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On the overconcentration problem of strong lensing clusters
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ABSTRACT
� cold dark matter paradigm predicts that galaxy clusters follow a universal mass density
profile and fit a well-defined mass–concentration relation, with lensing clusters being pref-
erentially triaxial haloes elongated along the line of sight. Oddly, recent strong and weak
lensing analyses of clusters with a large Einstein radius suggested those haloes to be highly
overconcentrated. Here, we investigate what intrinsic shape and orientation a halo should
have to account for both theoretical predictions and observations. We considered a sample
of 10 strong lensing clusters. We first measured their elongation assuming a given mass–
concentration relation. Then, for each cluster, we found the intrinsic shape and orientation
which are compatible with the inferred elongation and the measured projected ellipticity. We
distinguished two groups. The first one (nearly one-half) seems to be composed of outliers
of the mass–concentration relation, which they would fit only if they were characterized by
a filamentary structure extremely elongated along the line of sight, that is not plausible con-
sidering standard scenarios of structure formations. The second sample supports expectations
of N-body simulations which prefer mildly triaxial lensing clusters with a strong orientation
bias.

Key words: gravitational lensing – methods: statistical – galaxies: clusters: general – cos-
mology: observations.

1 IN T RO D U C T I O N

Clusters of galaxies, the most recent bound structures to form in
a hierarchical cold dark matter (CDM) model with a cosmological
constant (�CDM), offer important clues to the assembly process of
structure in the universe. N-body simulations are successful in fitting
large-scale structure measurements and are able to make detailed
theoretical predictions on dark matter halo properties (Navarro,
Frenk & White 1997; Bullock et al. 2001; Diemand, Moore & Stadel
2004; Duffy et al. 2008), but some disagreement with observations
still persists. One possible conflict between �CDM and measure-
ments is the detection of extremely large Einstein radii in massive
lensing cluster (Broadhurst & Barkana 2008; Sadeh & Rephaeli
2008; Oguri & Blandford 2009; Zitrin, Broadhurst, Rephaeli &
Sadeh 2009). The Einstein radius mirrors the mass contained in
the inner regions, and its measurement is quite model-independent.
Even if a universal Navarro–Freank–White (NFW) density profile
(Navarro, Frenk & White 1996; Navarro et al. 1997) reproduces
many characteristics of massive lenses, such haloes should be over-
concentrated to fit the data.

The concentration parameter measures the halo central density,
which depends on the assembly history and thereby on the time of
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formation. The halo concentration is then expected to be related to its
virial mass, with the concentration decreasing gradually with mass
(Bullock et al. 2001). Concentrations of massive galaxy clusters are
then a crucial probe of the mean density of the universe at relatively
late epochs. State-of-the-art models of cosmic structure formation
suggest that galaxy cluster concentrations decrease gradually with
virial mass. However, cluster observations have yet to firmly confirm
this correlation.

On the observational side, the situation at present is still un-
clear due to the plurality of methods employed (Comerford &
Natarajan 2007). The observed concentration–mass relation for
galaxy clusters has a slope consistent with theoretical prediction
from simulations, though the normalization factor seems to be
higher (Comerford & Natarajan 2007). A critical point is that
concentrations measured in massive lensing clusters appear to
be systematically larger than X-ray concentrations (Comerford &
Natarajan 2007). A similar, though less pronounced, effect is also
found in simulations (Hennawi et al. 2007), which show that mas-
sive lensing clusters are usually elongated along the line of sight.
Oguri & Blandford (2009) showed that the larger the Einstein ra-
dius, the larger the overconcentration problem, with clusters looking
more massive and concentrated due to the orientation bias.

The overconcentration bias seems to be much larger in obser-
vations than in simulations. Broadhurst et al. (2008) inferred sig-
nificantly high concentrations for four nearly relaxed high-mass

C© 2010 The Authors. Journal compilation C© 2010 RAS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/85214898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2078 M. Sereno, P. Jetzer and M. Lubini

clusters. Such a trend has been recently exacerbated with the anal-
ysis of the largest known Einstein radius in MACS J0717.5+3745
(Zitrin et al. 2009). Oguri et al. (2009) found that the data from a
sample of 10 clusters with strong and weak lensing features were
highly inconsistent with the predicted concentration parameters,
even including a 50 per cent enhancement to account for the lensing
bias (Oguri & Blandford 2009). On the other hand, Okabe et al.
(2009) found that the correlation in the c–M relation, as measured
in a sample of 19 clusters with significant weak lensing signal that
were well fitted by an NFW profile, was marginally compatible with
predictions for both slope and normalization.

Different definitions of parameters for spherically averaged pro-
files can play a role when comparing observations to predictions
(Broadhurst & Barkana 2008). Triaxiality issues were addressed
by Corless, King & Clowe (2009), who derived weak lensing con-
straints on three strong lensing clusters without assuming a spherical
halo model. The large errors that accompany triaxial parameter es-
timates can make observations compatible, even if marginally, with
theoretical predictions. Investigations in the weak lensing regime
demonstrated that neglecting halo triaxiality can lead to over and
underestimates of up to 50 per cent and a factor of 2 in halo mass
and concentration, respectively (Corless & King 2007). An anal-
ysis of AC 114 using only strong lensing data and accounting for
triaxiality also supported that projection effects play a major role in
the estimate of the concentration (Sereno, Lubini & Jetzer 2009).
Finally, analyses of stacked weak lensing clusters of lesser mass do
not exhibit the high-concentration problem (Johnston et al. 2007;
Mandelbaum, Seljak & Hirata 2008), in agreement with theoretical
findings (Oguri & Blandford 2009).

Several effects can play a role: overconcentrated clusters have a
larger lensing cross-section (Hennawi et al. 2007); strong lensing
clusters preferentially sample the high-mass end of the cluster mass
function (Comerford & Natarajan 2007); while extreme cases of
triaxiality are rare, such haloes can be much more efficient lenses
than their more spherical counterparts (Oguri & Blandford 2009);
the strongest lenses in the universe are expected to be a highly
biased population preferentially orientated along the line of sight
(Hennawi et al. 2007; Oguri & Blandford 2009); estimates of lensing
concentrations can be also inflated due to substructures close to
the line of sight (Puchwein & Hilbert 2009). On the other hand,
contamination of weak lensing catalogues can lead to underestimate
the concentration (Limousin et al. 2007).

In order to check the �CDM paradigm is then crucial to account
for all possible biases when comparing theoretical relations with
lensing observations. Such approach was taken in Broadhurst &
Barkana (2008), who derived the probability distribution of Einstein
radii from concentration distributions found in N-body simulations.
Also after considering that lensing clusters are intrinsically over-
concentrated and that the inherent triaxiality of CDM haloes along
with the presence of substructure enhances the projected mass in
some orientations, they found that theoretical predictions are ex-
cluded at a 4σ significance. Sadeh & Rephaeli (2008) reached
a similar conclusion. They implied the Einstein radius distribu-
tion from the probability distribution of cluster formation times
and from a formation redshift–concentration scaling derived from
N-body simulations. However due to various inherent uncertainties,
the statistical range of the predicted distribution may be significantly
wider than commonly acknowledged.

Here, we compare measurements with theoretical predictions
from semi-analytical investigations and N-body simulations avoid-
ing some possible biases connected to spherical averaging. The
paper is as follows. In Section 2, we review the predictions from ei-

ther N-body simulations or semi-analytical investigations. Section 3
discusses how projected quantities are related to intrinsic parame-
ters for an ellipsoidal cluster. In Section 4, we develop our inversion
method which under some given a priori hypotheses allows to infer
intrinsic mass, concentration and elongation of a lensing cluster;
the method is then applied to a sample of 10 strong lensing clusters.
In Section 5, we compare the observed distributions of elongation
along the line of sight and ellipticity in the plane of the sky to
different theoretical predictions. Section 6 exploits the previously
inferred geometrical parameters to predict the intrinsic axial ratios
and the orientation of the clusters in the sample. Finally, Section 7
is devoted to a summary and to some final considerations.

Throughout the paper, we assume a flat �CDM cosmology with
density parameters �M = 0.3, �� = 0.7 and a Hubble constant
H 0 = 100 h km s−1 Mpc−1, h = 0.7. We quote uncertainties at the
68.3 per cent confidence level.

2 TH E O R E T I C A L P R E D I C T I O N S

High-resolution N-body simulations have shown that the density
profiles of dark matter haloes are successfully described as NFW
density profiles (Navarro et al. 1996, 1997), whose 3D distribution
follows

ρNFW = ρs

(r/rs)(1 + r/rs)2
, (1)

where ρs is the characteristic density and rs is the characteristic
length-scale. N-body simulations showed as well that haloes are
aspherical and that such profiles can be accurately described by
concentric triaxial ellipsoids with aligned axes (Jing & Suto 2002).
An NFW equivalent profile whose density is constant on a family
of similar, concentric, coaxial ellipsoids is obtained by replacing
the spherical radius r with an ellipsoidal radial variable ζ in the
intrinsic orthogonal framework centred on the cluster barycentre,
and whose coordinates, x i,int, are aligned with its principal axes,

ζ 2 ≡
3∑

i=1

e2
i x

2
i,int, (2)

where ei are the intrinsic axial ratios. Without loss of generality, we
can fix e1 ≥ e2 ≥ e3 = 1. In the following, we will also use the
inverse ratios, 0 < q i = 1/ei ≤ 1.

According to recent N-body simulations (Neto et al. 2007; Duffy
et al. 2008; Gao et al. 2008; Macciò, Dutton & van den Bosch 2008),
the dependence of dark matter halo concentration c on halo mass M
and redshift z can be adequately described by a power law

c = A(M/Mpivot)
B (1 + z)C. (3)

Since several assumptions were used by competing groups, results
can be somewhat different, in particular as far as the overall nor-
malization is concerned. Several values for the linear amplitude of
mass fluctuations σ 8 were considered. The higher σ 8, the earlier
the formation epoch for haloes of a given mass. Here, we follow
Duffy et al. (2008), who used the cosmological parameters from
Wilkinson Microwave Anisotropy Probe 5 (σ 8 = 0.796) and found
{A, B, C} = {5.71 ± 0.12, − 0.084 ± 0.006, − 0.47 ± 0.04} for
a pivotal mass Mpivot = 2 × 1012 M� h−1 in the redshift range 0–2
for their full sample of clusters.

By separately studying the distribution of NFW profile parame-
ters both for the general halo population and for the lensing popu-
lation (i.e. haloes weighted by their strong lensing cross-section),
Hennawi et al. (2007) showed that the distribution of 3D concentra-
tions of the lens population is the same as that of the general halo

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 403, 2077–2087



Are lensing clusters overconcentrated? 2079

population except for a shift upwards by a factor of ∼17 per cent. In
the following, we will then also consider an enhanced c–M relation
for lensing clusters, with A ∼ 6.68. Note that such increased value
of A could be also seen as due to a larger value of σ 8.

N-body simulations prefer mildly triaxial haloes. Jing & Suto
(2002) investigated the probability distribution of intrinsic axial
ratios and proposed a universal approximating formula for the dis-
tribution of minor to major axis ratios,

P (q1) ∝ exp

[
− (q1 − qμ/rq1 )2

2σ 2
s

]
, (4)

where qμ = 0.54, σ s = 0.113 and

rq1 = (Mvir/M∗)0.07�M(z)0.7
, (5)

with M∗ the characteristic non-linear mass at redshift z. The condi-
tional probability for q2, the ratio of the intermediate to the major
axis length, goes as

P (q1/q2|q1) = 3

2(1 − rmin)

[
1 − 2q1/q2 − 1 − rmin

1 − rmin

]
(6)

for q1/q2 ≥ rmin ≡ max [q1, 0.5], whereas is null otherwise. The
lensing population has nearly the same triaxiality distribution as
the total cluster population (Hennawi et al. 2007). This could be
explained as the result of two counterbalancing effects. Whereas
both triaxiality and concentration increase the lensing cross-section,
the shape of a dark halo is correlated with its concentration, with
more concentrated clusters being more spherical.

For comparison, we will also consider a flat distribution for the
axial ratios, such that

P (q1) = 1 (7)

for the full range 0 < q1 ≤ 1 and

P (q2|q1) = (1 − q1)−1 (8)

for q2 ≥ q1 and zero otherwise. The resulting probability for q2

is then P (q2) = ln (1 − q2)−1. Such a flat distribution allows also
for very triaxial clusters (q1 � q2 
 1), which are preferentially
excluded by N-body simulations.

Finally, semi-analytical (Oguri & Blandford 2009) and numeri-
cal (Hennawi et al. 2007) investigations showed a large tendency
for lensing clusters to be aligned with the line of sight. Denoting
the angle between the major axis and the line of sight as θ , such
condition can be expressed as (Corless et al. 2009)

P (cos θ ) ∝ exp

[
− (cos θ − 1)2

2σ 2
θ

]
, (9)

with σ θ = 0.115. For comparison, we will also consider a population
of clusters randomly oriented, i.e.

P (cos θ ) = 1 (10)

for 0 ≤ cos θ ≤ 1.

3 PRO J E C T I O N O F TR I A X I A L H A L O E S

Dealing with ellipsoidal haloes, we need generalized definitions for
the intrinsic NFW parameters. We follow Corless & King (2007),
who defined a triaxial virial radius r200 such that the mean density
contained within an ellipsoid of semimajor axis r200 is 	 = 200
times the critical density at the halo redshift; the corresponding
concentration is c200 ≡ r200/r s. Then, the characteristic overdensity
is expressed in terms of c200 as for a spherical profile,

δc = 200

3

c200

ln(1 + c200) − c200/(1 + c200)
. (11)

The virial mass, M200, is the mass within the ellipsoid of semima-
jor axis r200, M200 = (800π/3)q1q2r

3
200ρcr. Such defined c200 and

M200 have small deviations with respect to the parameters computed
fitting spherically averaged density profiles, as done in N-body sim-
ulations. The only caveat is that the spherical mass obtained in sim-
ulations is significantly less than the ellipsoidal M200 for extreme
axial ratios (Corless & King 2007). However, since the dependence
of the concentration on the mass is quite weak, see equation (3),
this will have negligible effects on our analysis.

Three rotation angles relate the intrinsic to the observer’s co-
ordinate system, i.e. the three Euler’s angles, θ , ϕ and ψ . After
alignment of the observer’s coordinate system with the direction
connecting the observer to the cluster centre, the line of sight has
polar angles {θ , ϕ − π/2} in the intrinsic system. With a third
rotation, ψ , we can properly align the coordinate axes in the plane
of the sky. If not stated otherwise, we will line up such axes with
the axes of the projected ellipses.

When viewed from an arbitrary direction, quantities constant
on similar ellipsoids project themselves on similar ellipses (Stark
1977). In general, the projected map F 2D on the plane of the sky and
the intrinsic spheroidal volume density F 3D are related by (Stark
1977; Sereno 2007)

F2D(ξ ; lP, pi) = 2√
f

∫ ∞

ξ

F3D(ζ ; ls, pi)
ζ√

ζ 2 − ξ 2
dζ, (12)

where ξ is the elliptical radius in the plane of the sky, ls is the
typical length-scale of the 3D density, lP is its projection on the
plane of the sky, pi are the other parameters describing the intrinsic
density profile (slope, etc.) and f is a function of the cluster shape
and orientation,

f = e2
1 sin2 θ sin2 ϕ + e2

2 sin2 θ cos2 ϕ + cos2 θ ; (13)

the subscript P denotes measurable projected quantities.
Let us see in some details how the parameters describing the

projected map depend on the intrinsic shape and orientation of
the 3D distribution. The axial ratio of the major to the minor axis
of the observed projected isophotes, eP(≥ 1), can be written as
(Binggeli 1980),

eP =
√

j + l + √
(j − l)2 + 4k2

j + l − √
(j − l)2 + 4k2

, (14)

where j, k and l are defined as

j = e2
1e

2
2 sin2 θ + e2

1 cos2 θ cos2 ϕ + e2
2 cos2 θ sin2 ϕ, (15)

k = (
e2

1 − e2
2

)
sin ϕ cos ϕ cos θ, (16)

l = e2
1 sin2 ϕ + e2

2 cos2 ϕ. (17)

In the following, we will also use the ellipticity ε = 1 − 1/eP.
The observed scalelength lP is the projection on the plane of the

sky of the cluster intrinsic length (Stark 1977),

lp ≡ ls

(
eP

e1e2

)1/2

f 1/4. (18)

Equation (18) can be rewritten as

ls√
f

≡ lP

e	

, (19)

where the parameter e	 quantifies the elongation of the triaxial
ellipsoid along the line of sight (Sereno 2007),

e	 =
(

eP

e1e2

)1/2

f 3/4. (20)
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The quantity lP/e	 represents the half-size (along the line of sight)
of the ellipsoid as seen from above, i.e. perpendicularly to the line
of sight. If e	 < 1, then the cluster is more elongated along the
line of sight than wide in the plane of the sky. The smaller the e	

parameter, the larger the elongation. In the following, we will use
as an elongation parameter also a geometrical factor

fgeo ≡ (e1e2)1/2

f 3/4
= e

1/2
P

e	

. (21)

Summarizing, the surface density can be expressed in terms of
projected quantities as

F2D = lP

e	

f2D(ξ ; eP, ψ ; lP; pi, . . .), (22)

where f 2D has the same functional form as for a spherically sym-
metric halo. In order to write equation (22) in its actual form, we
exploited that the integral in ζ in equation (12) is proportional to
the intrinsic scalelength ls. The dependence on the elongation e	

is decoupled from the dependence on the apparent ellipticity and
inclination. The other parameters characterizing the 3D profile only
account for the radial dependence of the projected density. Then,
when we deproject a surface density, the normalization of the vol-
ume density can be known only apart from a geometrical factor.
Note that in our notation, the elliptical radius is written as a func-
tion of the coordinates in the plane of the sky as

ξ 2 = (
x2

1 + e2
Px

2
2

)
(ls/lP)2, (23)

so that in order to obtain the elliptical projection from the corre-
sponding spherical halo we have (i) to multiply the overall profile
by 1/

√
f and (ii) to substitute the polar spherical radius with ξ .

The intrinsic scalelength has then to be expressed in terms of the
projected one (see equation 19).

4 LENSING INVERSION

For gravitational lensing studies, the projected map of interest is
the surface mass density. We will describe the projected NFW den-
sity in terms of the strength of the lens κ s, see equation (24), and
of the projected length-scale rsP, i.e. the two parameters directly
inferred by fitting projected lensing maps. The projected surface
mass density � of these density profiles is expressed in terms of
the convergence κ , i.e. in units of the critical surface mass density
for lensing, �cr = (c2 Ds)/(4πGDdDds), where Ds, Dd and Dds are
the source, the lens and the lens-source angular diameter distances,
respectively. According to our notation in Section 3, for an NFW

profile, the intrinsic ls and the projected lP lengths have to be read
as rs and rsP, respectively.

The central convergence of an NFW profile estimated from lens-
ing can be written in terms of c200 and the projected length-scale
modulus a factor of f geo (Sereno et al. 2009),

�cr × κs = fgeo√
eP

ρsrsP, (24)

where as usual ρs = δcρcr(z) with ρcr being the critical density
of the universe at the cluster redshift. The concentration enters
equation (24) through δc (see equation 11). The estimate of the mass
M200 depends also on the scalelength rs which is known modulus a
factor of

√
f /e	 (see equation 19). Then

M200 = 4π

3
× 200ρcr × (c200rsP)3 fgeo

e
3/2
P

. (25)

In order to estimate M200 and c200 from the projected NFW pa-
rameters directly inferred from the lensing analysis, we need to
know the elongation of the cluster. The problem is intrinsically de-
generate and cannot be solved based on lensing information alone,
even in the ideal case of observations without noise. If a cluster is
elongated along the line of sight, the concentration parameter and
the virial mass estimated from lensing are overestimated (Gavazzi
2005; Oguri et al. 2005). On the other hand, there are more ineffi-
cient lensing orientations for a triaxial halo than there are efficient
ones (Corless et al. 2009).

4.1 Data sample

We compiled a sample of strong lensing clusters drawing from pre-
existing lensing analyses. As selection criteria, we retained only
clusters that are well defined by a single dark matter halo and whose
lensing data were fitted with an elliptical NFW model. Table 1
lists the final cluster sample, together with corresponding NFW
parameters and references to where the lensing analyses were per-
formed. For clusters that do not have published arc/multiple images
redshift, we assumed a source redshift zs = 2.5. Many input data
were originally presented with asymmetric uncertainties. To ob-
tain unbiased estimates, we applied correction formulae for the
mean and standard deviation as given by equations (15) and (16) in
D’Agostini (2004). Note that there are different definitions for the
elliptical radius, which affect the numerical value of the projected
scalelength. We took care to translate published data to the notation
in the present paper. Furthermore, some studies exploited elliptical
NFW potential instead of elliptical mass density. When necessary,

Table 1. The strong lensing cluster data sample.

Name zd zs κs rsP(kpc h−1) ε refa

Abell 1703 0.28 0.888 0.19 ± 0.04 540 ± 90 0.37 ± 0.035 1
MS 2137.3−2353 0.313 1.501 0.67 ± 0.07 112 ± 11 0.226 ± 0.015 2
AC 114 0.315 3.347 0.22 ± 0.02 680 ± 70 0.502 ± 0.018 3
ClG 2244−02 0.33 2.237 0.18 ± 0.02 300 ± 30 0.242 ± 0.015 4
SDSS J1531+3414 0.335 1.096 1.2 ± 0.8 210 ± 110 0.47 ± 0.23 1
SDSS J1446+3032 0.464 – 3.2 ± 2.0 110 ± 50 0.62 ± 0.34 1
MS 0451.6−0305 0.55 0.917 0.28 ± 0.03 350 ± 30 0.425 ± 0.015 4
3C 220.1 0.62 1.49 0.18 ± 0.02 320 ± 30 0.497 ± 0.015 4
SDSS J2111−0115 0.637 – 7.1 ± 1.5 57 ± 11 0.46 ± 0.27 1
MS 1137.5+6625 0.783 – 0.26 ± 0.03 330 ± 30 0.300 ± 0.015 4

Note. References: 1 stands for Oguri et al. (2009); 2 for Gavazzi (2005); 3 for Sereno et al. (2009) and 4 for Comerford et al.
(2006). For clusters with multiple image systems, we picked out one source redshift (Column 2). The central convergence κs

for the NFW model refers to such redshift; rsP is the projected scalelength.
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Table 2. Concentration, mass and elongation for each cluster inferred through lensing inversion assuming as a prior either a standard
or an enhanced mass–concentration relation.

Name Standard c200–M200 Enhanced c200–M200

c200 M200(1014 M� h−1) e	 c200 M200(1014 M� h−1) e	

A1703 2.98 ± 0.16 12 ± 4 0.66 ± 0.19 3.46 ± 0.18 13 ± 5 0.91 ± 0.26
MS 2137 3.41 ± 0.13 2.0 ± 0.4 0.068 ± 0.011 3.95 ± 0.15 2.3 ± 0.5 0.093 ± 0.014
AC 114 2.94 ± 0.13 12 ± 3 1.06 ± 0.17 3.40 ± 0.16 14 ± 3 1.44 ± 0.024
ClG 2244−02 3.26 ± 0.13 3.3 ± 0.7 0.69 ± 0.11 3.77 ± 0.15 3.7 ± 0.8 0.95 ± 0.15
SDSS 1531 3.1 ± 0.4 7 ± 7 0.04 ± 0.04 3.6 ± 0.4 8 ± 8 0.06 ± 0.05
SDSS 1446 3.2 ± 0.4 3 ± 3 0.015 ± 0.014 3.7 ± 0.5 3 ± 3 0.020 ± 0.019
MS 0451 2.82 ± 0.13 7.6 ± 1.6 0.29 ± 0.05 3.27 ± 0.15 8.6 ± 1.9 0.40 ± 0.06
3C 220.1 3.03 ± 0.13 2.6 ± 0.6 0.79 ± 0.13 3.51 ± 0.15 2.9 ± 0.6 1.09 ± 0.17
SDSS 2111 3.0 ± 0.2 2.6 ± 1.6 0.004 ± 0.002 3.5 ± 0.2 2.8 ± 1.8 0.006 ± 0.003
MS 1137 2.77 ± 0.13 4.3 ± 0.9 0.71 ± 0.12 3.21 ± 0.15 4.9 ± 1.0 0.97 ± 0.16

Note. Masses are in units of 1014 M� h−1.

i.e. for the subsample from Comerford et al. (2006), we converted
the potential ellipticity to isodensity ellipticity according to the re-
lation in Golse & Kneib (2002). As a final precaution, we forced
errors on κ s and rsP to be at least of 10 per cent and the error on ε

to be at least 0.015. Such uncertainties mirror discrepancies among
different studies of the same data set [see the analyses of A1703 in
Richard et al. (2009) and Oguri et al. (2009) or MS2137.3−2353 in
Comerford et al. (2006) and Gavazzi (2005)].

Using the full probability distribution instead of the estimate of
mean and error for the ellipticity and the central convergence would
be an improvement. However, we limited our method to quite reg-
ular clusters (unimodal and well fitted by an NFW profile). From
the detailed analyses collected in the literature for each cluster, we
found no evidence for complex parameter distributions, with prob-
ability functions that are single peaked and generally well behaved.

4.2 Inferred parameters

In order to extract the physical information, i.e. to the determine the
parameters c200, M200 and e	, we have then to use additional con-
straints. Since we want to test theoretical predictions, we will em-
ploy the prior from the c200–M200 relation as given in equation (3).
Such an additional third constraint, together with equations (24)
and (25), allows us to determine the elongation of the cluster and its
mass and concentration. The prior is very strong so the estimated
c200 and M200 will fit nicely the theoretical prediction. On the other
hand, e	 is free to take whatever value allows the cluster to fit the
lensing constraints and the c200–M200 relation at the same time.
Unphysical values for e	 (either 
1 or 1), that would describe
more filamentary structures than virialized clusters, will point more
to outliers with respect to predictions than to extremely elongated
structures. The most likely explanation for extreme e	 values is then
that the corresponding clusters do not follow the relation imposed
a priori. This can be viewed as a sort of proof ab absurdo.

Results are listed in Table 2. We considered both the c200–M200 as
determined in Duffy et al. (2008) and the case of overconcentrated
clusters (A = 6.68). To account for measurement errors, we draw
lensing parameters (κ s and rsP) from random normal distributions
with mean and dispersion given by the reported central location
and scale (see Table 1). Similarly, theoretical uncertainties on the
mass–concentration relation were accounted for by drawing the
parameters A, B and C, which describe equation (3), from Gaussian
distributions with mean and dispersion values found in Duffy et al.
(2008). Then, for each set of parameters (κ s, rsP, A, B and C) we
solved the system of equations (3), (24) and (25), discarding only

solutions with either c200 > 40 or M200 > 1018 M� h−1. The values
listed in Table 2 are the biweight estimators for location and scale
of the final inferred distributions (Beers, Flynn & Gebhardt 1990).

If we use the enhanced c200–M200 relation, the concentration of
each cluster increases by ∼16 per cent, the mass by ∼13 per cent
and e	 by ∼27 per cent, i.e. the elongation shrinks. Even if clusters
come out less elongated if we assume that the lensing population
is intrinsically overconcentrated, we see that some outliers are still
there. Four out of 10 clusters have e	 < 0.1, i.e. the size along the
line of sight should be larger than 10 times the maximum length
in the plane of the sky. Lensing parameters of SDSS 1531, SDSS
1446 and SDSS 2111 had quite large observational uncertainties
which propagate in the estimate of the intrinsic cluster parameters.
However, the estimated values of e	 are so small that the ordinary
value of ∼1 can be excluded for such clusters at a high confidence
level. Even doubling the normalization factor of the c–M relation
(i.e. assuming A ∼ 11.4), elongation parameters for two clusters
(SDSS 2112 and SDSS 1446) would remain smaller than one-tenth
(e	 ∼ 0.019 and 0.070, respectively).

Note that final results on elongation would have been consistent
if we had chosen different methods for deriving the strong lensing
parameters. The elongation of A1703 calculated using the data
reported in Richard et al. (2009) or Limousin et al. (2008), which
both fitted the lensing potential, turns out to be 0.35 ± 0.11 or 0.77 ±
0.17, respectively, the value of e	 based on Oguri et al. (2009), that
directly fitted the convergence, being intermediate between the two
(see Table 2). The elongation of MS 2137 using data in Comerford
et al. (2006), that fitted the lensing potential, is 0.051 ± 0.008,
compatible with the result based on direct convergence fitting in
Gavazzi (2005) (see Table 2). Then, independently of the lensing
technique used, results are quite consistent within the errors, both
for mildly (A1703) or very elongated (MS 2137) clusters.

It is quite reassuring that whenever a cluster has been analysed
either fitting the potential or the convergence, the estimated elonga-
tion does not change in a significant way. Together with the central
convergence, our method needs only an estimate of the projected el-
lipticity, which is quite well measured with strong lensing analyses.
Golse & Kneib (2002) discussed in detail how potential and surface
mass ellipticities are related, and their analysis showed how the
mass density ellipticity can be estimated using a previous determi-
nation of the potential ellipticity. Once the ellipticity of the surface
mass density is known, our method relies only on geometrical pro-
jections and is not affected anymore by lensing non-linearities. In
fact, we always deproject the surface mass density (instead of the
potential) to obtain the intrinsic mass distribution.
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Figure 1. PDFs for the elongations of different cluster populations (see
legend). The bars denote the measured values for our full sample assuming
a standard c200–M200 relation.

5 EXPECTED VERSUS OBSERV ED
E LONGATION AND ELLIPTICITY

The chance to observe a very elongated cluster can be assessed on
a more firm ground. We derived the probability density function
(PDF) for a given elongation P (e	) and a given ellipticity P (ε)
under different assumptions. As discussed in Section 3, elongation
and ellipticity depend on the intrinsic axial ratios q1 and q2 and
the orientation angles θ and ϕ. We considered four scenarios. For
the axial ratios, we considered either the N-body predictions in
equations (4) and (6) or a flat distribution (see equations 7 and
8). For the alignment, we considered either the biased distribution
for P (θ ) in equation (9) or a flat distribution (equation 10). For
the azimuth angle ϕ, we always used a flat distribution, P (ϕ) =
constant.

5.1 Elongation

The PDF for the elongation, P (e	), is plotted in Fig. 1. It is pretty
evident that populations of clusters preferentially aligned with the
line of sight make a better job to reproduce the observed sample,
apart from the group at e	 < 0.1. Cumulative distributions are
plotted in Fig. 2 and probabilities at very low threshold values are
listed in Table 3. Chances for very elongated clusters are very tiny.
Even for biased distributions, just one out of few thousands clusters
is expected to have e	 < 0.1. Even in the most favourable case of a
population of clusters biased in θ and flat in axial ratios, the chance

Table 3. Probability (in per cent) to have an elongation larger than a given
threshold value for different populations of galaxy clusters.

q1,2 θ P (e	 < 0.1) P (e	 < 0.2) P (e	 < 0.3)
(per cent) (per cent) (per cent)

Flat Flat � 10−3 8 × 10−3 2.7 × 10−3

Flat Biased 4.5 × 10−3 3.5 × 10−2 1.87 × 10−2

N-body Flat � 10−3 1 × 10−3 9.5 × 10−3

N-body Biased � 10−3 1.5 × 10−3 5.7 × 10−2

to have four out of 10 clusters with e	 < 0.1 would be a very tiny
1.7 × 10−16. So we can conclude that such clusters are very likely
outliers of the mass–concentration relations.

Further quantitative comparisons can be performed exploiting
the Kolmogorov–Smirnov (KS) test. When we consider the full
sample, none of the investigated populations gives a good fit to
the data. The better performer, i.e. a population with N-body-like
axial ratios and biased alignments, gives a KS significance level of
�1 per cent, both for the standard or the enhanced c200–M200 relation
(see Table 4).

The significance levels improve very significantly when we
consider the subsample with e	 > 0.1. The prediction from
N-body simulations reproduce very well the observed distribution
both for the standard (∼31.1 per cent) and the enhanced relation
(∼4.7 per cent). For the enhanced relation, also distributions flat in
the axial ratios perform well for both populations suffering orienta-
tion bias (∼2.1 per cent) or unbiased (∼97.2 per cent).

5.2 Ellipticity

The ellipticity distribution of our sample is not near as informative
as the elongation one. PDFs both for unbiased or biased popula-
tions have not negligible values in correspondence of the observed
ellipticities (see Fig. 3). Populations with flat axial ratios are pref-
erentially rounder (ε � 0, e	 ∼ 1) since high values of q1 are
not penalized, but the observed sample does not help to discrimi-
nate. The KS test is inconclusive too, see Table 5, even if the biased
N-body-like population performs remarkably better considering the
e	 > 0.1 subsample. However, the ellipticities of such subsample
are nothing special. According to a KS test, the ellipticities of the
outliers (i.e. clusters with e	 < 0.1) might be drawn from the full
sample with a significance level ∼98 per cent.
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Figure 2. Predicted cumulative distribution functions for elongation versus measurements. The full and dashed step-lines are for the full observed sample
and for the clusters with e	 > 0.1, respectively; the smooth functions are the predicted distributions under different assumptions (see legends). The left- and
right-hand panels show the observed elongations computed assuming either a standard or an enhanced mass–concentration relation, respectively.
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Table 4. KS significance level that the elongations of the observed samples of clusters (either all
of them or the six with e	 > 0.1) are drawn from a given population. We considered e	 obtained
from either a standard or an enhanced mass–concentration relation.

Standard c200–M200 Enhanced c200–M200

q1,2 θ All e	 > 0.1 All e	 > 0.1

Flat Flat 9 × 10−8 2.5 × 10−4 3 × 10−5 2.1 × 10−1

Flat Biased 9 × 10−6 3.5 × 10−3 9.3 × 10−3 9.7 × 10−1

N-body Flat 6 × 10−7 2.5 × 10−4 5 × 10−5 9.1 × 10−3

N-body Biased 7.8 × 10−3 3.1 × 10−1 9.6 × 10−3 4.7 × 10−2
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Figure 3. Probability function for the projected ellipticity. Left-hand panel: PDFs for the ellipticity of different cluster populations (see legend). The bars
denote the measured values for our full sample. Right-hand panel: predicted cumulative distribution functions for a given elongation versus observations. The
full and dashed step-lines are for the full observed sample and for the clusters with e	 > 0.1, respectively; the smooth functions are the predicted distributions
under different assumptions (see legend).

Table 5. KS significance level that the measured ellip-
ticities of the observed samples of clusters (either all of
them or the six with e	 > 0.1) are drawn from a given
population.

q1,2 θ All e	 > 0.1

Flat Flat 4.8 × 10−2 1.5 × 10−2

Flat Biased 2.6 × 10−2 1.0 × 10−2

N-body Flat 7.9 × 10−1 5.9 × 10−1

N-body Biased 8.6 × 10−3 1.2 × 10−1

Since our sample is neither homogeneous nor statistical, we are
cautious in drawing conclusions, but some indications seem to be
quite strong. There are a number of clusters whose overconcentra-
tion problem cannot be solved just considering some particular ge-
ometrical configurations. Even strong biases in intrinsic triaxiality
and alignment would not solve the problem. Once such outliers are
excluded from the analysis, theoretical predictions are in very good
agreement with data. Populations with an alignment bias perform
much better than randomly oriented clusters. There is also some ev-
idence for intrinsic axial ratios distributed according to the outputs
of N-body simulations, even if, under suitable circumstances, flat
populations can give good results too.

The assumption that lensing clusters are intrinsically overcon-
centrated partially reduces the problem, but expected distributions
and observations would be compatible with a very low significance
level of � 1 per cent, and the problem of having nearly half of the
sample with very extreme elongation would be still there. In general,
the data analysis performed on our limited sample does not provide
evidence for intrinsic overconcentrations, an orientation bias being
enough to account for observations of normal clusters (e	 > 0.1).

6 IN T R I N S I C A X I A L R AT I O S
A N D O R I E N TAT I O N

Knowledge of the sizes of a cluster in the plane of the sky and along
the line of sight allows us to put constraints on its intrinsic geometry
(Sereno 2007). However, even exploiting such strong assumptions
on the shape, inversion cannot be unique: intrinsically different
ellipsoids can cast on the plane of the sky in the same way (Sereno
2007). In order to infer the properties of the cluster and derive its
orientation and shape, we have to exploit some external information.
We will consider two kinds of prior: first a sharp one which assumes
the cluster to be axially symmetric then some less informative priors
on the distribution of intrinsic axial ratios for triaxial haloes.

6.1 Axial symmetry

As a working hypothesis, let us first consider if the cluster shape can
be approximated as an ellipsoid of revolution. Previous studies have
shown that clusters seem to be quite triaxial (De Filippis et al. 2005;
Sereno et al. 2006), even if diffuse prolateness cannot be excluded
(Plionis, Barrow & Frenk 1991; de Theije, Katgert & van Kampen
1995; Basilakos, Plionis & Maddox 2000; Cooray 2000; Plionis,
Basilakos & Tovmassian 2004; Paz et al. 2006). Once the elongation
of a cluster is known together with its projected ellipticity, strong
constraints can be put on its intrinsic shape (Sereno 2007). Axial
symmetry reduces the number of unknown parameters to a couple:
a single axial ratio q (≤1) and the inclination angle of the symmetry
axis i.

A prolate-like solution is admissible when the size along the line
of sight is larger than the minimum width in the plane of the sky,
that is, when e	 ≤ eP. The intrinsic parameters can be written as
q1 = q2 = q and θ = i. In terms of the measured quantities
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(Sereno 2007),

q = e	

e2
P

, (26)

cos i = eP

√
e2

P − e2
	

e4
P − e2

	

. (27)

An oblate-like solution is admissible when the size along the
line of sight is smaller than the maximum size in the plane of the
sky, that is, when e	 ≥ 1. According to our notation, for an oblate
ellipsoid, q1 = q, q2 = 1 and cos i = sin θ sin ϕ. Inversion gives
(Sereno 2007)

q = 1

ePe	

, (28)

cos i =
√

e2
	 − 1

e2
Pe

2
	 − 1

. (29)

The prolate and the oblate solutions are admissible at the same time
only when the size along the line of sight is intermediate, i.e. 1 ≤
e	 ≤ eP.

Results of the inversion are listed in Table 6. Intrinsic parame-
ters have been obtained by means of equations (26) and (27) for
the prolate case and equations (28) and (29) for the oblate case.
Input values for elongation and ellipticity were randomly extracted
from normal distributions centred in the measured value and with
dispersion equal to the observational uncertainty. The values listed
in Table 6 are the biweight estimators of the final distributions of
the inferred parameters. The significance level for a given shape has
been obtained as the fraction of drawn eP and e	 for which a given
compatibility condition is fulfilled. We considered only elongation
values obtained assuming a standard mass–concentration relation.
The prolate hypothesis is compatible with the full sample, but the
shapes should be extremely long and narrow (q � 0.35) and nearly
perfectly aligned with the line of sight (cos i � 0.88). The conclu-
sion that clusters with e	 < 0.1 are outliers is further stressed by
the very small space volume allowed for the intrinsic parameters
(under wrong hypotheses, uncertainties are very likely to be very
small).

A population of oblate clusters do not provide a good description
of the data. Only a tiny region in the parameter space of elonga-
tion and ellipticity allowed by the data is compatible with such
a hypothesis. Only AC 114, with e	 ∼ 1, has a good chance to
be described by an oblate shape (∼60 per cent), otherwise signifi-

cance levels are �5 per cent. For the few clusters for which oblate-
ness is marginally compatible, inclination angles would still be bi-
ased, symmetry axis being nearly perpendicular to the line of sight
(cos i � 0.26), whereas intermediate axial ratios would be preferred
(0.43 � q � 0.74).

6.2 Triaxial clusters

In order to exactly determine the intrinsic shape of a triaxial clus-
ter, we should know both ellipticity and elongation together with
two additional observational constraints. The problem of invert-
ing a projected map is intrinsically degenerate and even adding
X-ray observations or measurements of the Sunyaev–Zeldovich ef-
fect would not make the inversion unique (Sereno 2007). An alter-
native approach is to use priors on the intrinsic parameters (Corless
et al. 2009). Here, we try to solve the system of equations:

eP = eP(q1, q2; θ, ϕ);

e	 = e	(q1, q2; θ, ϕ) (30)

using a couple of proxies for the axial ratios. In particular, we exploit
either a flat distribution or the guess from N-body simulations.
Operatively, we randomly extract the axial ratios from the assumed
prior distribution and then solve for θ and ϕ in equations (30).
For each iteration, a couple of input values for eP and e	 are also
randomly drawn. If there is a solution to the system, we consider
the drawn q1 and q2 and the corresponding θ and ϕ to be a sample
from the posterior distribution.

Results are listed in Table 7, where as usual we reported biweight
estimators. Final estimates are quite insensitive to the priors. This
asserts the validity of our inversion approach, since a Bayesian
analysis is effective as far as the effect of priors is as not informative
as possible. The parameter space for solutions is quite narrow for
very elongated clusters (e	 < 0.3), and we actually were able to find
very few of them, less than one out of 10 000 drawings. Assuming
the sharp prolate prior on the shape, we could find some extremely
elongated configurations, but such intrinsic shapes are pretty much
excluded by assuming more realistic priors on the axial distributions
as the ones expected for general triaxial configurations. This further
suggests that our sample contains several outliers of the mass–
concentration relation.

Posterior probabilities for A1703, AC 114, ClG 2244, 3C 220
and MS 1137 are plotted in Figs 4–8, respectively. The final dis-
tributions have been smoothed using a Gaussian kernel estimator
with reflective boundary conditions (Vio et al. 1994; Ryden 1996).
For each cluster, whatever the prior on the axial ratios, the posterior

Table 6. Intrinsic parameters (axial ratio q and inclination angle i) assuming either prolateness or oblateness.

Prolate Oblate
Name Comp. q cos i Comp. q cos i

A1703 ∼1 0.26 ± 0.08 0.94 ± 0.04 0.0342 0.59 ± 0.05 0.25 ± 0.11
MS 2137 ∼1 0.040 ± 0.007 0.9994 ± 0.0002 � 10−5 NA NA
AC 114 ∼1 0.26 ± 0.05 0.88 ± 0.05 0.622 0.43 ± 0.04 0.26 ± 0.09
ClG 2244−02 ∼1 0.40 ± 0.07 0.93 ± 0.03 2.31 × 10−3 0.74 ± 0.03 0.24 ± 0.12
SDSS 1531 ∼1 0.012 ± 0.011 0.999795 ± 0.0002 � 10−5 NA NA
SDSS 1446 ∼1 0.0014 ± 0.0014 0.999989 ± 0.000015 � 10−5 NA NA
MS 0451 ∼1 0.098 ± 0.017 0.9902 ± 0.003 � 10−5 NA NA
3C−220.1 ∼1 0.20 ± 0.03 0.94 ± 0.02 0.0542 0.48 ± 0.02 0.16 ± 0.07
SDSS 2111 ∼1 0.0010 ± 0.0009 0.999998 ± 10−6 � 10−5 NA NA
MS 1137 ∼1 0.35 ± 0.06 0.93 ± 0.03 6.45 × 10−3 0.68 ± 0.03 0.23 ± 0.11

Note. The column ‘Comp.’ gives the significance level for a cluster shape to be compatible with a given set of data. For a very low
compatibility with a given shape hypothesis, parameter values are not available (NA).
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Table 7. Intrinsic parameters for a triaxial shape (axial ratios, q1 and q2, and orientation angles θ and ϕ) inferred using different priors for the intrinsic axial
ratio distributions.

N-body q Flat q
Name Comp. q1 q2 cos θ cos ϕ Comp. q1 q2 cos θ cos ϕ

A1703 0.094 0.39 ± 0.07 0.55 ± 0.11 0.87 ± 0.10 0.81 ± 0.16 0.025 0.37 ± 0.10 0.61 ± 0.15 0.90 ± 0.09 0.76 ± 0.17
MS 2137.3 � 10−4 NA � 10−4 NA
AC 114 0.104 0.36 ± 0.06 0.52 ± 0.13 0.77 ± 0.11 0.93 ± 0.07 0.054 0.31 ± 0.09 0.61 ± 0.18 0.84 ± 0.12 0.85 ± 0.13
ClG 2244 0.149 0.43 ± 0.06 0.57 ± 0.08 0.93 ± 0.04 0.67 ± 0.20 0.026 0.45 ± 0.10 0.60 ± 0.12 0.92 ± 0.05 0.67 ± 0.22
SDSS 1531 1.2 × 10−3 0.44 ± 0.06 0.60 ± 0.10 0.82 ± 0.25 0.70 ± 0.17 4.3 × 10−4 ∼0.26 ∼0.49 ∼0.83 ∼0.60
SDSS 1446 1.7 × 10−4 ∼0.45 ∼0.70 ∼0.65 ∼0.39 1.7 × 10−4 ∼0.16 ∼0.76 ∼0.75 ∼0.63
MS 0451.6 � 10−4 NA 3 × 10−4 ∼0.14 ∼0.27 ∼0.99 ∼0.64
3C 220.1 0.037 0.33 ± 0.06 0.50 ± 0.12 0.85 ± 0.07 0.95 ± 0.05 0.025 0.29 ± 0.09 0.56 ± 0.15 0.92 ± 0.06 0.86 ± 0.13
SDSS 2111 � 10−4 NA � 10−4 NA
MS 1137.5 0.174 0.38 ± 0.05 0.52 ± 0.08 0.92 ± 0.04 0.74 ± 0.16 0.028 0.41 ± 0.09 0.59 ± 0.12 0.92 ± 0.06 0.73 ± 0.19

Note. The column ‘Comp.’ gives the significance level for a cluster shape to be compatible with a given set of data.
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Figure 4. Posterior PDFs for the intrinsic parameters of A1703. Panels from the left to the right are for the PDF of q1, q2, cos θ and cos ϕ, respectively. Full
and dashed thick lines have been obtained assuming an N-body-like and a flat prior on the axis ratios, respectively. The full and dashed thin lines in the left-hand
panel represent the N-body and the flat prior for P (q1), respectively; the full and dashed thin lines in the q2 panel represent the prior distributions according
to either an N-body or a flat prior, respectively; the thin and dashed full line in the cos θ panel represent the biased and the flat distributions on the orientation
angle. Such priors on cos θ were not used to derive the PDFs. Finally the flat line in the cos ϕ panel represents a uniform distribution.
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Figure 5. The same as Fig. 4 for the cluster AC 114.
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Figure 6. The same as Fig. 4 for the cluster ClG 2244.
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Figure 7. The same as Fig. 4 for the cluster 3C 220.
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Figure 8. The same as Fig. 4 for the cluster MS 1137.

probabilities are quite similar. Even if we assume a flat distribution
for the axial ratios, the posterior probability is quite similar to the
prediction from N-body simulations. Note that the alignment bias
is confirmed by the above analysis without any prior assumption on
the orientation.

7 D ISCUSSION

Recent observational analyses have been finding many lensing clus-
ters with Einstein radii much larger than expected in a standard
�CDM model (Broadhurst et al. 2008; Oguri et al. 2009). We per-
formed a statistical analysis on a sample of 10 clusters that were
well fitted by a single NFW model. Our method was as follows. We
supposed theoretical expectations from N-body simulations to be
true and modelled clusters as NFW haloes fitting standard mass–
concentration relations. Then, we found the elongation along the
line of sight of the clusters required to satisfy at the same time both
lensing data and theoretical predictions. Finally, we studied for each
cluster which intrinsic shape and orientation were compatible with
the inferred elongation and the measured projected ellipticity. At
each step, we checked the exploited hypothesis ab absurdo by find-
ing any inconsistency between theoretical predictions and actual
conditions under which expectations can be in agreement with data.

We first considered the inferred distribution of elongations, com-
paring that with the probability to really see them observing a given
population. We found two groups in our sample. The first group is
in very good agreement with what expected from a population of
clusters fitting the mass–concentration relation and preferentially
oriented along the line of sight, as suggested by theoretical analyses
of lensing clusters (Hennawi et al. 2007; Oguri & Blandford 2009).
Observed ellipticities and inferred elongations are also in agreement
with intrinsic axial ratios following distributions derived in N-body
simulations. There is no evidence for such lensing clusters to be
intrinsically overconcentrated even if data cannot exclude that.

The second subsample in our analysis is made of clusters very
likely to be outliers of the mass–concentration relation. To fulfil
the expected relation, they should develop along the line of sight
as a filamentary structure with extreme elongation, a clearly poor
description for massive haloes. Even allowing for more concentrated
haloes for a given mass by enhancing the c–M relation, elongations
would still be extreme.

Even if our sample was not statistical, we took care of selecting
quite regular clusters. However, bimodal structures nearly aligned
with the line of sight would seemingly have a regular morphology in
the plane of the sky. Such configurations would boost the apparent
concentration, but they are very rare and it is problematic to consider
all of our outliers within this scenario. Furthermore, we used a mass–
concentration relation derived for the full sample of clusters, not just
the virialized and regular ones.

The second step in our analysis further strengthens such view.
Using a series of statistical priors, we found for each one of the
mildly elongated clusters an intrinsic structure and orientation com-

patible with the inferred elongation. Prolate shapes make a better
work in explaining data than oblate clusters, but in general data are
fully compatible with triaxial structures. Whatever the hypothesis
exploited as prior on the intrinsic axial ratios, inferred intrinsic pa-
rameters suggest mildly triaxial clusters with an alignment bias in
very good agreement with expectations from N-body simulations.

An alternative approach would have been to apply the fitting
procedure to inclined triaxial haloes in the first place. As far as the
estimates of the projected ellipticity and of the central convergence
are not biased, our method should be able to fully explore the
space of the triaxial parameters (shape and orientation). In fact,
given a projected map, we consider all the intrinsic configurations
compatible with data. This is done through equations (14) and (24).
Such set of equations allows us to study the full intrinsic parameter
space, even in case of disjoint regions compatible with data.

Either projecting intrinsic parameters and fitting to the lensing
data or fitting projected maps and then deprojecting (as done in this
paper) should give the same final result. In fact, in a pure lensing
analysis the triaxial structure of a cluster is constrained only by its
projected map, so that both procedures should pick out the same
sets of intrinsic parameters that can fit the measured quantities, i.e.
ellipticity, orientation and central surface density.
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