphase porous media, that is, eqs. (15), (16) and (13) against the Topp et al. (1980) model, and the
CRIM equation for different values of the model parameters. The proposed model is always similar to the other two models, but shows a greater flexibility.
Porosity is set to 0.35 in all cases.

increases, the curvature increases, but the end point (at sεw = 1)
remains fixed, since this is only related to the cementation factor
m. As discussed in the next section, different values for the satura-
tion exponent n are likely to be related to different textures of the
porous system. Note that neither the Topp nor CRIM model can
accommodate changes in the curvature.

4 M O D E L VA L I DAT I O N

4.1 Comparison with pore-scale simulations

The electrical simulator described in Dalla et al. (2004) and Brovelli
et al. (2005) was adopted to compute the electrical conductivity
and the permittivity of a digital porous medium consisting of a
random sphere packing. The key advantage of using this simulator
is that we can independently compute the formation factor of the
packing (from simulation of the electrical conductivity) as well as
its bulk permittivity. In order to compute the formation factor F, we
conducted a suite of simulations varying the electrical conductivity
of the water phase. From the resulting bulk electrical conductivity
the formation factor F and Archie’s cementation exponent m were
easily computed. The digital porous medium we adopted had a
porosity of 0.39 and a cementation exponent equal to 1.49. This
latter value is very close to the 1.5 proposed by Sen et al. (1981)
for sphere packings.

We subsequently computed the bulk permittivity of the digital
porous medium varying its matrix permittivity. The fluid relative
permittivity was kept constant and equal to 80, that is, the relative
permittivity of water. Fig. 4 shows the pore-scale modelling results
together with the proposed relationship, eq. (13) (solid line) and the
constitutive model of Pride (1994) (dashed line). Our model closely
matches the simulated data while Pride’s (1994) model, using the
same parameters, consistently underestimates the bulk permittivity.
By adjusting the cementation factor it is possible to match the pore-

Figure 4. Comparison between the constitutive equations developed in this
work and that of Pride (1994) with the pore-scale modelling data from
Brovelli et al. (2005). All the model parameters are independently known and
not fitted. Fluid permittivity is equal to 80, porosity 0.39 and the cementation
factor m ≈ 1.5.

scale results also with the model of Pride (1994). However, this only
indicates that Pride’s model, even when it provides a good match
with experimental data, might fail to identify the correct governing
parameters.

4.2 Comparison with experimental data
in saturated conditions

After the successful validation with pore-scale modelling data, we
tested our two-phase model against experimental data. To this end,
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Figure 5. Comparison with the experimental data by Sen et al. (1981). The
solid lines represent our proposed relationship (13), while the dashed lines
show the predictions of Pride’s (1994) model. The closed symbols are the
experimental data. The cementation exponent m is not obtained by model
fitting: the independently measured value obtained by Sen et al. (1981) is
used. Consequently, no model parameter is adjusted to match the data. In
nearly all the cases, Pride’s (1994) model does not match the measurements
without adjusting m.

we used the data sets reported by Sen et al. (1981) and Robinson
& Friedman (2003). Sen et al. (1981) measured the complex bulk
permittivity of glass bead packings as a function of porosity with
three different saturating fluids: water (εr = 80), methanol (εr = 30)
and air (εr = 1) (here the subscript r indicates the real component
of the complex relative permittivity. Furthermore, Sen et al. (1981)
measured the cementation exponent m of the porous media used in
all experiments. The comparison with the model we propose and
with the equation of Pride (1994) is depicted in Fig. 5. Eq. (13) re-
produces satisfactorily the measured data, while the model of Pride
(1994) under or overpredicts the experimental data, depending on
whether the pore-space relative permittivity is larger or smaller than
that of the skeleton. Since the cementation factor is independently
estimated, eq. (13) predicts the experimental results making use
of no fitting parameter, thus showing the predictive capabilities of
the model, while eq. (23) is not able to reproduce the data without
adjusting m.

Robinson & Friedman (2003) presented a suite of experiments
where the bulk relative permittivity of numerous porous media is
measured using different saturating fluids. We have tested the pro-
posed model on this data set, estimating the cementation exponent
by fitting eq. (13) to the data. Table 2 lists all the porous media we
have used to validate the novel constitutive equation for two-phase
conditions, together with the estimated values of the cementation
factor. The determination coefficient (r2) and the root mean square
error (RMSE) are the metrics we use to quantify the similarity be-
tween model predictions and observations. A visual comparison is
also given in Fig. 6, where the measurements on glass spheres and
silica sand (Robinson & Friedman 2003) are plotted together with
the model. Overall, eq. (13) reproduces well all the experimental
data reported in Robinson & Friedman (2003). Moreover, the ce-
mentation factors estimated from the fitting lie in the range 1–2.5,
and compare very well with literature values for similar materials
(Guéguen & Palciauskas 1994; Rubin & Hubbard 2005).

4.3 Comparison with variable-saturation
experimental data

Following the validation of the equation in saturated conditions, we
tested the model on three-phase, unsaturated porous materials. We
considered a number of data sets that we divided in three different
groups, depending on the soil properties and the non-aqueous phase
liquid used in the measurements (air or non-polar organic liquid).
Groups A and B (Paragraphs 4.3.1 and 4.3.2) are relevant to different
types of porous media where the non-aqueous phase is air, while for
Group C (Paragraph 4.3.3) the non-aqueous fluid is not air. For each
data set, soil properties, measurement frequency, fitted parameters
and goodness of fit measures are summarized in Table 3.

Inputs of our model are porosity, permittivity of the three phases,
cementation factor m, and saturation exponent n. Porosity is known
for all tested porous media (Table 3). Permittivity of water is set to
80, while the permittivity of the non-aqueous phase is set according
to Table 1. On the contrary, the solid matrix permittivity is often
unknown and needs to be estimated. In this work, we compute the
permittivity of the solid matrix according to the mineralogical and
chemical composition of the porous medium, thus reducing the
number of parameters that must be adjusted to fit the experimental
data. Although this approach may introduce some uncertainties, our
numerical experiments show that model sensitivity to solid matrix
permittivity is small and the approximation we introduce has in
practice no impact. Consequently, in the following discussion only

Table 2. Validation of the two-phase proposed constitutive equation with data sets available in the literature.

Material Reference φ εs m r2 RMSE

Digital sphere packing Brovelli et al. (2005) 0.39 5.0 1.49 >0.99 0.137
Glass beads, water Sen et al. (1981) – 6.5 1.5 0.99 0.223
Glass beads, methanol Sen et al. (1981) – 6.5 1.5 0.97 0.081
Glass beads, air Sen et al. (1981) – 6.5 1.5 0.99 0.193
Glass beads Robinson & Friedman (2003) 0.39 7.6 1.4a >0.99 0.048
Quartz Robinson & Friedman (2003) 0.38 4.7 1.5a >0.99 0.051
Soil Robinson & Friedman (2003) 0.42 5.1 1.5a >0.99 0.045
Tuff Robinson & Friedman (2003) 0.62 6.0 2.5a >0.99 0.075
Crushed sea shell Robinson & Friedman (2003) 0.58 8.9 1.9a >0.99 0.076
Hematite Robinson & Friedman (2003) 0.50 18.1 1.8a >0.99 0.109

Notes: Porosity and matrix relative permittivity are known for all the materials, while in some cases (noted
with an a) the parameter m was calibrated to match experimental data. The proposed model well reproduces
all the data sets considered, and the cementation factor, when estimated, is well within the expected range.
aThis value was estimated to fit the experimental data.
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Figure 6. Comparison with the experimental data by Robinson & Friedman
(2003). The solid lines are the proposed relationship (13), the dots are the
experimental data. The cementation exponent m is here obtained by fitting
the permittivity data. The model reproduces the data well in the whole range
of fluid permittivity, as also indicated by the high correlation coefficients
(Table 2).

the cementation factor and the saturation exponent are adjusted to fit
the experimental data. The two parameters are tuned independently.
First, the cementation factor m is adjusted to match observations
at both saturated (θ = φ) and dry conditions (θ = 0), where θ is
the volumetric moisture content. Next, the saturation exponent n is
calibrated to fit the observations at intermediate degrees of water
saturation.

4.3.1 Bulk permittivity of low clay content porous media

The first group of experimental data is composed of porous media
with small or negligible clay content (Group A in Table 3), while

Figure 7. Comparison of the proposed equation with the experimental data
of group A (negligible or low clay content), Table 3. Also in unsaturated con-
ditions, the novel constitutive equation well reproduces the trend observed
in the measurements.

the third phase is air. Comparison between the measurements and
the calibrated model is shown in Fig. 7. The proposed model repro-
duces all the observations, as shown by the very high determination
coefficient (r2 > 0.99) and low weighted residuals (RMSE < 0.5)
for all three cases. The cementation factor is found to be about 1.5,
which is a typical value for porous materials with rounded grains
and negligible clay content (e.g. Lesmes & Friedman 2005). These
materials are often named clean porous media, and are characterized
by high pore connectivity, poorly cemented grains, and little con-
tent of clays and other fine components such as oxides. As already
mentioned, theoretical results demonstrated that for glass beads (i.e.
spherical grains) the expected value for the cementation factor is
1.5 (Sen et al. 1981). The saturation exponent is close to 2 for all
three data sets. According to the literature (Mualem & Friedman
1991; Schön 1996; Ewing & Hunt 2006) this is a common value for

Table 3. Porous material used to validate the proposed equations.

Material Source ω(GHz) φ εs ma na r2 RMSE

Group A – Low clay content
Glass beads Friedman (1998) 0.6 0.378 4.8 1.35 2.0 >0.99 0.33
Bet-Dagan sandy loam Friedman (1998) 0.6 0.48 5.5 1.6 2.1 >0.99 0.41
Sandy loam B Dobson et al. (1985) 1.4 0.334 5.0 1.5 2.0 >0.99 0.38

Group B – Dual porosity media

Andisol 1 Miyamoto et al. (2005) 1.0 0.433 5.0 1.9 3.8 >0.99 0.47
Andisol 2 Miyamoto et al. (2005) 1.0 0.536 5.0 2.2 3.4 >0.99 0.67
Turface Blonquist et al. (2006) 1.0 0.75 5.0 2.9 2.9 >0.99 1.32
Pumice Blonquist et al. (2006) 1.0 0.83 5.0 3.5 3.5 >0.99 1.38
Profile Blonquist et al. (2006) 1.0 0.74 6.0 2.8 2.8 0.99 1.44
Zeoponic Blonquist et al. (2006) 1.0 0.61 6.0 1.6 2.0 >0.99 0.59

Group C – Organic phase

Glass beads PB Persson & Berndtsson (2002) – 0.405 4.27 1.7 2.3 0.99 0.64
Sand, sample a Ajo-Franklin et al. (2004) – 0.39 5.0 1.65 1.80 0.97 0.23
Sand, sample b Ajo-Franklin et al. (2004) – 0.41 5.0 1.40 3.00 0.89 0.93
Sand, sample c Ajo-Franklin et al. (2004) – 0.44 5.0 1.50 1.80 0.96 0.61

Notes: The parameters m and n were calibrated to match experimental data. The solid permittivity was independently
computed from porous medium mineralogy.
aThis parameter was estimated to fit the experimental data.
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Archie’s saturation exponent of clean materials. As already pointed
out, when the saturation exponent is set to 2 and the cementation
factor is between 1.5 and 2, the proposed model has a behaviour
very similar to that of Topp et al. (1980) and CRIM models. Since
the Topp model was derived fitting a third order function to a large
data set of soils it is expected to be representative of the average
behaviour of media with small clay content.

4.3.2 Bulk permittivity of dual-porosity media

The second group of data (Group B in Table 3) consists of ag-
gregated porous media showing a dual-porosity behaviour. Ma-
terials belonging to this class present a two-level granular struc-
ture, with aggregates of relatively large diameter composed of
grains with smaller size. It is therefore possible to distinguish
between inter- and intra-aggregate porosity, with intra-aggregate
pores having larger radius, thus draining first. Experimental data
and model predictions for this set of measurements are compared
in Fig. 8. The proposed model correctly reproduces the data in
Group B, with high determination coefficient (r2 ≈ 0.99) and low
RMSE.

For dual porosity media, the Topp model and the CRIM are often
found to be inappropriate (Miyamoto et al. 2003, 2005; Blonquist
et al. 2006). The reason is found in the different drainage behaviour
compared to single porosity media. When soil starts drying, the large
intra-aggregate pores drain first, while the interaggregate porosity
remains fully saturated and drains at higher capillary pressure. This
behaviour is reflected in the water saturation—dielectric constant
function. At high values of water saturation the bulk permittivity
changes quickly, while the rate of change dεb/dsw decreases as wa-
ter saturation decreases (Miyamoto et al. 2003, 2005). A possible
explanation is that the connectivity of the water phase between
the aggregates strongly reduces and in turn the bulk response of the
medium becomes less sensitive to the permittivity of the fluid phase.
The constitutive equation we propose can replicate this behaviour,
at least to some extent. Fig. 9 shows the rate of change (derivative)
of bulk permittivity as a function of water saturation. Porosity was

Figure 8. Comparison of the proposed model with the experimental data
from Miyamoto et al. (2005). These data sets show a dual porosity behaviour
and belong to group B in Table 3. Existing constitutive equations, such as
the Topp et al. (1980) and CRIM, often fail for this class of porous materials.
The proposed model instead can reproduce the behaviour observed in the
experimental data by adjusting the value of the saturation exponent.

Figure 9. Derivative of the bulk permittivity with respect to water saturation
for our proposed model. For different values of the saturation exponent, the
derivative shows a completely different behaviour. This may explain some
experimental observation for dual porosity (aggregate) materials.

set to 0.35 and the solid dielectric constant to 5.0. Clearly, different
values of the saturation exponent result in a significantly different
rate. For n = 2, starting from dry conditions, the rate quickly in-
creases together with water saturation. For n = 4 and n = 6, the
rate is initially constant and only starts increasing at water saturation
level higher than 0.1 and 0.2, respectively. It is also clear from Fig. 9
that the ‘threshold’ value of water saturation at which the rate starts
changing is shifted towards higher values as the saturation exponent
n increases. Calibrated parameters for Group B are consistent with
these considerations. All but one of the materials have a high satu-
ration exponent, compared to the average saturation exponent of the
other groups. The exception is the saturation exponent of 2.0 for the
material named ‘Zeoponic’. This is in agreement with the findings
of Blonquist et al. (2006), which noted that experimental data of
the permittivity–water saturation relationship for this material does
not show a dual porosity behaviour, and can instead be correctly
reproduced by Topp’s model.

Constitutive equations describing the water saturation—
permittivity relationship, tailored to reproduce the behaviour of
aggregated, dual porosity media have been recently developed
(Miyamoto et al. 2005; Blonquist et al. 2006). The constitutive
model we developed in this work differs from these models in that
there is no clear transition from intra-aggregate to inter-aggregate
porosity. For the Miyamoto et al. (2005) and Blonquist et al. (2006)
models, the transition is marked by a discontinuity in the water
saturation—permittivity function and by an abrupt change in its
derivative. Instead, our equation shows a smooth continuous tran-
sition. Experimental data on aggregated materials show both be-
haviours. Of the six data sets we used in this work, three of them
(Andisol 1, Andisol 2 and Zeoponic) show a gradual transition,
while the remaining three (Turface, Pumice and Profile) show a
marked change of the slope. We believe that the smooth transi-
tion behaviour arises when the water saturation of aggregates starts
decreasing before the intra-aggregate porosity is completely
drained. Therefore, the smooth change of the rate of variation is
more typical of soils, which have a more complex inner geometry.
The sharp change behaviour is instead restricted to a small number
of porous media, with well-defined aggregates and a clear distinc-
tion between inter and intragranular porosity. We then conclude
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that the model we propose is suitable for aggregated, dual porosity
media. Although no quantitative relationship has been derived, we
have shown that the saturation exponent can be used as an index to
characterize the dual-porosity behaviour. Our conclusions are how-
ever preliminary and further investigations on a larger data set are
required to confirm the findings.

4.3.3 Bulk permittivity of samples with low clay content,
water—organic phase mixture

The third set of data we considered (Group C, Table 3) is relevant
to the dielectric properties of porous media partially saturated with
a non-aqueous phase different from air, namely motor oil, seed oil
and paraffin (Persson & Berndtsson 2002) and TCE (Ajo-Franklin
et al. 2004)—see Table 1. All the NAPLs considered here are or-
ganic, non-polar substances. In the study performed by Persson
& Berndtsson (2002) both electrical conductivity and permittivity
were measured as a function of water saturation. This data set is
therefore extremely interesting because it allows to test whether the
model we have developed can be used to predict both the conductiv-
ity and relative permittivity of the same porous medium. In the first
step both the cementation factor m and the saturation exponent n
are computed by fitting Archie’s model to the electrical conductivity
curve (left-hand panel of Fig. 10). The fitted values are then used
in a purely predictive manner in the proposed dielectric model, and
the result is shown in Fig. 10, right panel, in comparison with the
experimental data on permittivity of the same material. The result
is highly satisfactory in terms of the predictive capabilities of our
proposed model, showing that the model can be used for both the
electromagnetic properties studied.

The proposed model was also compared with data from Ajo-
Franklin et al. (2004), with the non-aqueous phase being TCE
(Table 3). Again fitting was achieved by modifying only the ce-
mentation factor m and the saturation exponent n. The developed
constitutive equation reproduces the behaviour of these other data
set although with a slightly smaller correlation coefficient and higher
residuals. This is possibly due to the method used during the exper-
iments to inject the NAPL, or to modifications of the soil samples.
Nevertheless, the overall fit is satisfactory and we can thus conclude
that the proposed constitutive relationship is also suitable when the
non-aqueous phase is an organic liquid.

Figure 10. Comparison of our proposed model against the experimental
data from Persson & Berndtsson (2002). This data set is extremely inter-
esting in that it allows to test whether the model we propose can be used
both for electrical conductivity and permittivity. In this example we have
estimated the cementation factor and the saturation exponent on the electri-
cal conductivity measurements, and applied the same values to predict the
relative permittivity. The satisfactory comparison (see also the correlation
coefficient in Table 2) further confirms the validity of the novel equation.

5 S U M M A RY A N D C O N C LU S I O N S

In this paper we presented a new constitutive model for the elec-
tromagnetic properties of multi-phase porous media, developed on
the basis of the tightest theoretical bounds for transport properties
(the Hashin–Shtrikman bounds) and the well known Archie’s law,
commonly used to describe the electrical conductivity of porous
material. The model is consistently developed for two-phase (fully
saturated) and three-phase (partially saturated) media on the basis of
the same basic assumptions. For the sake of clarity, let us summarize
the key model equations. First, the upper and lower HS bounds for
two phases a, b, with volumetric fraction (1 – ϕ), ϕ are computed
as

εHSL(εa, εb, ϕ) = εa + ϕ

(εb − εa)−1 + 1−ϕ

3εa

(24)

εHSU(εa, εb, ϕ) = εb + (1 − ϕ)

(εa − εb)−1 + ϕ

3εb

. (25)

Using eqs (24) and (25), the bulk permittivity of the porous medium
is

εb =
[

3 − φ

2
φ(m−1)

]
· εHSU(εs, εp, φ)

+
[

1 + φ − 3

2
φ(m−1)

]
· εHSL(εs, εp, φ), (26)

where φ is porosity, m the cementation factor, εs is the permittivity
of the mineral solid matrix and εp is the permittivity of the pore
space. For two-phase media, the permittivity of the pore-space is
that of the mobile phase filling the pore space. For unsaturated
systems instead, εp is computed from

εp (εw, εNAPL, sw) = w · εHSU (εw, εNAPL, sw)

+ (1 − w) · εHSL (εw, εNAPL, sw) ,
(27)

where εNAPL is the permittivity of the non-aqueous phase liquid (air,
oil, etc.), sw is the degree of water saturation and w is the weight
function,

w = εw

εHSU(εw, 0, sw) · s−n
w

. (28)

To be consistent with Archie’s law, our proposed model is appli-
cable to media having a small clay fraction, since we exploited
the similar role that pore-scale geometry, phase configuration and
saturation state of the porous system have on the variation of electri-
cal conductivity and permittivity as a function of water saturation.
This similarity holds only for porous media with negligible surface
conductivity.

The most important feature of the proposed model is its use of
the same well-defined parameters for the description of both electri-
cal conductivity and permittivity. This fact has important practical
implications, as it makes it possible to infer the dielectric behaviour
from the DC electric behaviour and vice versa for the same porous
medium. Analogously, consistency between data on electrical con-
ductivity and permittivity of the same medium can be checked on
the basis of the proposed constitutive model. This might also be
extremely useful for joint inversion, as discussed in Linde et al.
(2006). The model has been tested successfully both against sim-
ulated data from pore scale models, and against experimental data
from the literature, confirming its capability to explain within the
same conceptual framework both the electrical conductivity and the
permittivity of the same medium. A possible difficulty that might
arise when applying the model at the field scale is that both the
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cementation factor and the porosity have to be assumed or esti-
mated by fitting the measurements. Since porosity while showing a
moderate to high spatial variability is often measured only at very
few locations, some care is necessary to evaluate the correlation
between the two fitted parameters and the uncertainty associated to
the estimated values.

A possible further development is the extension of the model ap-
plicability to media with significant clay fraction. This applicability
has not been tested, but may still be acceptable. In the case of non-
negligible surface conductivity, the same equations can be used to
compute the cementation and saturation exponent, and in turn used
to quantify the effect of surface conductivity. This may be useful,
since constitutive equations linking the cementation factor to other
effective properties of the porous medium have been proposed, such
as the thermal and hydraulic conductivity.
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