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                Introduction 

 The periodontal ligament (PDL) is a highly  specialized  
connective tissue that  lls the space between the tooth root 
and its alveolus. It consists of a  brous stroma in a gel of 
ground substance containing cells, blood vessels ,  and 
nerves. The PDL  stabilizes  the tooth and supplies nutrients 
and repairs. It also harbours a variety of cell population that 
is able to stimulate periodontal regeneration meaning the 
formation of new bone, cementum ,  and connective tissue 
attachment ( Berkovitz, 1990 ). 

 The PDL is the most deformable tissue in the periodontal 
system allowing for tooth mobility under functional loads.  
 The protective function involves the transmission of 
occlusive and masticatory forces to the supporting structures 
of the tooth ( Natali  et al. , 2004 ). Due to the much lower 
stiffness of the PDL in comparison to the surrounding 
alveolar bone, the PDL plays a major role with respect to 
the initial tooth mobility  (ITM),  which is affected by the 
different components building up the PDL ( Mühlemann, 
1960 ). Apart from the biomechanical processes, during 
bone  remodelling,  the understanding of biomechanical 
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 SUMMARY      The aim of the present work was to evaluate the biomechanical behaviour of the periodontal 
ligament (PDL) with respect to force development with different controlled loading velocities. For this 
purpose, an  in vitro  experimental study was performed on 18 minipig jaw segments. Displacements 
with variable increasing loading time were applied to one premolar crown of each jaw segment into 
the linguobuccal direction through a force sensor provided by a specialized biomechanical set-up. The 
predefi ned displacement values to be achieved were 0.1 and 0.2 mm. Each of the given displacement 
increments was applied on the specimens with a linear displacement increase employing the following 
time spans: 5, 10, 20, 30, 60, 120, 300, 450, and 600 seconds. Force values were measured during load 
application to register force/displacement diagrams and after the maximum displacement was reached 
force decay was monitored for a period of 600 seconds. Force/time curves for each tooth were plotted 
according to the data obtained. Diagrams of the maximum force values obtained from these plots and the 
force at the end of each measurement were extracted for all teeth. Forces at the point when maximum 
displacement was reached ranged from 0.5 to 2.5 N for the 0.1 mm activation and showed extreme 
variation with the specimens. The factor of volume and surface area of the individual roots were evaluated 
and found not to be responsible for these deviations. A comparable behaviour was recorded for the 
0.2 mm defl ection, however, on a higher force level. The results show that the force development at 
different displacement velocities is complex and dominated by the PDL biomechanical characteristics.   

phenomena accompanying the initial tooth displacement 
is the  rst step towards this direction ( Cronau  et al. , 2006 ). 

 When the force is released ,  the tooth returns to its original 
position. The return is caused by the restoring forces of the 
surrounding bone and soft tissue as well as the re lling of 
blood vessels and interstitual  uid ( Wills  et al. , 1972 ). After 
a period of fast restoration ,  a slow phase follows until the 
tooth returns to its original position. 

 However, the PDL also affects the  long-term  movement 
and its strain alterations regulate the cellular activity in the 
periodontal space involved in the alveolar bone  remodelling 
 processes ( Roberts  et al. , 2004 ). If the tooth de ection is 
maintained for a very long time ,  the stresses and strains in 
the PDL will trigger  bone   remodelling  processes and result 
in a permanent change in the position of the tooth. 

 The viscoelastic behaviour of the PDL is attributed to the 
combination of  uid and elastic elements in its structure. 
The biomechanical characteristics of this tissue also involve 
non - linearity and time dependency and additionally ,  loading 
history in uences its behaviour ( Maurel  et al. , 1998 ;  Pini 
 et al. , 2002 ). 
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 The aim of the study was to evaluate the biomechanical 
time - dependent behaviour of the PDL in relation to 
tooth displacement with controlled loading velocities. 
Developed forces were measured while prede ned maximum 
displacements at numerous controlled time spans were 
achieved. We assume to gain suf cient and validated data 
to better de ne a constitutive law of the  PDL , especially 
including the time - dependant behaviour of the PDL for use 
in numerical  nite element studies of force/displacement 
characteristics of teeth.  

  Material and  m ethods 

 The  ITM  was measured on a total of 18 deciduous premolars 
of 3 - to  12 - month old minipigs. Pigs are particularly suitable 
as experimental animals as they are omnivorous just like 
humans ,  have a similar masticatory cycle and also go through 
a phase of primary teeth with a development similar to the 
human one ( Weaver  et al. , 1962  ;   Herring, 1976 ). Deciduous 
teeth were selected in order to collect the specimens from 
young healthy animals as the material properties which 
concern our study do not exhibit variations among deciduous 
and permanent teeth as long as they are taken from the same 
animal species ( Bourauel  et al. , 2006  ;   Natali  et al. , 2007 ; 
 Slomka  et al. , 2008 ). 

 Fresh pig mandibles were collected immediately after 
the animals were killed and were directly transferred to a 
refrigerated container until freezing to   −  28 ° C in order to 
avoid alterations of their mechanical properties ( Thomas 
and Gresham, 1963 ). They were subsequently radiographed 
in order to choose teeth with no root resorption radiograph-
ically observed ( Figure 1 ). The second and third premolars 
of the fresh pig jaw segments were chosen as their root 
geometries resemble the root shape of human M1 and M2. 
After the selection of the suitable premolar ,  the mandible 
was segmented. Each jaw segment consisted of the 
premolar, its PDL intact ,  and surrounding alveolar bone. 

   
 Figure 1  �    All mandibles selected were marked and radiographed to 
examine the suitability of the premolars used in the experimental  set- up.         

The specimen width was determined using as guiding lines 
for the segmentation the half of the mesiodistal width of the 
crown of the adjacent teeth. The height was determined 
with respect to the anatomy of the mandible placing the 
borders of the segment always inside the cancellous bone 
region and involving as much cancellous bone region as 
possible. Attention was paid so that the PDL of the tooth to 
be examined would not be injured and no contact points 
between adjacent teeth would exist. The jaw segments were 
kept frozen under   −  28 ° C.     

 Each time the measurement took place ,  the jaw segments 
were placed in envelopes soaked with 0.9  per cent  NaCl to 
avoid drying out and alteration of the biomechanical 
properties of the PDL and the bone. The lower portion of 
each bone segment was placed in a metal carrier and 
embedded in resin (Technovit 4004 ,  Kulzer, Germany). The 
preparation embedded in resin to less than the lower third of 
the bone height was provided with a hollow in the centre of 
the cervical third of the tooth crown on its lingual side 
( Figure 2A ). The specimens were embedded such that the 
point of force application on the tooth  ’  s crown was always 
similar with respect to the distance of the centre of resistance 
(CR) of the respective tooth. The position of the CR was 
determined from the x-rays and was assumed to be at 40  per 
cent  of the root length down to the apex, seen from the 
alveolar crest.     

 The measured displacements are combined displacements 
resulting from tooth deformation, PDL deformation, bone 
deformation ,  and resin deformation. We decided to assume 
rigid constrains of the bone base as from the material 
parameters, especially of the PDL and the bone, and the 
overall geometry of the specimens ,  the de ection of the resin 
is far less than 1  per cent  of the tooth. Thus, we assume to 
basically measure tooth de ection and bone deformation, 
which will be separated in  nite element simulations. 

 The measurements were carried out at room temperature 
using the biomechanical Hexapod Measurement System 
(HexMeS,  Figure 2B ;  Keilig  et al. , 2004 ). The set - up consists 
of a hexapod positioning system (Hexapod M850, Physik 
Instrumente, Karlsruhe , Germany ), a  high-resolution   three-
dimensional ( 3D )  force      torque transducer (FTS Nano 12/120, 
Schunck, Lauffen/Neckar) ,  and a 3D optical displacement 
measurement system (3 cameras JAI CV-M1 ;  Stemmer 
Imaging, Puchheim , Germany ). Loads can be applied via a 
 ne tip to the specimen ( Figure 2B and 2C ) by moving the 
Hexapod with the force sensor mounted on it. Specimens 
were positioned in the experimental set - up at a 90  degrees  
angle to the power arm of the force/torque sensor ( Figure 2C ). 
A lingually positioned tip was used to transmit pure 
continuously increasing displacements into the linguobuccal 
direction at the position of the hollow on the tooth  ’  s crown. 
The type of movement simulated was uncontrolled tipping. 

 Subsequent linear increasing displacements from 0.0 to 
0.1 mm and 0.0  –  0.2 mm, respectively, within prede ned 
activation times of 5, 10, 20, 30, 60, 120, 300, 450,  and 
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 600   s econds  were applied to the premolar crowns. Resulting 
forces were measured using the 3D force torque sensor 
during the loading phase up to maximum displacement as 
well as for a period of 600   s econds  after reaching full 
de ection of 0.1 and 0.2 mm, respectively. Following 
displacement release, a decay time of 15 min utes  was 
introduced between two measurements to allow a complete 
relaxation of the PDL in order to return to its original 
position and fully relaxed state. Each set of measurements 
for every specimen took about 9 h ours  to be completed. A 
total measurement cycle for each specimen took place in 
 1  day every time. After the procedure ,  the specimens were 
restored in the refrigerator under   −  28 ° C in order to maintain 
the biomechanical properties of the tissues comprising the 
specimen for future micro computerized tomography scanning 
and numerical analysis     . 

 Time/force diagrams for each tooth and each time/
de ection combination were generated based on the values 
measured. Maximum developed forces at maximum 
de ection as well as forces after relaxation were obtained. 
The intraosseous root volume and root surface of each 
premolar  were  also calculated using the formula of an 
 idealized  paraboloid geometry ( Bronstein  et al. , 2007 ) after 
estimating root length and diameter through the existing 
radiographs in order to determine whether serious deviations 
in root geometry existed that could in uence the results. 
Root length and diameter were determined using the x-ray 
scans and a Spearman rank correlation test was performed 
to test the signi cance of root geometric parameters.  

  Results 

 The applied displacement and the corresponding measured 
force acting on the tooth with regard to time is shown in 
 Figure 3  for a selected specimen and displacements of 0.1 
( Figure 3A ) and 0.2   mm ( Figure 3B ) with an activation time 
of 20 s econds . The initial part of the loading curves is the 
displacement/force increase within the  rst 20   s econds  until 
the total displacements of 0.1 ( Figure 3A ) and 0.2 mm 
( Figure 3B ) were reached. Subsequently ,  the displacements 
were kept constant and the force decay was registered over 
a total of 600   s econds . The maximum force was clearly 
higher for the 0.2   mm displacement (2.85   N compared to 
0.61   N). A comparable behaviour was registered for all the 
other specimens, however ,  with extreme variations in the 
maximum forces.     

  Figure 4A  depicts the maximum forces for the individual 
specimens at a de ection of 0.1   mm and the different loading 
times ;   Figure 4B  is the diagram of the respective forces after 
the full relaxation period of 600   s econds . Each curve and 
data point represents the force of an individual specimen. 
Maximum forces vary from 0.45 to 2.50   N (loading time: 
5   s econds ) and decrease to 0.05  –  0.60   N at a loading time of 
600   s econds . Load magnitudes rise dramatically when the 
applied displacement is increased to 0.2   mm (not shown). 

   
 Figure 2  �     ( A) The specimens used were carefully segmented and 
separated from the jaw. Each jaw segment consisted of the premolar, its 
PDL intact ,  and surrounding alveolar bone. Forces were applied to the 
centre of the crown (arrow).  ( B) The experimental study was conducted 
using the Hexapod Measurement System, a biomechanical  set- up 
especially designed to measure force/de ection characteristics of different 
dental materials and devices.  ( C) A specimen mounted in the  set- up.    
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especially designed to measure force/de ection characteristics of different 
dental materials and devices.  ( C) A specimen mounted in the  set- up.    

 THE TIME-DEPENDENT BIOMECHANICAL BEHAVIOUR OF THE PDL	 11



K. PAPADOPOULOU ET AL.4 of 7

The force relaxation shown in  Figure 4B  concretes that 
forces decay towards a constant level for each individual 
specimen, independent of the loading time, i.e. loading times 
of 5 and 600   s econds  result in ,  for example ,  a  nal force 
value of 0.05  –  0.50 N, provided the relaxation period is 
suf ciently long.     

 Means and standard deviations calculated from the 
results of all specimens ( Figure 4A ) for each de ection/
time combination on maximum load values are depicted in 
 Figure 5A , taking the 0.1   mm de ection as an example. Due 
to the extreme force variations between specimens, errors 
of the means are up to 50    per cent  or even more. With 
increasing loading time ,  it was observed that the maximum 
forces decreased clearly. Mean values are 1.40 and 0.36   N 
for 5 and 600   s econds  for 0.1   mm displacement, respectively. 
Forces after relaxation converged to boundary values of 
0.20   N ( Figure 5B ). For the 0.2   mm displacement ,  the 
maximum force values increased and reached 4.38 and 2.06  
 N for 5 and 600   s econds , respectively ( Figure 6A ). Forces 

   
 Figure 3  �     ( A) Force/time diagram of a load acting on specimen number 6 
for a displacement of 0.1   mm applied within 20   s econds . After the peak 
force is reached ,  the force decay is registered of further 600   s econds .  ( B) 
Same specimen as in  Figure 3A  with an applied displacement of 0.2   mm at 
same loading rate of 20   s econds . The peak force is clearly increased.    

after relaxation converged to boundary values of 1.14   N 
( Figure 6B ).         

 In order to estimate the impact of the root volume and 
surface area on the presented results ,  the root surface and 
volume were calculated using an  idealized  paraboloid 
geometry formula ( Bronstein  et al. , 2007 ). The Spearman 
rank correlation test did not show any signi cant correlation 
of forces with root volumes or root surfaces.  

  Discussion 

 The tests on loading of the  PDL  for multiple controlled 
velocities demonstrate a clear dependence of the material 
properties of the PDL with the loading rate since maximum 
force varies according to the loading rate. The displacement 
of interstitial  uid takes place in the initial phase of tooth 
mobility  (  Mühlemann, 1954 ;  Mühlemann and Zander, 
1954  ;   Andersen  et al. , 1991  ;   Nishihira  et al. , 1996 ;  Van Driel 
 et al. , 2000  ;   Yoshida  et al. , 2001 ). 

   

 Figure 4  �     ( A) Maximum forces of all specimens at 0.1 mm displacement 
with all different time spans examined. Each curve stands for an individual 
specimen. An extreme variation of maximum forces is obvious ;  however ,  
a common boundary value seems to exist around 0.40   N.  ( B) Force values 
at the end of the relaxation phase for the same displacement (0.1   mm) for 
all specimens and loading times. Except for several outliers ,  forces for all 
specimens decay to a limit between 0.16 and 0.46   N.    
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 Research results postulate that the components of the 
 uid phase show reduced mobility with increased loading 
rates. Thus ,  the specimen then exhibits a higher stiffness 
 (  Wills  et al. , 1972  ,   1976  ;   Picton, 1990 ). The impact of the 
 uid - phase components on the material biomechanical 
behaviour of the  PDL  was studied experimentally  in vivo  by 
 Mühlemann (1954)  ,  demonstrating the time - dependent 
behaviour of the PDL.  Mühlemann and Zander (1954)  
observed, while applying load on teeth in a horizontal 
direction, that tooth displacement is not linearly related 
to the magnitude of the force applied. It was shown that 
tooth mobility is divided into ITM and secondary tooth 
mobility. The ITM pattern of movement consists of a high 
displacement of the tooth while applying small forces 
up to 1   N. It can be assumed that this corresponded to 
movement of the root within the  PDL  space. With higher 
force application, tooth movement progresses slowly. 
Although this was an  in vivo  study, the exhibited behaviour 
of the PDL is qualitatively similar to our study.  Van Driel 
 et al.  (2000)  also conducted  in vivo  studies on the time -
 dependent mechanical behaviour of the PDL concluding 
that its  uid component has a signi cant role in the 
transmission and damping of forces acting on teeth. 

 When the force is released, the tooth will return to its 
original position. This is attributed to the restoring forces of 
the surrounding bone and soft tissue, as well as the re lling 

of blood vessels and interstitial  uid ( Par tt, 1961  ;   Körber, 
1971  ;   Wills  et al. , 1972 ). 

 Measurement techniques of  ITM  include magnetic 
sensors ( Yoshida  et al ., 2001  ,   2000 ), strain gauge techniques 
( Pedersen  et al. , 1991 ), laser measurements ( Castellini 
 et al. , 1998 ;  Hinterkausen  et al. , 1998 ;  Kawarizadeh  et al. , 
2003 ) ,  or non - contact optical measurement technique 
( Göllner  et al. , 2010 ). 

 Applying small forces, the initial type of tooth mobility is 
most likely a tipping around an axis of rotation inside the 
 PDL  space ( Natali  et al. , 2004 ). With the application of 
forces of higher magnitude, the PDL is compressed and a 
continuing force increase leads to a displacement of both 
the alveolar bone and  the  tooth ( Poppe  et al. , 2002 ; 
 Kawarizadeh  et al. , 2003  ;   Sanctuary  et al. , 2005 ). In our 
study ,  we apply low initial forces only. 

 Deformation patterns in the entire periodontium are 
strongly dependent on the geometrical pro les and material 
properties of the individual elements that constitute the 
periodontal tissue including the PDL con guration. The 
PDL shows a non - linear viscoelastic behaviour which 
regulates tooth movement as well as deformation  elds of the 
whole periodontium  (  Picton, 1990 ;  Frost, 1992 ;  Hinterkausen 
 et al. , 1998  ;   Toms  et al. , 2002a  ,  b  ;   Komatsu  et al. , 2004 ). 

 The viscoelastic behaviour of the PDL is known since 
longer time to be closely related to its  uid phase and 

   

 Figure 5  �    (A) Diagram representing the mean values and standard 
deviations  (SDs)  obtained for the maximum forces at 0.1 mm displacement 
taken from  Figure 4A .  ( B) Diagram representing the mean values and  SD s 
obtained for the forces at 0.1 mm displacement after the relaxation period 
of 600   s econds  taken from  Figure 4B .    

   
 Figure 6  �     ( A) Diagram representing the mean values and standard 
deviations  (SDs)  obtained for the maximum forces at 0.2 mm displacement. 
 ( B) Diagram representing the mean values and  SD s obtained for the forces 
at 0.2 mm displacement after the relaxation period of 600   s econds .    
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The force relaxation shown in  Figure 4B  concretes that 
forces decay towards a constant level for each individual 
specimen, independent of the loading time, i.e. loading times 
of 5 and 600   s econds  result in ,  for example ,  a  nal force 
value of 0.05  –  0.50 N, provided the relaxation period is 
suf ciently long.     

 Means and standard deviations calculated from the 
results of all specimens ( Figure 4A ) for each de ection/
time combination on maximum load values are depicted in 
 Figure 5A , taking the 0.1   mm de ection as an example. Due 
to the extreme force variations between specimens, errors 
of the means are up to 50    per cent  or even more. With 
increasing loading time ,  it was observed that the maximum 
forces decreased clearly. Mean values are 1.40 and 0.36   N 
for 5 and 600   s econds  for 0.1   mm displacement, respectively. 
Forces after relaxation converged to boundary values of 
0.20   N ( Figure 5B ). For the 0.2   mm displacement ,  the 
maximum force values increased and reached 4.38 and 2.06  
 N for 5 and 600   s econds , respectively ( Figure 6A ). Forces 

   
 Figure 3  �     ( A) Force/time diagram of a load acting on specimen number 6 
for a displacement of 0.1   mm applied within 20   s econds . After the peak 
force is reached ,  the force decay is registered of further 600   s econds .  ( B) 
Same specimen as in  Figure 3A  with an applied displacement of 0.2   mm at 
same loading rate of 20   s econds . The peak force is clearly increased.    

after relaxation converged to boundary values of 1.14   N 
( Figure 6B ).         

 In order to estimate the impact of the root volume and 
surface area on the presented results ,  the root surface and 
volume were calculated using an  idealized  paraboloid 
geometry formula ( Bronstein  et al. , 2007 ). The Spearman 
rank correlation test did not show any signi cant correlation 
of forces with root volumes or root surfaces.  

  Discussion 

 The tests on loading of the  PDL  for multiple controlled 
velocities demonstrate a clear dependence of the material 
properties of the PDL with the loading rate since maximum 
force varies according to the loading rate. The displacement 
of interstitial  uid takes place in the initial phase of tooth 
mobility  (  Mühlemann, 1954 ;  Mühlemann and Zander, 
1954  ;   Andersen  et al. , 1991  ;   Nishihira  et al. , 1996 ;  Van Driel 
 et al. , 2000  ;   Yoshida  et al. , 2001 ). 

   

 Figure 4  �     ( A) Maximum forces of all specimens at 0.1 mm displacement 
with all different time spans examined. Each curve stands for an individual 
specimen. An extreme variation of maximum forces is obvious ;  however ,  
a common boundary value seems to exist around 0.40   N.  ( B) Force values 
at the end of the relaxation phase for the same displacement (0.1   mm) for 
all specimens and loading times. Except for several outliers ,  forces for all 
specimens decay to a limit between 0.16 and 0.46   N.    
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 Research results postulate that the components of the 
 uid phase show reduced mobility with increased loading 
rates. Thus ,  the specimen then exhibits a higher stiffness 
 (  Wills  et al. , 1972  ,   1976  ;   Picton, 1990 ). The impact of the 
 uid - phase components on the material biomechanical 
behaviour of the  PDL  was studied experimentally  in vivo  by 
 Mühlemann (1954)  ,  demonstrating the time - dependent 
behaviour of the PDL.  Mühlemann and Zander (1954)  
observed, while applying load on teeth in a horizontal 
direction, that tooth displacement is not linearly related 
to the magnitude of the force applied. It was shown that 
tooth mobility is divided into ITM and secondary tooth 
mobility. The ITM pattern of movement consists of a high 
displacement of the tooth while applying small forces 
up to 1   N. It can be assumed that this corresponded to 
movement of the root within the  PDL  space. With higher 
force application, tooth movement progresses slowly. 
Although this was an  in vivo  study, the exhibited behaviour 
of the PDL is qualitatively similar to our study.  Van Driel 
 et al.  (2000)  also conducted  in vivo  studies on the time -
 dependent mechanical behaviour of the PDL concluding 
that its  uid component has a signi cant role in the 
transmission and damping of forces acting on teeth. 

 When the force is released, the tooth will return to its 
original position. This is attributed to the restoring forces of 
the surrounding bone and soft tissue, as well as the re lling 

of blood vessels and interstitial  uid ( Par tt, 1961  ;   Körber, 
1971  ;   Wills  et al. , 1972 ). 

 Measurement techniques of  ITM  include magnetic 
sensors ( Yoshida  et al ., 2001  ,   2000 ), strain gauge techniques 
( Pedersen  et al. , 1991 ), laser measurements ( Castellini 
 et al. , 1998 ;  Hinterkausen  et al. , 1998 ;  Kawarizadeh  et al. , 
2003 ) ,  or non - contact optical measurement technique 
( Göllner  et al. , 2010 ). 

 Applying small forces, the initial type of tooth mobility is 
most likely a tipping around an axis of rotation inside the 
 PDL  space ( Natali  et al. , 2004 ). With the application of 
forces of higher magnitude, the PDL is compressed and a 
continuing force increase leads to a displacement of both 
the alveolar bone and  the  tooth ( Poppe  et al. , 2002 ; 
 Kawarizadeh  et al. , 2003  ;   Sanctuary  et al. , 2005 ). In our 
study ,  we apply low initial forces only. 

 Deformation patterns in the entire periodontium are 
strongly dependent on the geometrical pro les and material 
properties of the individual elements that constitute the 
periodontal tissue including the PDL con guration. The 
PDL shows a non - linear viscoelastic behaviour which 
regulates tooth movement as well as deformation  elds of the 
whole periodontium  (  Picton, 1990 ;  Frost, 1992 ;  Hinterkausen 
 et al. , 1998  ;   Toms  et al. , 2002a  ,  b  ;   Komatsu  et al. , 2004 ). 

 The viscoelastic behaviour of the PDL is known since 
longer time to be closely related to its  uid phase and 

   

 Figure 5  �    (A) Diagram representing the mean values and standard 
deviations  (SDs)  obtained for the maximum forces at 0.1 mm displacement 
taken from  Figure 4A .  ( B) Diagram representing the mean values and  SD s 
obtained for the forces at 0.1 mm displacement after the relaxation period 
of 600   s econds  taken from  Figure 4B .    

   
 Figure 6  �     ( A) Diagram representing the mean values and standard 
deviations  (SDs)  obtained for the maximum forces at 0.2 mm displacement. 
 ( B) Diagram representing the mean values and  SD s obtained for the forces 
at 0.2 mm displacement after the relaxation period of 600   s econds .    
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wavy con guration of the collagen  bres ( Shackleford, 
1971  ;   Wills  et al. , 1972 ). The internal  bre structure and 
orientation and therefore biomechanical properties of 
the PDL vary among different teeth, different mandibles, 
different animals ,  or human beings. In the present study ,  
specimens of minipig mandibular two-rooted premolars were 
investigated. The studied mandible specimens were carefully 
mechanically sliced and prepared before testing and therefore 
variation of initial force magnitudes can be attributed to the 
individual biological characteristics among specimens and 
different states of dental development of the animals. 

 Direct measurement of the properties of the  PDL  is an 
invasive technique and very complex due to the alterations 
in blood  ow and subsequent differentiation of the tissue 
response to load. There are however several  in vivo  studies 
conducted to investigate the  PDL  behaviour  (  Mühlemann 
and Zander, 1954  ;   Göz  et al. , 1992  ;   Tanne  et al. , 1995  ;   Van 
Driel  et al. , 2000  ;   Yoshida  et al. , 2001 ;  Kawarizadeh  et al. , 
2003  ;   Cronau  et al. , 2006 ). 

 It has been suggested by several authors that the root 
surface and volume have a marked in uence on tooth mobility 
 (  Tanne and Sakuda, 1983 ;  Tanne  et al. , 1991  ;   Geramy, 
2000 ). Therefore ,  experimental data should be combined 
with numerical results for reliability valuation of the proposed 
model. Several researchers have used only numerical data to 
propose a constitutive model of the PDL ( Middleton  et al. , 
1990  ,   1996  ;   Toms and Eberhardt, 2003  ;   Natali  et al. , 2004 ; 
 Field  et al. , 2009 ). Other studies provide only experimental 
data ( Pilon  et al. , 1996  ;   Pini  et al. , 2002 ).  Andersen  et al.  
(1991)  were the  rst to conduct combined experimental and 
numerical studies of material parameters and stress pro les 
within the  PDL . Other      combined experimental and numerical 
studies towards the investigation of the biomechanical 
behaviour of the PDL were conducted by  Van Driel  et al.  
(2000) ,  Natali  et al.  (2007) ,  Qian  et al.  (2009) ,  Sanctuary 
 et al.  (2005) ,  and   Vollmer  et al.  (1997) . Numerical model 
analysis helps to demonstrate and interpret readily the 
biomechanical response of tooth and surrounding structure. 
Our experimental data of this  in vitro  study will be taken into 
account as reference data in the numerical study ,  which is 
needed for further evaluation. A good agreement among the 
experimental and numerical data is an index of the reliability 
of the proposed model.  

  C onclusions  
    

  1.    The time-dependent viscoelasticity of the  PDL  under 
load is con rmed.  

  2.    During the relaxation period ,  the load decreased 
noticeably demonstrating clearly the viscoelasticity of 
the tissues of the specimens.  

  3.    With increasing loading time ,  it was observed that the 
maximum force values decreased.  

  4.    The initial force value deviations observed can be 
attributed to the biological tissue characteristics of the 

respective specimen and probably to the different 
morphology of the alveolar bone around the root of the 
teeth and the different states of dental development of 
the animals.   
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wavy con guration of the collagen  bres ( Shackleford, 
1971  ;   Wills  et al. , 1972 ). The internal  bre structure and 
orientation and therefore biomechanical properties of 
the PDL vary among different teeth, different mandibles, 
different animals ,  or human beings. In the present study ,  
specimens of minipig mandibular two-rooted premolars were 
investigated. The studied mandible specimens were carefully 
mechanically sliced and prepared before testing and therefore 
variation of initial force magnitudes can be attributed to the 
individual biological characteristics among specimens and 
different states of dental development of the animals. 

 Direct measurement of the properties of the  PDL  is an 
invasive technique and very complex due to the alterations 
in blood  ow and subsequent differentiation of the tissue 
response to load. There are however several  in vivo  studies 
conducted to investigate the  PDL  behaviour  (  Mühlemann 
and Zander, 1954  ;   Göz  et al. , 1992  ;   Tanne  et al. , 1995  ;   Van 
Driel  et al. , 2000  ;   Yoshida  et al. , 2001 ;  Kawarizadeh  et al. , 
2003  ;   Cronau  et al. , 2006 ). 

 It has been suggested by several authors that the root 
surface and volume have a marked in uence on tooth mobility 
 (  Tanne and Sakuda, 1983 ;  Tanne  et al. , 1991  ;   Geramy, 
2000 ). Therefore ,  experimental data should be combined 
with numerical results for reliability valuation of the proposed 
model. Several researchers have used only numerical data to 
propose a constitutive model of the PDL ( Middleton  et al. , 
1990  ,   1996  ;   Toms and Eberhardt, 2003  ;   Natali  et al. , 2004 ; 
 Field  et al. , 2009 ). Other studies provide only experimental 
data ( Pilon  et al. , 1996  ;   Pini  et al. , 2002 ).  Andersen  et al.  
(1991)  were the  rst to conduct combined experimental and 
numerical studies of material parameters and stress pro les 
within the  PDL . Other      combined experimental and numerical 
studies towards the investigation of the biomechanical 
behaviour of the PDL were conducted by  Van Driel  et al.  
(2000) ,  Natali  et al.  (2007) ,  Qian  et al.  (2009) ,  Sanctuary 
 et al.  (2005) ,  and   Vollmer  et al.  (1997) . Numerical model 
analysis helps to demonstrate and interpret readily the 
biomechanical response of tooth and surrounding structure. 
Our experimental data of this  in vitro  study will be taken into 
account as reference data in the numerical study ,  which is 
needed for further evaluation. A good agreement among the 
experimental and numerical data is an index of the reliability 
of the proposed model.  

  C onclusions  
    

  1.    The time-dependent viscoelasticity of the  PDL  under 
load is con rmed.  

  2.    During the relaxation period ,  the load decreased 
noticeably demonstrating clearly the viscoelasticity of 
the tissues of the specimens.  

  3.    With increasing loading time ,  it was observed that the 
maximum force values decreased.  

  4.    The initial force value deviations observed can be 
attributed to the biological tissue characteristics of the 

respective specimen and probably to the different 
morphology of the alveolar bone around the root of the 
teeth and the different states of dental development of 
the animals.   

    

  Funding 

 This work was supported in part by the  German Research 
Foundation  (DFG, Clinical Research Unit 208/TP5) and the 
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