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S

A random sample of curves can be usually thought of as noisy realisations of a
compound stochastic process X(t)=Z{W (t)}, where Z(t) produces random amplitude
variation and W (t) produces random dynamic or phase variation. In most applications it
is more important to estimate the so-called structural mean m(t)=E{Z(t)} than the cross-
sectional mean E{X(t)}, but this estimation problem is difficult because the process Z(t)
is not directly observable. In this paper we propose a nonparametric maximum likelihood
estimator of m(t). This estimator is shown to be √n-consistent and asymptotically normal
under the assumed model and robust to model misspecification. Simulations and a real-
data example show that the proposed estimator is competitive with landmark registration,
often considered the benchmark, and has the advantage of avoiding time-consuming and
often infeasible individual landmark identification.

Some key words: Curve registration; Functional data; Longitudinal data; Phase variation; Time warping.

1. I

Multivariate datasets often consist of discrete observations of continuous curves. A
classical example is the longitudinal analysis of growth data. Although the data consist
of vectors, classical multivariate techniques that do not take into account the underlying
smoothness of the curves are either very inefficient or must resort to strong model
assumptions that are dubious in many applications. Ramsay & Silverman (1997, 2002)
make a strong case for the nonparametric approach to the statistical analysis of samples
of curves.
A characteristic feature of samples of curves, as opposed to samples of arbitrary vectors,

is the presence of time variability. Figure 1(a) illustrates this problem well, showing four
representative leg-growth velocity curves for boys, vertically shifted for better visualisation.
These are raw velocity curves, obtained directly from leg-length data without smoothing.
The peaks of maximal pubertal growth occur approximately at 14 years of age, but the
exact timing and amplitude vary from person to person. The cross-sectional mean, see
Fig. 1(c), is a poor estimate of the average growth velocity, not so much because of its



802 D G  T G

Fig. 1: Leg-growth velocity of boys. (a) Four representative
raw sample curves and (b) the corresponding aligned and
smoothed curves. (c) Cross-sectional sample mean of growth
velocity in cm/year. (d) Nonparametric maximum likelihood
estimator of the structural mean, solid line, and smoothed
cross-sectional mean, dashed line, of growth velocity in

cm/year.

roughness, which can be smoothed out with any of the well-known univariate smoothing
methods, but mainly because it grossly underestimates the average growth velocity at the
pubertal peak, a direct consequence of time variability. Figure 1(b) shows the same sample
curves smoothed and aligned using the techniques that will be introduced in this paper,
and Fig. 1(d) shows the resulting estimator of mean growth velocity.
Several recent methods for handling time variability involve aligning the curves so as

to remove most of the time variability prior to averaging. The method generally considered
to be the benchmark is landmark registration (Kneip & Gasser, 1992). The procedure
consists of identifying a set of salient features in all the curves, such as local extrema or
zero crossings, monotonically transforming the curves so that the transformed landmarks
of each curve coincide with the average landmarks, and then computing the average of
the aligned curves. The disadvantage of landmark registration is that a completely auto-
mated identification of landmarks is often not possible. The researcher must then identify
the landmarks curve by curve, which is infeasible for large datasets. For this reason,
alternative methods have been sought; see Silverman (1995), Ramsay & Li (1998), Kneip
et al. (2000), Wang & Gasser (1999), Rønn (2001) and Gervini & Gasser (2004). These
methods differ greatly in terms of range of applicability, computational complexity and
theoretical background.
To make the discussion more formal, we assume that our sample curves are n

independent realisations of a compound stochastic process X(t)=Z{W (t)}, where Z(t)
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produces random amplitude variability and W (t) produces random time variability, and
it is therefore assumed to be monotone increasing with probability one. The researcher
usually wants to estimate m(t)=E{Z(t)}, the so-called structural mean (Kneip & Gasser,
1992), rather than the cross-sectional mean E{X(t)}. Kneip & Engel (1995) showed that
the mean of landmark-registered curves is a consistent estimator of m under certain con-
ditions. Consistency, however, holds under the assumption that the number of observations
per individual, m, goes to infinity and the number of individuals n is held fixed; moreover,
the rate of convergence depends on the smoothing bandwidth used to extract the individual
landmarks. Consistency of the estimators of Wang & Gasser (1999) and Gervini & Gasser
(2004) is also proved for m going to infinity and n fixed. However, this type of asymptotics
is intrinsically inadequate in most applications, in which individuals are random rather
than fixed factors. On the other hand, the articles of Silverman (1995), Ramsay & Li
(1998) and Kneip et al. (2000) do not provide any kind of consistency results for their
estimators.
In contrast, the nonparametric maximum likelihood estimator of Rønn (2001) is

√n-consistent and asymptotically normal as n goes to infinity and m is fixed; this has
been proved by B. Rønn and I. Skovgaard in an unpublished technical report of the
Royal Veterinary and Agricultural University, Frederiksberg. This is the relevant type of
asymptotics when the number of random curves is large but the number of observations
per curve is fixed and relatively small. The human growth data shown in Fig. 1 and
analysed later in § 7 are a typical example of this. Rønn’s method was derived under the
assumption that the warping process is a scalar random shift, which is too simplistic in
most applications. For example, the growth curves in Fig. 1(a) have fixed endpoints and
present two growth spurts, the mid-growth spurt about age 7 and the pubertal spurt about
age 14, whose locations vary independently of each other; obviously, the use of a single
random shift for the whole curve is inadequate.
However, the idea of estimating m by maximum likelihood is appealing because it avoids

individual identification of landmarks. In fact, it avoids estimation of individual parameters
altogether, since individual random effects are integrated out rather than estimated. This
is why consistency of m@ as n goes to infinity is attainable. What we propose in this paper
is nonparametric maximum likelihood estimation with more flexible families of warping
functions. As by-products, we derive individual predictors for the warping functions W

i
(t)

and the amplitude process Z
i
(t). Bootstrap methods for constructing confidence bands

for m(t) are also proposed.

2. T   

As explained in § 1, we will assume that the dataset {x1 , . . . , xn}, with x
i
µRm

i
, consists

of discrete and noisy realisations of stochastic processes X
i
: T �R, with T=[a, b], so

that x
ij
=X
i
(t
ij
)+e
ij
, where {e

ij
} are independent and identically distributed random

errors and {t
i1

, . . . , t
im
i

}5T is an input grid that may be different for each individual.
The processes X1 (t), . . . , Xn (t) are assumed to be independent and identically distributed
realisations of a stochastic process X(t)=Z{W (t)}. The warping process will be para-
metrically modelled as W (t)=g(t, h), where g is a fixed, known function, monotone
increasing in t for every h. The parameter hµRp will be considered to be an unobservable
random effect. Possible families of warping functions g and distributions for h will be
discussed in § 3.
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For the amplitude component a reasonable model would be

Z(t)=m(t)+ ∑
q

k=1
j
k
w
k
(t), (1)

where m and {w
k
} are fixed unknown functions, ∆b

a
w
k
(t)w
l
(t)dt=d

kl
, and {j

k
} are

independent zero-mean random variables with finite variances. This is a truncation of
the Karhunen–Loève decomposition Z(t)=m(t)+W2

k=1
j
k
w
k
(t), which holds for any

square-integrable stochastic process. Unfortunately, simultaneous maximum likelihood
estimation of m and the components {w

k
} is very complicated. For simplicity, we will

derive the maximum likelihood estimator of m for a model without variance components.
It is shown later, by simulations and example, that this maximum likelihood estimator
provides good estimates of m even under the general variance-component model (1).
As working model, then, let us assume the mean-plus-error model

x
ij
=m{g(t

ij
, h
i
)}+e

ij
, e
ij
~N(0, s2 ), (2)

with h
i
and e

ij
independent. Under this model, x

i
|h
i
~N[m{g(t*

i
, h
i
)}, s2I

m
i

], where
t*
i
= (t
i1

, . . . , t
im
i

)T ; here and in the rest of the paper, evaluation of a univariate function
at a vector is understood in a componentwise sense. The loglikelihood function is

L (m, s2 )= ∑
n

i=1
log P f (x

i
|h; m, s2 ) f (h)dh,

where f (x
i
|h; m, s2 ) denotes the conditional density of x

i
given h

i
=h and f (h) is the density

of h.
The estimating equation for s@2 is easily derived. Since

∂ f (x
i
|h
i
; m, s2 )

∂(s2 )
=C− m

i
2s2
+
dx
i
−m{g(t*

i
, h
i
)}d2

2(s2 )2 D f (xi |hi ; m, s2 ),
we have

∂L (m, s2 )

∂(s2 )
= ∑
n

i=1

1

f (x
i
; m, s2 ) P C− m

i
2s2
+
dx
i
−m{g(t*

i
, h)}d2

2(s2 )2 D f (xi |h; m, s2 ) f (h)dh,
where f (x

i
; m, s2 ) is the marginal density of x

i
. Since ∂L (m@ , s@2 )/∂(s2 )=0, we obtain the

following fixed-point expression:

s@2=
1

Wn
i=1

m
i
∑
n

i=1
P dxi−m@{g(t*

i
, h)}d2 f (h|x

i
; m@ , s@2 )dh. (3)

An estimating equation for m@ can be derived using Gateaux differentials. Let M be
the parameter space of m, which is a linear subspace of L2 (T ), the space of bounded
measurable functions T �R. Since m@ maximises L (m, s@2 ) for all mµM, the directional
loglikelihood L (m@+th, s@2 ) is maximised at t=0 for every hµM. Then

d

dt
L (m@+th, s@2 )K

t=0
=0, (4)

for all hµM. After straightforward algebra we obtain

d

dt
L (m@+th, s@2 )K

t=0
=

1

s@2
∑
n

i=1
P [x

i
−m@{g(t*

i
, h)}]Th{g(t*

i
, h)} f (h|x

i
; m@ , s@2 )dh.
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Let w
ij
( . |x
i
; m, s2 ) be the conditional density of g(t

ij
, h) given x

i
. Then

P [x
i
−m@{g(t*

i
, h)}]Th{g(t*

i
, h)} f (h|x

i
; m@ , s@2 )dh= ∑

m
i

j=1
P {x

ij
−m@ (s)}w

ij
(s|x
i
; m@ , s@2 )h(s)ds,

so that (4) is equivalent to

P k
n
(s; m@ , s@2 )h(s)ds=0, (5)

for all hµM, where

k
n
(s; m, s2 )=

1

s2
∑
n

i=1
∑
m
i

j=1
{x
ij
−m(s)}w

ij
(s|x
i
; m, s2 ).

Estimating equations (3) and (5) are asymptotically unbiased, since for the true parameters
(m, s2 ) we have

E[{x
ij
−m(s)}w

ij
(s|x
i
; m, s2 )]=P {x

j
−m(s)}w

ij
(s|x; m, s2 ) f (x; m, s2 )dx

= f
g(t
ij
,h)

(s) P {x
j
−m(s)} f

x|g(t
ij
,h)

(x|s; m, s2 )dx

=0,

for all sµT , and

E(E[dx
i
−m{g(t*

i
, h)}d2 |x

i
])=E(E[dx

i
−m{g(t*

i
, h)}d2 |h])=m

i
s2.

The estimating equation (5) for m@ is not very useful as it is, but for certain parametric
spaces it is possible to derive more explicit equations. For example, if M is the space of
continuous functions C (T ), then (5) holds if and only if k

n
(s; m@ , s@2 )=0 almost everywhere

in T , which implies that

m@ (s)=
Wn
i=1
Wmij=1

x
ij
w
ij
(s|x
i
; m@ , s@2 )

Wn
i=1
Wmij=1

w
ij
(s|x
i
; m@ , s@2 )

, (6)

almost everywhere in T . However, the space C(T ) is too large to provide reasonably
smooth estimates of m. Moreover, there is no guarantee that L (m, s@2 ) attains a maxi-
mum in C (T ). For practical and theoretical reasons, discussed in § 5 below and in the
technical report by Rønn and Skovgaard mentioned earlier, M must be restricted to be
a compact subspace of C (T ). Since L (m, s@2 ) is continuous in m, it attains a maximum in
any compact space M.
Equation (6) has an interesting intuitive interpretation. At each s, m@ (s) is a weighted

average of {x
ij
}, where w

ij
(s|x
i
; m@ , s@2 ) puts more weight on those x

ij
’s for which g(t

ij
, h) is

expected to be close to s and x
ij
is not far from its current expected value m@{g(t

ij
, h)}.

Thus, (6) provides a sort of automatic curve alignment and smoothing, since the weights
are smooth functions of s. Note that, following this intuition, we can use

ZC
i
(t)=

Wmij=1
x
ij
w
ij
(t|x
i
; m@ , s@2 )

Wmij=1
w
ij
(t|x
i
; m@ , s@2 )

(7)

as estimates of the registered curves Z
i
(t)=X

i
{W −1
i

(t)}.
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Estimating equations similar to (4) can be derived for the mean and the components
of the general variance-component model (1). However, explicit estimating equations
like (6) or even (5) cannot be obtained, so that the estimators have to be numerically
computed using, for instance, a rather cumbersome functional Newton–Raphson method
(Luenberger, 1969, Ch. 10). A more practical compromise is to estimate m with the maxi-
mum likelihood estimator of the mean-plus-error model derived above, and then estimate
the factors {w

k
} using the principal components of the registered functions {ZC

i
}, as in

Ramsay & Silverman (1997, Ch. 6).
Estimation of the individual effects {h

i
} may also be of interest in some situations, as

we will see in § 7. This can be done with the conditional expectation E(h|x
i
; m@ , s@2 ) or

with the conditional mode arg max f (h|x
i
; m@ , s@2 ). The conditional mode estimator has an

interesting interpretation: since

arg max f (h|x
i
; m@ , s@2 )=arg minA 12s@2 ∑mi

j=1
[x
ij
−m@{g(t

ij
, h)}]2− log{ f (h)}B , (8)

this is a penalised least squares estimator, with a penalty term−log{ f (h)} that shrinks h@
i

towards the mode of f (h). Except for the penalty term, this is similar to the Procrustes
registration method of Silverman (1995), which minimises the sum of squares with respect
to both parameters m and h. Procrustes registration has a tendency to ‘overwarp’ the data,
producing deformed estimates of m; see the example of Ramsay & Silverman (2002, p. 113).
To some extent this is a problem of all registration methods that estimate m simultaneously
with the individual effects. Our method avoids this problem by estimating m independently
of the h

i
’s.

3. W 

In § 2 we derived the maximum likelihood estimator m@ for a generic warping function
g(t, h) and a generic distribution f (h) of the random effect. For a successful practical
implementation of the maximum likelihood estimator, it is important to specify a warping
model that is versatile enough but does not have too many parameters; note that equations
(3) and (5) involve multi-dimensional integrals in h.
One possibility is to take g(t, h) as a linear combination of I-splines with fixed knots
(Ramsay, 1988), where h is the vector of basis coefficients. Another possibility is to take
g(t, h)=a+ (b−a)c(t, h)/c(b, h), where c(t, h)=∆t

a
ew(s,h)ds, w(s, h) is a linear combination

of B-splines with fixed knots and h is again the vector of basis coefficients (Ramsay, 1998).
The problem with both of these models is that it is unclear what a reasonable distribution
for h might be. Moreover, it may be necessary to use a large number of basis functions
to obtain enough model flexibility, which complicates the computation of m@ .
What we propose is to take h as a vector of knots, rather than basis coefficients.

Intuitively, we may think of h as a vector of ‘hidden landmarks’. With this interpretation,
a reasonable family of distributions for h is the truncated normal, with density

f (h)3 a
p

k=1

1

t
k
QAhk−h0kt

k
B I{a<h1< . . .<h

p
<b}, (9)

with h01< . . .<h
0p
. The h

0k
’s can be associated with salient features of m, such as peaks

and troughs, which in many practical situations will provide a good fit even with a small
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dimension p. For example, for the growth curves in Fig. 1 we use a two-dimensional h,
where each coordinate is associated with a growth spurt. The actual form of g(t, h) is not
so important as long as the monotonicity in t is ensured and the following identifiability
conditions are satisfied: g(a, h)=a, g(b, h)=b and g(h

k
, h)=h

0k
, for k=1, . . . , p. In §§ 6

and 7 we use shape-preserving cubic polynomial interpolation (Fritsch & Carlson, 1980),
as implemented in the Matlab function pchip.
The unknown parameters h0 and t could, in principle, be incorporated in the likelihood

function and estimated together with m and s2, but in practice this is very time consuming.
A workable alternative is to try a few values of h0 and t suggested by visual inspection
of the data, and keep those with largest likelihood. In our experience, this approach works
well in practice because the maximum likelihood estimator is robust to misspecification
of f (h); see §§ 6 and 7.
A more refined way of determining p, h0 and t is by means of the ‘structural intensity’
method of Gasser & Kneip (1995). This method consists of computing a nonparametric
density estimator of the number of local maxima; the modes of the density reveal the most
important landmarks and their approximate distributions. This method only requires
identification of the set of local maxima for each curve, which can be done in a fully auto-
mated way, as opposed to landmark registration, which requires specific identification of
local maxima and usually cannot be carried out without human interaction. For example,
a given growth curve may have more than just two local maxima, because of under-
smoothing or otherwise; whereas landmark registration requires precise identification of
the growth spurts among these local maxima, the structural intensity method only requires
identification of all the local maxima.

4. C 

The estimators m@ and s@2 can be iteratively computed using the fixed-point expressions
(3) and (6). As initial estimators, the simplest choices are s@2(0)=Wn

i=1
Wmij=1

(x
ij
−x: )2/nm

and m@ (0) (t)=Wn
i=1

xA i (t)/n, where xA i (t) is obtained from x
i1

, . . . , x
im
i

by interpolation; we
use piecewise cubic interpolation. A potential problem with using equation (6) to update
the estimate of m is that the algorithm may not converge; remember that estimating
equation (5) is always satisfied by m@ , but this is not necessarily the case with equation (6).
There are algorithms with guaranteed convergence, such as the steepest ascent algorithm
(Luenberger, 1969, Ch. 10), that defines m@ (k) (t))m@ (k−1) (t)+a

k
k
n
(t; m@ (k−1), s@2(k−1) ) where the

step a
k
is chosen to maximise the likelihood function in the direction of k

n
(s; m@ (k−1), s@2(k−1) ).

However, finding the optimal step a
k
involves many recomputations of the likelihood

function and is very time consuming. We think it is more practical to use the reweighting
algorithm suggested by equation (6). When this algorithm converges, it finds a solution
of (5) and thus a stationary point of the loglikelihood function. We have used this algorithm
for all simulations and data analyses in this paper and have not found any convergence
problems.
The hardest part to implement efficiently is the computation of the p-dimensional inte-
grals involved in equations (3) and (6). We use Monte Carlo integration: a random sample
{h(1), . . . , h(N)} is generated from f (h) and, for instance, f (x

i
; m@ , s@2 )=∆ f (x

i
|h; m@ , s@2 ) f (h)dh

is approximated by f@ (N) (x
i
))WN

l=1
f (x
i
|h(l) ; m@ , s@2 )/N. The other integrals are estimated in a

similar way.
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The computation of w
ij
(s|x
i
; m@ , s@2 ), on the other hand, requires a more careful approach.

Since

w
ij
(s|x
i
; m@ , s@2 )=

d

ds P I{g(t
ij
, h)∏s} f (h|x

i
; m@ , s@2 )dh

=
d

ds P I{g(t
ij
, h)∏s}

f (x
i
|h; m@ , s@2 )

f (x
i
; m@ , s@2 )

f (h)dh,

we use a kernel-smoothed Monte Carlo integral:

w@ (N,l)
ij

(s|x
i
))

1

N
∑
N

l=1

1

l
Kqg(t

ij
, h(l) )−s

l r f (xi |h(l) ; m@ , s@2 )f@ (N) (x
i
)

. (10)

As K(t) we take the Epanechnikov kernel K(t)=0·75(1−t2 )I{|t|∏1}, and as tentative l
we take the average oversmoothing bandwidth (Wand & Jones, 1995, p. 61),

l=A 243c
1

35c2
2
NB1/5 1

Wn
i=1

m
i
∑
n

i=1
∑
m
i

j=1
s
ij
, (11)

where s
ij
is the sample standard deviation of {g(t

ij
, h(1) ), . . . , g(t

ij
, h(N) )}, c

1
=∆ K2 (x)dx

and c
2
=∆ x2K(x)dx. In particular, for the Epanechnikov kernel we have c1=35

and
c2=15

.
At this point it is important to remark that the maximum likelihood estimator itself

does not depend on any bandwidths. If a closed expression for w
ij
(s|x
i
; m, s2 ) existed, it

would not be necessary to use the smoother w@ (N,l)
ij

(s|x
i
). It turns out, however, that the

conditional density w
ij
never has a closed expression in practice, and must be estimated.

The choice of l will determine the smoothness of w@ (N,l)
ij

(s|x
i
) and this, in turn, will determine

the smoothness of m@ . In our experience, (11) provides a reasonable bandwidth or at least
a good initial guess; a plot of m@ will clearly tell the user when a smaller or a larger
bandwidth is advisable.

5. A  

In this section we prove that the maximum likelihood estimator of m is consistent and
asymptotically normal as the number of curves n goes to infinity. Let us assume that
{x1 , . . . , xn} are independent and identically distributed, so that m

i
=m and the input

grids {t
i1

, . . . , t
im
} are the same for all i. For simplicity of notation, we will also assume

that the error variance s2 is known, but it is clear that Theorem 1 can be extended to
simultaneous estimation of m and s2 in a straightforward manner.
Given xµRm, let l

x
(m)= log f (x; m). The maximum likelihood estimator m@ maximises

L
n
(m))E

n
{l
x
(m)}, where E

n
denotes expectation with respect to the empirical measure.

Then m@ always exists if M is compact, because L
n
(m) is continuous; it is Fréchet differ-

entiable, as shown in Theorem 2 in the Appendix, and Fréchet differentiability implies
continuity (Luenberger, 1969, p. 173). Let L 0 (m))E0{lx (m)} be the asymptotic log-
likelihood function, where E0 is the expectation under the mean-plus-error model (2)
with parameter m0 . If model (2) is identifiable, then m0 is the unique maximiser of L 0 (m);
see the proof of part (i) of Theorem 1. The assumption that model (2) is identifiable is
clearly necessary for consistency. A simple modification of the identifiability proof of
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Gervini & Gasser (2004) shows that model (2) is identifiable provided m is piecewise
strictly monotone, i.e. without ‘flat’ parts, and the warping model g(t, h) is identifiable;
this is true of the cubic spline model proposed in § 3. For a precise definition of the
supremum norm, tensor product and covariance functional used in the following theorem,
see the Appendix.

T 1. If M is compact and model (2) is identifiable, then the following hold.
(i ) (Strong consistency). We have pr{lim

n�2
dm@−m0d=0}=1.

(ii) (Asymptotic normality). If D denotes the diVerential, let T)E0{Dl
x
(m0 )EDl

x
(m0 )},

which coincides with−E0{D2lx (m0 )} under model (2). T hen √n(m@−m0 ) converges in
distribution to a Gaussian process with mean zero and covariance functional T−1 in
the space (M, d .d ).

The strong consistency of m@ in the supremum norm implies that m@ (t)� m0 (t) almost
surely for all tµT . The asymptotic normality of √n(m@−m0 ) as a stochastic element of
(M, d .d ) implies that the finite-dimensional projections are asymptotically normal in
the classical multivariate sense; that is, given an arbitrary vector t*= (t1 , . . . , tM ),√n{m@ (t*)−m0 (t*)} converges in distribution to an M-variate Normal distribution with
covariance matrix explicitly computable from the covariance functional T. In principle,
asymptotic confidence bands for m0 could be derived from this result, but we have found
that such bands tend to be too narrow in practice, having finite-sample coverage levels
much smaller than the nominal asymptotic levels. For that reason, we see Theorem 1
mainly as a qualitative result that shows that the nonparametric maximum likelihood
estimator is able to attain the parametric consistency rate n−D.
Although Theorem 1, as given above, applies only to the maximum likelihood estimator

for the mean-plus-error model (2), a similar result can be obtained for the maximum
likelihood estimator of the general variance-component model (1). However, for the
reasons indicated in § 2, we think that the latter estimator is impractical. The simulations
and the example in §§ 6 and 7 show that the maximum likelihood estimator of the mean-
plus-error model does not have a much larger bias under the general variance-component
model, so that bootstrap methods based on this estimator can be used for inference under
the more general model.
To construct confidence bands for m we propose two bootstrap procedures. The simplest
one is based on the so-called wild bootstrap; take B bootstrap samples {x*

1
, . . . , x*

n
}

from the sample {x1 , . . . , xn}, find the corresponding maximum likelihood estimates
{m@*
1
(t), . . . , m@*

B
(t)}, and construct confidence bands for m using the empirical percentiles

of this sample.
The second method, which we call model-based bootstrap, consists of the following

steps.

Step 1. Find the maximum likelihood estimates m@ and s@2, individual predictors {h@
i
} and

registered curves {ZC
i
(t)}, as defined in (7).

Step 2. Using the spectral decomposition of the covariance matrix of {ZC
i
(t)}, find esti-

mates of the components {w@
k
} and the individual scores {j@

ik
} of the variance-component

model (1), and choose the number of components q. Define the residuals

e@
ij
=x
ij
−m@{g(t

j
, h@
i
)}− ∑

q

k=1
j@
ik
w@
k
{g(t
j
, h@
i
)}.



810 D G  T G

Step 3. Repeat the following B times.
(a) Take independent bootstrap samples {h@*

i
} from {h@

i
}, {(j@*

i1
, . . . , j@*

iq
)} from

{(j@
i1

, . . . , j@
iq
)}, and {e@*

ij
} from {e@

ij
}. Define the pseudo-observations

x*
ij
=m@{g(t

j
, h@*
i
)}+ ∑

q

k=1
j@*
ik
w@
k
{g(t
j
, h@*
i
)}+e@*

ij
.

(b) Find the maximum likelihood estimate m@* for the bootstrapped dataset
{x*
1
, . . . , x*

n
}.

Step 4. Construct confidence bands for m using the empirical percentiles of
{m@*1 (t), . . . , m@*B (t)}.

As a referee pointed out, model-based bootstrap has an advantage over wild boostrap
when the curves are observed at different time points: the model-based approach preserves
the original time points, while the wild approach will result in some time points being
observed multiple times and others not at all, which can give very poor results.

6. S

6·1. Monte Carlo scenarios

In this section we study by simulation the finite-sample performance of the maximum
likelihood estimator and of the bootstrap confidence bands. In particular, we compare
the performance of maximum likelihood registration with the two most commonly used
methods, landmark registration and continuous monotone registration (Ramsay & Li,
1998), under different models of amplitude and time variability.
The variance-component model (1) is very general and includes very many special cases.

Here we focus on a few nontrivial situations in which dealing with time variability is
problematic and the advantages or disadvantages of different methods are easy to see.
Therefore, as structural mean m(t) we took a function with three prominent landmarks,
two peaks and a trough; see Fig. 2. To be specific, m(t)=b3 (t)−b4 (t)+b5 (t), where
b1 (t), . . . , b7 (t) are the cubic B-spline basis functions in [0, 1] with knots {0·4, 0·5, 0·6}.
Samples were generated from the mean-plus-error model (2) and also from the variance-
component model (1) with q=1 and w1 (t)=b4 (t), shown in Fig. 2. As input grid we
took m=30 equispaced points in [0, 1]. The component w1 was standardised so that

Fig. 2: Simulated models. (a) Mean function m(t) and (b) amplitude
variance component w1 (t). Asterisks indicate function values at

input grid points.
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Wm
j=1
w2
1
(t
j
)/m=1. The component scores {j

i1
} followed a N (0, l1 ) distribution with

l1=0·75×0·102. The errors {eij} had a N (0, s2 ) distribution with s=0·10 for the
mean-plus-error model and s=0·10√0·25 for the variance-component model. Note that
both models have the same overall amplitude variance, E{Wm

j=1
Z2 (t
j
)}=0·102m, but

differently split between systematic amplitude variability and random noise. For the
variance-component model, 75% of the amplitude variance is associated with w1 . As
warping model we took a piecewise cubic monotone function g(t, h) with h following a
truncated normal distribution, with parameters h0= (0·25, 0·50, 0·75), corresponding to
the peaks and the trough of m, and t=0·05× (1, 1, 1).
The maximum likelihood estimate was computed with the algorithm described in § 4,

which implicitly assumes that the mean-plus-error model is the correct one. For g(t, h) we
used the correct model and also two misspecified models: h0= (0·25, 0·75) and h0=0·50,
with the scale parameters always equal to 0·05. Explicitly, we consider the following
scenarios.

Scenario 1. The data are generated from the mean-plus-error model, so that the maxi-
mum likelihood estimator assumes the right amplitude variability and time-warping
models.

Scenario 2. The data are generated from the variance-component model. The maximum
likelihood estimator assumes the right warping model but the amplitude variability model
is misspecified.

Scenario 3. The data are generated from the mean-plus-error model. The maximum
likelihood estimator assumes the right amplitude variability model but a misspecified
two-landmark model, corresponding to the peaks, is used.

Scenario 4. The data are generated from the mean-plus-error model. The maximum
likelihood estimator assumes the right amplitude variability model but a misspecified
one-landmark model, corresponding to the trough, is used.

6·2. Comparison with landmark registration

It is impossible to simulate proper landmark registration in this set-up, since it requires
individual smoothing of the curves and careful identification of the landmarks, which
cannot be done in a fully automated way. Therefore, we had to consider two simplified
procedures, one that we call ‘oracle’ landmark registration and uses the actual realisations
of h as landmarks, and one that we call ‘raw’ landmark registration and uses the two
local maxima and the minimum of the  smoother of the curves as landmarks. A
properly implemented landmark registration will show an intermediate behaviour between
these two simplified methods. For sampling Scenarios 3 and 4 we also considered two
misspecified warping models, one that takes only the peaks as landmarks and one that
takes only the trough as landmark.
Each sampling scenario was replicated 1000 times. As sample sizes we took n=50 and

n=100, but the results were qualitatively similar, so we only report results for n=50.
Simulated biases and root mean squared errors, as function of t, are shown in Fig. 3. The
performance of the maximum likelihood estimator when both amplitude and warping
components are well specified, Scenario 1, is comparable to that of oracle landmark
registration. Misspecifying amplitude variability, Scenario 2, increases the variance of the
maximum likelihood estimator but not the bias; in fact, the bias at the trough is smaller
here than for Scenario 1.
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Fig. 3: Simulated models. Biases (a)–(d) and root mean squared errors (e)–(h) of maximum likelihood
estimation, shown by solid lines, oracle landmark registration, dashed lines, and raw landmark registration,
dotted lines, for Scenario 1 in (a) and (e), for Scenario 2 in (b) and (f ), for Scenario 3 in (c) and (g), and for

Scenario 4 in (d) and (h). Note the different scales for the vertical axes of (c) and (g).

The robustness of the maximum likelihood estimator to underspecification of landmarks
is remarkable. As Fig. 3(c) shows, the bias of landmark registration at the trough is
four times as large as the bias of the maximum likelihood estimator; it is practically as
large as the bias of the cross-sectional mean, not shown. This behaviour has a simple
explanation: the maximum likelihood estimator minimises a lack-of-fit criterion that,
although not optimal for Scenarios 2–4, still penalises large shape deviations from the
structural mean. On the other hand, landmark registration relies solely on the specified
landmarks; since no lack-of-fit criterion is minimised, the method cannot compensate for
missing landmarks, even when it is plain to see that the shape of the resulting estimator
is not representative of the sample curves, as in Scenario 3.

6·3. Comparison with continuous monotone registration

Continuous monotone registration was proposed by Ramsay & Li (1998) as a fully
nonparametric alternative to landmark registration. This method does not require identi-
fication, or even existence, of landmarks. To compare maximum likelihood estimation
with continuous monotone registration, we simulated the data using a warping model
that is not associated with any landmarks. We took g(t, h) such that

∂2 log{g−1 (t, h)}
∂t2

= ∑
5

k=1
c
k
b
k
(t),

with {b
k
(t)} cubic B-spline basis functions with equispaced knots in [0, 1] and {c

k
}

independent and identically distributed coefficients following a Un(−1, 1) distribution.



813Nonparametric curve estimation

Fig. 4: Simulated models. Biases (a)–(d) and root mean squared errors (e)–(h) of maximum likelihood
estimation, shown by solid lines, and continuous monotone registration, dashed lines, for Scenario 1 in
(a) and (e), for Scenario 2 in (b) and (f ), for Scenario 3 in (c) and (g), and for Scenario 4 in (d) and (h).

The same B-spline basis was used for registration, to avoid roughness penalisation of the
warping functions and the consequent problem of choosing the smoothing parameter,
which is excessively time consuming for this method. We used the software provided by
James Ramsay in his website.
The raw data were generated from the same mean-plus-error model and a variance-

component model as in § 6·2. However, since continuous monotone registration cannot
be applied to raw data, we pre-smoothed the observations using penalised regression
splines with 20 cubic B-spline basis functions with equispaced knots, choosing the smooth-
ing parameter by generalised crossvalidation. The maximum likelihood estimator was
computed on discretisations of these smooth curves on a grid of m=30 equispaced points.
As regards the warping models assumed for maximum likelihood registration, we con-
sidered again the four Scenarios 1–4 as in § 6·2. Each sampling situation was replicated
1000 times, with n=50 curves per sample.
The results are summarised in Fig. 4. Biases and mean squared errors were computed

with 10% trimmed means because a few samples produced very outlying estimates for the
continuous monotone registration method. We see that it makes little difference which
warping model is used for the maximum likelihood estimator. This method outperforms
continuous monotone registration in all scenarios. In particular, maximum likelihood
provides much more accurate estimation than continuous monotone registration at the
peaks. The explanation for this behaviour is that continuous monotone registration
minimises a criterion that penalises misalignment at the trough much more strongly than
misalignment at the peaks. In contrast, maximum likelihood estimation explicitly penalises
misalignment at the peaks in Scenarios 1–3, thus providing better estimates even when
the assumed warping models were not the true ones.
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6·4. Confidence band coverage

Finally, we ran some simulations to evaluate the finite-sample accuracy of the boot-
strapped confidence intervals proposed in § 5. Two hundred datasets were generated for
Scenarios 1 and 2, with n=50 and m=30. Five hundred bootstrap samples were taken
for each dataset and confidence bands of nominal level 90% were constructed. Figure 5
shows the simulated coverage levels and average lengths. As expected, the coverage
level deteriorates at the peaks and the trough, as usually happens with nonparametric
estimators. Wild bootstrap intervals show a more stable coverage level around the nominal
value, and, while they tend to be wider, in the present situation they seem to be preferable
to model-based bootstrap bands. In models with more variance components, however,
model-based bootstrap may produce wider confidence bands and have better coverage,
as in the example shown in § 7.

Fig. 5: Simulated data. Pointwise coverage levels and mean lengths of
model-based, shown by solid lines, and wild, dashed lines, bootstrapped
confidence bands for mean-plus-error model in (a) and (c), and for variance-

component model in (b) and (d).

7. A: A    

The First Zurich Growth Longitudinal Study produced a large number of datasets,
consisting of measurements of different parts of the body taken from birth to adulthood.
One of the goals of the researchers was to estimate the mean growth velocity curve, in
order to characterise the growth spurts. Gasser et al. (1991) estimated individual velocity
and acceleration curves using Gasser–Müller kernel smoothers, and computed landmark
registration means using eight landmarks, namely the four zero crossings and the four
local extrema observable in typical acceleration curves.
Here we report the analysis of leg-growth velocity from 3 to 21 years of age. We chose leg

measurements because these curves have prominent mid-growth spurts, in addition to the
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well-known pubertal spurt. For girls, both spurts occur in close succession and are roughly
of the same size, complicating the registration process. The observed data consisted of
leg-length measurements taken annually from 3 to 9 years and biannually from then on.
From these measurements we computed raw velocities by finite differentiation, taking the
midpoints of age intervals as input grid. This yields a total of m=29 observations per
person, for 112 girls and 120 boys.
The maximum likelihood estimate was computed using a two-dimensional warping

model. Implicitly, we are interpreting h as the location of the growth spurts. We tried
several values of h0 and t and chose those that maximised the loglikelihood function:
for girls, h0= (7, 12) and t= (1, 1); for boys, h0= (7, 14) and t= (1, 1). The maximum
likelihood estimate was computed on an output grid of 100 equispaced points between
3·5 and 20·5 years.
For comparison, we also computed landmark registration means of smooth velocities,

using the growth spurts as landmarks. The comparison is somewhat unfair with the
maximum likelihood estimate, which is computed on much noisier raw velocities.
Nevertheless, we can see in Fig. 6 that the maximum likelihood estimate is very close to
the landmark registration mean for both sexes and, in particular, the mid-growth spurts
are well determined.
Figure 6 also plots individual predictors {h@

i1
} and {h@

i2
} against growth spurt locations.

The observed strong association supports our interpretation of the random effects h
i
as

‘hidden landmarks’.

Fig. 6: Leg-growth data. Estimates of mean growth velocity in cm/year for
girls (a) and boys (c) obtained by nonparametric maximum likelihood,
shown by solid lines, landmark registration, dashed lines, and cross-
sectional mean, dotted lines. Scatter plots of mid-growth spurt location
versus h@1 , shown by circles, and pubertal-spurt location versus h

@
2 , asterisks,

for girls (b) and boys (d).
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We also obtained 90% confidence bands for the means, based on 1000 bootstrap samples
for each method and each sex. As explained in § 5, to apply model-based bootstrap the
number of variance components in the model has to be determined. For each sex we
estimated the 50 leading components and their variances, finding that the first six com-
ponents explain, respectively, 23, 16, 15, 14, 9 and 7 percent of the total variance for girls,
and 24, 15, 13, 11, 8 and 6 percent of the total variance for boys. We chose q=4 for both
sexes, discarding those components that explain less than 10% of the amplitude variance.
The resulting confidence bands are shown in Fig. 7 together with landmark registration
means, which can be seen as the ‘true means’ in this example. We observe that model-
based bootstrap produces somewhat wider confidence bands than wild bootstrap and has
better coverage. Among other things, a useful inference that can be drawn from the con-
fidence bands is that the mid-growth spurt is a real structural feature of the growth process
and not just an artifact of undersmoothing. Since most classical parametric models miss
the growth spurt, its actual existence was debated in the early 80’s, when it was first
detected and characterised by nonparametric methods.

Fig. 7: Leg-growth data. Confidence bands of level 90%, shown by solid lines,
and landmark registration means, dashed lines, of leg-growth velocities in
cm/year for girls shown in (a) and (c), and for boys in (b) and (d). Confidence
bands obtained by model-based bootstrap in (a) and (b), and wild bootstrap

in (c) and (d).

8. D

The registration method proposed in this paper has a number of advantages over
existing methodology. It does not require individual landmark identification or pre-
smoothing of the data, and its implementation is considerably less time consuming and
complicated than continuous monotone registration. As we see it, maximum likelihood
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registration combines appealing properties of both landmark and continuous monotone
registration: like continuous monotone registration, it minimises a lack-of-fit criterion and
is thus robust to misspecification of the warping model; like landmark registration, it
explicitly models time variability at the salient features of the curves, which makes the
warping model flexible and parsimonious at the same time.
We foresee a number of extensions and modifications of this method that can be more

suitable for some particular situations. For instance, when the number of observations
per curve is large and the data are very noisy, it may be worth considering spline
models for m, rather than the full nonparametric approach of this paper. This will
reduce the estimation problem to a more manageable finite-dimensional optimisation, and
simultaneous estimation of the mean and the variance components may be less cumber-
some. Of course, this would also introduce the problem of knot placement and selection,
or roughness penalisation and selection of smoothing parameters, so more research is
needed before we can make claims about the relative merits of each approach.
We also think that this method can be extended to fields of applications that

require more complex warping models, such as image alignment, more easily than other
registration methods. This is currently being investigated by the authors.
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A

T echnical details about asymptotic results

We introduce some basic concepts on differentiation in functional spaces; a more detailed
treatment, with applications to optimisation of functionals, is given in Luenberger (1969, Ch. 7).
Let (S1 , d .d1 ) and (S2 , d .d2 ) be normed linear spaces and F :S1�S2 ; F is said to be
Fréchet differentiable at aµS1 if there is a linear functional DF(a) :S1�S2 such thatdF(a+b)−F(a)−DF(a)bd2=o(dbd1 ). When DF(a) is itself differentiable as a function of a in the
norm dDF(a)d=sup{dDF(a)bd2 : dbd1∏1}, F is said to be twice Fréchet differentiable and the
second differential is denoted by D2F(a). These definitions will be applied to S1=MkL2 (T )
equipped with the sup norm, d f d=sup

tµT
| f (t)|, andS2=R with the usual absolute value as norm.

For Theorem 1 we also need to define the tensor product of functionals: for each hµS1 , F1EF2h
is defined as the functional (F2h)F1 , and, for a pair (h1 , h2 )µS2

1
, F1EF2 (h1 , h2 )= (F2h1 )(F1h2 ).

T A1. Given xµRm, let l
x
(m)= log f (x; m). T hen l

x
:L2 (T )�R is twice Fréchet

diVerentiable at every mµL2 (T ). T he first diVerential is given by

Dl
x
(m)h=P k

x
(s; m)h(s)ds,

where

k
x
(s; m)=

1

s2
∑
m

j=1
{x
j
−m(s)}w

j
(s|x; m)
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and w
j
(s|x; m) is the conditional density of g(t

j
, h) given x. T he second diVerential is given by

D2l
x
(m)(h

1
, h
2
)=P P rx (s, t)h1 (s)h2 (t)ds dt+P gx (s)h1 (s)h2 (s)ds−Dl

x
(m)EDl

x
(m)(h

1
, h
2
),

where

r
x
(s, t)=

1

s4
∑
m

j=1
∑
m

k=1
kNj

{x
j
−m(s)}{x

k
−m(t)}v

jk
(s, t|x; m),

g
x
(s)=

1

s4
∑
m

j=1
[{x
j
−m(s)}2−s2]w

j
(s|x; m),

and v
jk

(s, t|x; m) is the joint conditional density of (g(t
j
, h), g(t

k
, h)) given x.

Proof. We only need to show that f (x; m) is twice differentiable as a function of m for each x,
and it will follow that Dl

x
(m)=D f (x; m)/ f (x; m) and

D2l
x
(m)=D2 f (x; m)/ f (x; m)−{D f (x; m)ED f (x; m)}/ f 2 (x; m).

Given xµRm, let F
x
(v)= (2ps2 )−m/2 exp(−dx−vd2/2s2 ). This function is twice differentiable for

every vµRm, and the differentials are DF
x
(v)=F

x
(v)s−2 (x−v)T and

D2F
x
(v)=F

x
(v)s−4 (x−v)(x−v)T−F

x
(v)s−2I.

Then the residuals R(1)
x

(v, w)=F
x
(v+w)−F

x
(v)−DF

x
(v)w and

R(2)
x

(v, w)=DF
x
(v+w)−DF

x
(v)−D2F

x
(v)w

are o(dwd) for each v.
Now, since f (x; m)=∆ F

x
[m{g(t*, h)}] f (h)dh, it is not difficult to show that

D f (x; m)h=P DF
x
[m{g(t*, h)}]h{g(t*, h)} f (h)dh, (A1)

D2 f (x; m)(h
1
, h
2
)=P h

2
{g(t*, h)}TD2F

x
[m{g(t*, h)}]h

1
{g(t*, h)} f (h)dh. (A2)

To prove this, note that

f (x; m+h)− f (x; m)−D f (x; m)h=P R(1)
x

[m{g(t*, h)}, h{g(t*, h)}] f (h)dh

and, since dh{g(t*, h)}d∏√mdhd,

| f (x; m+h)− f (x; m)−D f (x; m)h|
dhd

∏√mP |R(1)x [m{g(t*, h)}, h{g(t*, h)}]|
dh{g(t*, h)}d

f (h)dh.

By dominated convergence, the right-hand side goes to zero as dhd goes to zero and then (A1)
holds. For the second differential, we have that

{D f (x; m+h
1
)−D f (x; m)−D2 f (x; m)h

1
}h
2
=P h

2
{g(t*, h)}TR(2)

x
[m{g(t*, h)}, h

1
{g(t*, h)}] f (h)dh

and then

dD f (x; m+h
1
)−D f (x; m)−D2 f (x; m)h

1
d∏P dR(2)x [m{g(t*, h)}, h

1
{g(t*, h)}]d f (h)dh.

Again, this implies that dD f (x; m+h1 )−D f (x; m)−D2 f (x; m)h1d=o(dh1d) and then (A2) holds.
%
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The first and second differentials of L
n
(m) are Y

n
(m))E

n
Dl
x
(m) and Ẏ

n
(m))E

n
D2l
x
(m), respect-

ively. The asymptotic versions of these functions are obtained by substituting E
n
with E0 , and will

be respectively denoted by Y0 and Ẏ0 . Being a maximum of L n , m@ is a zero of Yn in the functional
sense; that is, Y

n
(m@ )h=0 for all h=M. Similarly, m0 maximises L

0
and then Y0 (m0 )h=0 for all

hµM, which can be verified by direct calculation.

Proof of T heorem 1. (i) First, note that L 0 has a unique maximum at m0 : since log x∏2(√x−1)
for all x�0, we have

L
0
(m)−L

0
(m
0
)=P logq f (x; m)

f (x; m
0
)r f (x; m

0
)dx

∏2qP √ f (x; m)√ f (x; m
0
)dx−1r

=−P {√ f (x; m)−√ f (x; m
0
)}2dx.

Then L 0 (m)<L 0 (m0 ) whenever mNm0 , because the last integral is strictly negative for all mNm0 ,
by identifiability.
On the other hand, by Theorem 19.4 of van der Vaart (1998) we have sup

mµM
|L
n
(m)−L 0 (m)|� 0

almost surely. This theorem applies because |l
x
(m1 )−l

x
(m2 )|∏maxmµMdDl

x
(m)ddm1−m2d, and

then the finiteness of the bracketing numbers required by this theorem follows from the compactness
of M.
In a compact space, almost sure uniform convergence of L

n
and uniqueness of the maxi-

miser of L 0 imply strong consistency of m@ n . To see this, take a realisation {m@ (v)
n

} such that
dm@ (v)
n
−m
0
d�/ 0; here v denotes an element in the underlying probability space. By compactness

of M, there is a subsequence m@ (v)
n
k

that converges to certain m*Nm0 . For this subsequence we
have L

0
(m@ (v)
n
k

)� L
0
(m*), and also L (v)

n
k

(m
0
)∏L (v)

n
k

(m@ (v)
n
k

); if v were such that dL (v)
n
−L
0
d� 0, this

would imply that L 0 (m0 )∏L 0 (m*), contradicting the uniqueness of m0 as maximiser of L 0 . Therefore,dm@ (v)
n
−m
0
d�/ 0 implies that dL (v)

n
−L d�/ 0, and hence pr(dm@

n
−m0d�/ 0)=0.

(ii) Since Y
n
(m@ )=Y0 (m0 )=0 in the functional sense, we can write −√n{Y0 (m@ )−Y0 (m0 )}=

√n(Y
n
−Y0 ) (m0 )+r

n
with r

n
=√n(Y

n
−Y0 ) (m@−m0 ). The first step of this proof is to show thatdr

n
d=o

P
(1). Let G

n
=√n(E

n
−E0 ) denote the empirical process. Then √n(Y

n
−Y0 ) (m@−m0 )h=

G
n
y
m@,h
, where y

m,h
(x)={Dl

x
(m)−Dl

x
(m0 )}h. The family {ym,h : (m, h)µM×M} is a Donsker class

because it is Lipschitz in (m, h), with a square-integrable Lipschitz factor, and the parameter space
M×M is compact (van der Vaart, 1998, Theorem 19.5). Then, since m@�m0 in probability, we
have that sup

hµM
|G
n
y
m@,h
|� sup

hµM
|Gy
m
0
,h
| in distribution, where G is a Gaussian element with

zero mean and covariance

E(Gy
m
1
,h
1

Gy
m
2
,h
2

)=E
0
{y
m
1
,h
1

(x)y
m
2
,h
2

(x)}−E
0
{y
m
1
,h
1

(x)}E{y
m
2
,h
2

(x)}.

Since y
m
0
,h
¬0 for all h, it follows that sup

hµM
|G
n
y
m@,h
|� 0 in distribution, which is just another

way of writing dr
n
d=o

P
(1).

We now find the limiting distribution of √n(Y
n
−Y0 )(m0 ). Again, we can write

√n(Y
n
−Y0 ) (m0 )h=Gnjh ,

where j
h
(x)=Dl

x
(m0 )h. As before, {j

h
: hµM} is a Donsker family, so that G

n
j
h
�Gj

h
in distri-

bution, uniformly in h, where G is a zero-mean Gaussian element with covariances given by
E(Gj

h
1

Gj
h
2

)=E
0
{j
h
1

(x)j
h
2

(x)}−E
0
{j
h
1

(x)}E
0
{j
h
2

(x)}=Th
1
h
2
. This together with dr

n
d=o

P
(1)

imply that √n{Y0 (m@ )−Y0 (m0 )} converges to a Gaussian random element with mean zero
and covariance operator T. Since Ẏ0 (m0 )=E0{D2lx (m0 )}=−TN0, the functional delta method
(van der Vaart, 1998, Theorem 20.8) applied to Y−1

0
implies that √n(m@−m0 ) converges in distri-

bution to a Gaussian random element with mean zero and variance operator T−1. %
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