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ABSTRACT

UCNEbase (http://ccg.vital-it.ch/UCNEbase) is a
free, web-accessible information resource on the
evolution and genomic organization of ultra-
conserved non-coding elements (UCNEs). It cur-
rently covers 4351 such elements in 18 different
species. The majority of UCNEs are supposed to
be transcriptional regulators of key developmental
genes. As most of them occur as clusters near po-
tential target genes, the database is organized along
two hierarchical levels: individual UCNEs and ultra-
conserved genomic regulatory blocks (UGRBs).
UCNEbase introduces a coherent nomenclature for
UCNEs reflecting their respective associations with
likely target genes. Orthologous and paralogous
UCNEs share components of their names and are
systematically cross-linked. Detailed synteny maps
between the human and other genomes are
provided for all UGRBs. UCNEbase is managed by
a relational database system and can be accessed
by a variety of web-based query pages. As it relies
on the UCSC genome browser as visualization
platform, a large part of its data content is also
available as browser viewable custom track files.
UCNEbase is potentially useful to any computa-
tional, experimental or evolutionary biologist inter-
ested in conserved non-coding DNA elements in
vertebrates.

INTRODUCTION

Several comparative studies on whole vertebrate genomes
uncovered non-coding sequences that exhibit extremely
high conservation. DNA regions of perfect identity
shared between human, mouse and rat with length
>200 bp have been called ultraconserved elements

(UCEs) (1). Similar DNA regions have been referred to
by others as conserved non-genic regions (2), conserved
non-coding elements (CNE) (3) or highly conserved
non-coding elements (HCNE) (4). The exact number of
such elements depends on the criteria used for their iden-
tification, see (5) for review. The multitude of different
names may appear unfortunate and confusing.
Nevertheless, we decided to use yet another term,
ultraconserved non-coding elements (UCNE), to make
clear that our resource is restricted to the most highly
conserved class of such elements and excludes protein-
coding regions.
Although the strong conservation of these sequences

points to an important biological role, a known molecular
mechanism that would require such a high degree of con-
servation is currently unknown. Experimental studies in
transgenic animals suggest that most of these sequences
act as tissue-specific enhancers during developmental
processes (6–8). A striking property of vertebrate
UCNEs is that they cluster in genomic regions containing
genes coding for transcription factors and developmental
regulators (so called trans-dev genes) (4,9). These clusters
show conserved synteny between distant genomes and are
called ‘genomic regulatory blocks’ (GRBs) (10).
The experimental characterization of UCNEs faces

limitations. For instance, it is currently not possible to
study molecular interactions of UCNEs within single
cells of a developing organism. In the absence of
adequate experimental techniques, comparative genomics
approaches represent a promising alternative to gain some
clues about their function. Understanding how UCNEs
have evolved in the past may tell us something about
what they do today.
Here, we present UCNEbase, a comprehensive resource

on the genomic organization and evolution of vertebrate
UCNEs and ultraconserved genomic regulatory blocks
(UGRBs). We will first explain the procedures by which
the database was built, before we describe its contents and
the user interfaces. A comparison of UCNEbase with
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already existing resources on CNEs will be presented in
the ‘Discussion’ section.

DATABASE CONCEPT AND DATA ACQUISITION

UCNEbase provides information on the evolution and
genomic organization of 4351 UCNEs in multiple
vertebrate species. Around half of these elements are
located within intergenic regions (2139) and the rest are
located within non-coding parts of genes: introns (1713)
and UTRs (499). As most UCNEs occur as arrays near
key trans-dev genes, our resource is organized along two
hierarchical levels: individual UCNEs and UGRBs.
The information provided by UCNEbase is generated

by a combination of automatic procedures and manual
curation steps. The methodology used for the creation of
UCNEbase is schematically shown in Figure 1. A brief
description of each step follows below. Technical details
are provided in the Supplementary Methods.

Definition of UCNEs

We defined UCNEs as non-coding human DNA regions
that exhibit �95% sequence identity between human and
chicken and are >200 bp. The sequence identity threshold
corresponds to a base substitution rate of �1% per 100
million years. We have previously shown that sequences
fulfilling such stringent criteria exist only in vertebrates
(11). To compile a list of human UCNEs, we scanned
whole-genome alignments between human and chicken

downloaded from UCSC (12) with a sliding window
technique. Human and chicken were selected as reference
species for two main reasons: (i) their evolutionary
distance provides high speciEcity in detecting functional
elements (13) and (ii) both genome assemblies are of high
quality and thus suitable for identifying large syntenic
regions. From the initially extracted set of ultra-conserved
sequence elements, we eliminated coding regions and a few
human repetitive sequences aligning with the same chicken
sequence. The remaining 4351 sequences composed our
reference set of UCNEs. Each element of this set was
then classified as either ‘intergenic’, ‘intronic’ or ‘UTR
associated’ according to the human gene annotation
from RefSeq. The length of the UCNEs identified in this
way ranged from 200 to 1419 bp with a mean 325 bp and a
median 283 bp. The total length is 1.4 Mb.

The criteria used to identify UCNEs are admittedly
arbitrary, like any other criteria used before. In particular,
there is no objective boundary between UCNEs and
HCNEs. However, the primary goal of UCNEbase is
not to be a comprehensive resource. It should rather be
considered an exploratory tool to study the general
features of UCNEs with the aid of a stringently selected
collection of prominent examples.

Definition of UGRBs

We defined ‘UGRBs’ (also referred to as ‘UCNE clusters’)
as arrays of UCNEs that are syntenically conserved
between the human and chicken genomes. Syntenic
conservation means that the orthologues of the individual

Figure 1. Schematic representation of the methodology used for the creation of UCNEbase.
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UCNEs of a human UGRB occur in the same order
within a restricted area of a chicken chromosome.
During the initial scan, we required that neighbouring
UCNEs must not be separated by >0.5Mb in both
human and chicken. However, a few exceptions to this
rule were made during subsequent manual curation
based on visual inspections of the genomic context.
Currently, UCNEbase comprises 239 UGRBs enco-
mpassing 3868 UCNEs. The number of UCNEs within a
UGRB varies considerably from 134 in the ZEB2 cluster
to only 2 in the ONECUT2 cluster (with an average of 16
and a median of 8 UCNEs). The genomic size of the
identified UGRBs also varies significantly from 4.9Mb
(IRXB cluster) to �2 kb (CPEB4 cluster).

For each UGRB, we defined a corresponding set of
UGRB-associated genes comprising all genes that fall
within or overlap with a genomic region spanned by the
block. If the UGRB starts or ends with an intergenic
UCNE, the upstream and downstream flanking genes
were also included. The set UGRB-associated genes was
sometimes expanded during subsequent manual curation
steps, for instance by including paralogues of genes from a
paralogous UGRB.

Identification of human UCNE paralogues

Human genomic regions that exhibit significant sequence
similarity to a UCNE are considered paralogues of that
UCNE. In general, CNEs have fewer paralogues
compared with protein-coding genes. However, the
relatively rare cases of UCNE paralogues are highly
informative with regard to the origin of UGRBs. Most
paralogous UCNEs originate from ancient whole-
genome duplication events that happened at the root of
the vertebrate tree (14).

As we do not expect high sequence conservation
between UCNE paralogues, we compared each
UCNE against the complete human genome (split into
overlapping pieces of 10 kb) using the program
SSEARCH v34 from the FASTA package (15). This
program is an implementation of the sensitive Smith–
Waterman local alignment algorithm. The initial scan
was performed with a permissive E-value threshold. We
subsequently re-evaluated the statistical significance of
each match by computing base composition-adjusted
E-values using the classical window shuffling test (16).
All matches with E-value �10�4 were retained as
paralogues.

Our systematic search for paralogues confirmed the
expectation that most UCNEs are unique. Only 464
UCNEs have at least one human paralogue. Of the 1252
paralogous regions found, only 177 were UCNEs
themselves.

Identification of paralogous UGRBs

We also tried to identify paralogous relationships at the
level of GRBs. This was mostly done by manual curation.
As a minimal condition, we required that two UGRBs
share at least one paralogous gene. However, most
paralogous blocks also share paralogous UCNEs. In
some cases, synteny across paralogous blocks was used

to redefine the extension of individual UGRBs. In total,
82 UGRBs were found to have at least one paralogous
UGRB forming 39 groups.

Detection of UCNE orthologues in other species

Currently, UCNEbase contains information about UCNE
homologues (orthologues and paralogues) in 18 vertebrate
genome assemblies that include four mammals: mouse
(mm10), armadillo (dasNov1), opossum (monDom5)
and platypus (ornAna1); two birds: chicken (galGal3)
and zebra finch (taeGut1); two reptiles: lizard (anoCar2)
and painted turtle (chrPic1); one amphibian: Xenopus
(xenTro3) and five fishes: fugu (fr2), medaka (oryLat2),
stickleback (gasAcu1), Tetraodon (tetNig2) and zebrafish
(danRer7). We also identified a few UCNEs (mainly
located in UTRs) that have orthologues in lamprey
(petMar1), Ciona intestinalis (ci2), sea urchin (strPur2)
and lancelet (braFlo1). To identify these homologues, we
performed Smith–Waterman searches against the
complete genomes using the same protocol as for the
identification of paralogues within the human genome.
Once the homologous regions were defined, we

classified each of these regions as either an orthologue
or a paralogue. In doing so, we made the assumption
that a homologue of a human UCNE could be an
orthologue of the same UCNE or an orthologue of one
of its paralogous regions in the human genome. To
distinguish between these two cases, we compared each
homologue of a human UCNE with all human paralogues
of that UCNE (if there were any). If a better alignment
score (lower E-value) was obtained with a paralogue, then
the UCNE homologue was classified as paralogue. If the
alignment scores were very close, we visually inspected the
corresponding genomic regions and based our judgement
on orthology annotation for nearby genes or synteny with
other UCNE homologues.

Identification of syntenic subclusters of UCNEs in
vertebrate genomes

For each human UGRB, we identified ‘orthologous
syntenic subclusters’ of UCNEs in other vertebrates. An
orthologous syntenic subcluster is a set of UCNE
orthologues that occurs as a cluster on the same
chromosome, scaffold or contig in another vertebrate
genome assembly such that any two neighbouring
UCNEs are separated by �0.5Mb. For most species, we
would expect only one orthologous cluster per UGRB. In
reality, we often find one cluster plus a few isolated
orthologous UCNEs located on sequence contigs not
assigned to chromosomes. The situation could be different
in the five fish species that have undergone a lineage-
specific whole-genome duplication (see example in
Figure 1).

Identification of possible target genes

GRBs are generally assumed to control only one target
gene belonging to the so-called trans-dev family. With all
the information on orthologous and paralogous regions in
other genomes at hand, we tried to identify the most likely
target gene for each cluster. To this end, we primarily
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relied on a genomic context analysis approach.
We reasoned that target genes will always be conserved
together with UCNEs after whole-genome duplication
events. Based on the analysis of the gene content of
paralogous UGRBs in human and the fate of UGRB-
associated UCNEs in duplicated fish genomes, we were
often able to identify a single target gene. In the cases
where we were left with several candidates, we gave
preference to genes encoding transcription factors. In
fact, the overwhelming majority of target genes uniquely
defined by genomic context analysis turned out to be
transcription factors, most of them containing either
zinc fingers or homeodomains, or both.
Perhaps, we could have used transcriptional and

epigenetic features as well to single out the most likely
target genes from multiple candidates, as suggested by a
recent study (17). Technically, however, it is not obvious
how this should be done. We are currently exploring
several ways how such experimental data could be
exploited for target gene identification in the future.

UGRB and UCNE nomenclature

One of the distinctive features of UCNEbase is the
establishment of a coherent nomenclature for UCNEs
that ensures that orthologous UCNEs have the same
names in all species. These names may also serve as
unique identifiers for UCNEs, which is a real issue
because nowadays non-coding elements are often
referred to by genomic coordinates relating to a specific
genome assembly. If the corresponding genome assembly
is not mentioned, the location of the element will no
longer be traceable in a few years from now.
In UCNEbase, we try to define names that carry some

information about the function and genomic location of a
UCNE, as well as its evolutionary relationship to other
UCNEs. UCNE names are typically composed of two
parts: a UGRB name and an element name. For
example, DACH1_Ava and DACH1_Benjamin are two
UCNEs that belong to the DACH1 cluster. UGRBs
have the same name as their putative target genes.
Elements are identified by common people’s names or
names from mythology. Within a UGRB, the alphabetical
order of the elements reflects the linear arrangement of the
elements along a chromosome. Importantly, paralogous
UCNEs share the same element name (e.g.
DACH1_Hana is a paralogue of DACH2_Hana). For
elements that are not part of a UGRB, the corresponding
chromosome name replaces the block name, e.g.
chr2_Nemo. The rule that paralogues should have the
same name extends to non-clustered UCNEs (e.g.
chr10_Sherlock is a paralogue of CPEB2_Sherlock).
A small number of UCNEs are very close to each other

and thus could be part of the same functional entity. To
specifically mark such cases, UCNEs that are separated by
�50 bp in both human and chicken are given the
same element name, however extended by different
serial numbers (e.g. DACH1_Scheherazade_1 and
DACH1_Scheherazade_2). Note further that our naming
scheme is extensible by design. If we were to add a new
UCNE to an existing UGRB in the future, it will be easy

to find a name that alphabetically fits between the two
neighbouring UCNEs.

CONTENT AND USER INTERFACES

As UCNEbase is organized along two hierarchical levels,
there are two types of entries, UCNEs and UGRBs.
About 90% of UCNE entries are related to UGRBs.
There is only one entry per UCNE or UGRB, containing
information for all vertebrate species covered by the
resource. UCNEbase is organized in a human-centric
fashion. Each entry type has two parts: one providing
detailed information relating to the human genome and
a second part providing information on homologous
elements and clusters of elements in other species. There
is a standard html display for each entry with internal
links to paralogous conserved regions and external links
to other databases and genome browsers. The UCSC
genome browser is used as the major visualization
platform. A large part of the information contained in
UCNEbase is provided as browser-viewable BED files.

Content of a UCNE entry

The first part of a UCNE entry contains the following
data items:

. a unique name;

. the location relative to the nearest genes (intergenic,
intron or UTR);

. the genome coordinates in UCSC format;

. the length of the UCNE;

. the sequence in FASTA format;

. the names of overlapping genes (for intronic and
UTR-associated UCNEs), or the nearest upstream
and downstream genes (for intergenic UCNEs);

. a list of human paralogous UCNEs (identified by
name and genomic coordinates) and other paralogous
regions (identified by genomic coordinates only);

. the name of the corresponding UGRB (if any);

. cross-references to overlapping entries from the
CONDOR database (18), VISTA Enhancer Browser
(19) and Bejerano’s UCE collection (1).

The second part contains information about homologous
regions in other vertebrates. The regions are defined by
genomic coordinates and classified as either orthologues
or paralogues. In addition, the sequence identity, E-value
and bitscore of the local alignments are stored.

A web display of a UCNE entry is shown in Figure 2.
Note that all genomic coordinates are linked to the UCSC
genome browser through hyperlinks that automatically
pre-load a number of custom tracks from UCNEbase.
The web display also provides links to the Ancora (20),
ECR (21) and Ensembl (22) genome browser. Some
information contained in a UCNEs entry will not
automatically be displayed. The DNA sequence is only
accessible through a hyperlink. Under the section header
‘Conservation in other species’, only orthologous regions
are displayed initially. The paralogous regions can be
made visible by clicking on the ‘+’ button.
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Content of a UGRB entry

The main section of a UGRB entry contains the following
data items:

. a unique name corresponding to the most likely target
gene;

. the genome coordinates in UCSC format;

. the number of UCNEs forming the block;

. a list of all human genes associated with the block;

. a list of possible target genes (in most cases only one);

. a list of all UCNEs forming the block;

. a list of paralogous UGRBs;

The section on sequence conservation contains synteny
maps of UGRBs across multiple vertebrate genomes. A
complete synteny map for a given species consists of one
or several syntenic blocks referred to as ‘subclusters’. The
information associated with a subcluster comprises the
genomic coordinates, the number of orthologous
UCNEs and the names of these UCNEs.

An example of a web display of a UGRB entry is shown
in Figure 3. As for UCNE entries, the genomic
coordinates are all linked to the UCSC genome browser
and will automatically pre-load a number of custom
tracks. The web display also includes a locally stored
image (a UCSC browser snapshot) providing an

overview of orthologous UCNEs in different vertebrate
genomes (Figure 4A). It is initially hidden, but can be
made visible through an on–off button. Note that the
image shows only a part of the information contained in
the custom tracks provided by UCNEbase. A mouse click
on the image will open a UCSC genome browser window,
in which the tracks can be explored in more detail
(Figure 4B).

Data access and visualization

UCNEbase provides several query mechanisms to find
UCNEs and UGRBs based on different search criteria.
All entries can be accessed by their chromosomal
location in the human genome or by proximity to
particular genes through the web links ‘Browse UCNE
clusters’ and ‘Browse individual UCNEs’. The
‘Advanced search’ page allows searches by additional
criteria, including genomic location in other vertebrate
species. Yet another page provides access through
external database IDs from the CONDOR database,
VISTA Enhancer Browser and Bejerano’s UCEs
collection.
UCNEbase also provides three fully hyperlinked

summary tables, one containing a list of paralogous

Figure 2. Web display of a UCNE entry.
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UGRBs, another one containing a list paralogous UCNEs
and a third one (entitled ‘species cluster summary’)
showing the numbers of conserved UCNEs for each
UGRB in all species (Figure 5).
UCNEbase relies on the UCSC genome browser for

data visualization. A large part of the information
content is available as custom track files. This has the
principle advantage that information from UCNEbase
can be explored together with a great variety of genome
annotations from other sources. The UCSC browser also
serves as a navigation platform. All data items from
UCNEbase that can be displayed in a browser window
are back-linked to the corresponding UCNE and UGRB
entries. For instance, in the example shown in Figure 4B,
clicking on the blue box labelled ‘EBF1_Oberon’ will take
the user back to corresponding UCNEbase entry. From
there, one could use a link back to the genome browser to
view an orthologous UCNE from another species.
For the human genome, UCNEbase provides

custom tracks for UCNEs, UGRBs, UCNE paralogues,
CONDOR CNEs, Vista elements and UCEs from
Bejerano’s collections. In addition, there is a group of

tracks showing the subset of UCNEs conserved in
different species. For non-human species, there are
tracks for UCNE orthologues, UCNE paralogues and
subclusters of UCNEs corresponding to human UGRBs.

DISCUSSION

There are several other resources on CNEs with partially
overlapping objectives, in particular: CONDOR, CORG
(23), cneViewer (24), Ancora, VISTA Enhancer browser,
ECR browser and TFCONES (25). Despite a common
theme, the scopes of these resources are quite different
which makes a direct comparison difficult. For instance,
a significant portion of CONDOR and the VISTA
Enhancer browser consists of experimental annotation of
non-coding elements based on in vivo reporter gene assays
in zebrafish and mouse. Such information is not within the
scope of UCNEbase. Other resources are primarily
genome browsers. In the following, we will present and
discuss distinctive and unique features of UCNEbase.

UCNEbase is block-centric and provides complete
synteny maps of UGRBs for many different vertebrate

Figure 3. Web display of a UGRB entry.
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genomes, including orphan UCNEs located in
unassembled contigs. With the exception of CONDOR,
Ancora and TFCONES, all other resources do not
assign conserved regions to GRBs.

Most other resources cover fewer species. For instance,
cneViewer provides information for human and zebrafish
only, TFCONES for human, mouse and fugu. UCNEbase
covers 18 vertebrate genomes. Only Ancora and ECR

Figure 4. UCSC browser view of the EBF1 cluster with custom tracks from UCNEbase. (A) Summary picture of cross-genome conservation
provided by UCNEbase. (B) Detailed view of the ‘human/chicken UCNEs’ and ‘UCNE paralogues’ tracks accompanied by a dense view of the
tracks indicating conserved elements from other resources.
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browser offer data for a comparable number of species.
Some existing resources are restricted to selected
genomic regions. TFCONES considers only CNEs near
transcription factor genes. The CONDOR database
excludes elements outside synteny blocks.
With the exception of CONDOR and VISTA Enhancer

browser, none of the other resources uses unique
identifiers. CNEs are simply defined by genomic
coordinates which will be outdated when a new genome
assembly replaces the current one. UCNEbase is the only
resource that uses informative names, indicating the
evolutionary relationships between elements.
UCNEbase is highly interoperable with the UCSC

genome browser. Most other resources display the data
in their own browsers. Virtually all information from
UCNEbase is available in custom tracks that are
automatically pre-loaded by the hyperlinks to the USCS
browser. This allows exploration of its content in a rich
data environment.

DATABASE AVAILABILITY AND TECHNICAL
SPECIFICATIONS

UCNEbase is publicly available at http://ccg.vital-it.ch/
UCNEbase/ without need of preregistration. All data
can be downloaded from the UCNEbase web site as flat
files or as MySQL dumps, or by anonymous FTP from
ftp://ccg.vital-it.ch/UCNEbase/.
UCNEbase is maintained as relational database using

MySQL as database management system. The web
interface was created with PHP and Java scripts and
runs on an Apache web server hosted by the Vital-IT
high-performance computing centre. The database
schema diagram (ER model) is available from the
UCNEbase web site.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Methods.
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