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Synopsis

We consider the non-linear problem ~Au(x)~-f(x, u(x))=Au(x) for xeR" and ue WH-2RY). We
show that, under suitable conditions on f, there exist infinitely many branches all bifurcating from the
lowest point of the continuous spectrum A = 0. The method used in the proof is based on a theorem of
Ljusternik-Schnirelman type for the free case.

1. Introduction

We consider the following non-linear problem:
~Au(x)—f(x, u(x)) = Au(x) for xRN,

This problem has been treated by many authors including Berger, Strauss,
Berestycki and Lions. In this paper we follow Stuart {4, 5].
We prove the following theorem.

TueEoREM 1.1. Suppose f(x, u(x))=q{x) |u(x)|” u(x) where qeL"RY) with
max {N/2,2}Sp=ox, 0<o <2(2— N/p)/(N—2), and q(x)>0 for almost all x eR™.

Suppose further that there exist constants A, t>0 such that q(x)= A/(1+|x|)* for
almost all x RN and that 0<t<2— No/2.

Then,

(i) for A <0, the equation

—Au(x)—q(x) [u(x)|” u(x) = Au(x) forxeR"™

has infinitely many distinct pairs of (generalised) solutions {(A, £u})}ien;
(if) the lowest point of the continuous spectrum is a bifurcation point; in fact all
solutions (A, £u}) bifurcate from A =0:

luilr—=0 as A—0".

We prove this theorem even for more generalised non-linearities f(x, u(x)) such
as used by Stuart [4]. (See Conditions (A1%), (A2%), (A3*) and (A4*) below.)

The existence of an infinite number of solutions for each negative value of A
has been established by Berestycki and Lions [2], at least when f(x, u(x))=
g(u(x)). Stuart has shown that A =0 is a bifurcation point and that there exists a
branch of solutions bifurcating from A =0 [4, 5]. What we show is that in fact
there exist infinitely many branches all bifurcating from the lowest point of
continuous spectrum A =0.
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308 Hans-Jorg Ruppen

The main tool is a generalised result of Ambrosetti and Rabinowitz [1, 3]
concerning the existence of an infinite number of critical points of a functional. It
involves the investigation of the functional on sets of arbitrary genus and we
construct such sets using functions of the following type:

u(x)=p(x>e™™" for x eRN 1.1

where p is a polynomial. This construction seems simpler than that used previ-
ously for problems of this kind [2].
An alternative approach is discussed in Section 6.

2. The equation T'Tu — F(u) = \u
We consider the equation
—Au(x)— f(x, u(x)) = ru(x), xeRY, N=2 2.1)

and the corresponding bifurcation problem, but first we give a precise meaning to
this equation. (This section follows Stuart [4].)

Let us begin with the operator —A.

We put

H:=L*®RM)=L? ul|:= {Iu(x)2 dx}i,

N N
@(S):={ueH: ZDfueH}, Su:=—), D?u,
i=1 i=1
i.e. S is the self-adjoint extension of the negative Laplacian in H. When no
domain of integration is indicated, it is understood that the integration is over all
of RN. Let (H,,|.|l,) be the Hilbert space obtained by equipping % (S) with the
graph norm

lullo:= {ulP+lSulPl, ¥ ueB(S).

Then, up to equivalence of norms, H,= W2*R").
We now take T = S?, the positive self-adjoint square root of S. Let (Hp, ||.|l+) be
the Hilbert space obtained by equipping & (T) with the graph norm

lullr: = {lulP + I Tul?¥, ¥ ueD(T).

Then Hy= WZ'®R"Y) and ||Tul|=|||Vu||, ¥ ue Hr where Vu=(Du,..., Dyu).

By identifying H with H*, we can write Hr <« H= H* < (Hr)* and use (., .) for
the duality between (H;)* and Hy. Since T: Hy — H is bounded, it has a
conjugate T': H* = H — (H;)* which is also bounded. Then T'T: Hy — (Hp)* is
a bounded linear operator such that T'Tu=Su, YVue@(S) and 2(S)=
{ue Hy: T"Tuc H}.

These results are discussed in more detail in [4].

We now turn to f in (2.1) and make the following basic assumption.

(A1) The function f can be written as a sum, f=3."f, of a finite number of
functions f, where, for 1=i=m, f.: RN xR — R is of Carathéodory type such
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The existence of infinitely many bifurcating branches 309
that
Ifi(x, s)| = Ay(x) [s]" "

for all scR and almost all x eRN, where A, e L” (RN)' for some p; such
that max {N/2,2}=p, = and 0<o; <2(2—N/p,)/(N—=2).

(When p =, 1/p is understood to be 0 and when N =2, 1/(N —2) is understood
to be +x.)
This assumption guarantees a well-posed problem (2.1) in the sense that

f(x, u(x))e (Hp)* whenever ue Hr.

In fact, if (A1) is satisfied, we set
%(x,s):=I filx,r)dr and %:= Z F..
0 i=1
For u:RY > R, let

F(w)(x):=fi(x, u(x) and F:= 3. F,

i=1
¢i(u):= Jgi(x, u(x))dx and ¢:= 2, ¢
i=1
The problem (2.1) is then equivalent to
Su—F(u)=Au, ueH,. (2.2)

The following result is also given by Stuart [4].

ProrosiTiON 2.1. Let Condition (A1) hold.

(i) For 1=i=m, F, maps L™ boundedly and continuously to L% where

7:=(2+0)/(1-1/p) and gq;:=7/(r;—1),
and F maps Hy boundedly and continuously to (Hy)*. Further,
KF:(w), u)l = K || Tull* lul®, v ueHy
where ;.= N(o/2+1/p;), Bi:=2+0,—«a; and K;>0 and so
K@), w= max {mK; [Tul™ |ul®}, ¥ ueHr

(i1) If in addition to Assumption (A1) we have
0<0;<2(1—=N/p)/(N=2) for 1=i=m,
then F, maps L™ boundedly and continuously into H.

(iii) For 1=i=m, ¢ : Hr — R is continuously Fréchet differentiable and ¢'(u)v =
(F(u), v) for all u, v € Hr.

Remark. We note that 2 <7, <2N/(N —2) and so Hr is continuously embedded
in L™ for 1=i=m by the Sobolev embedding. It follows that L* is continuously
embedded in (Hp)*.
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310 Hans-Jorg Ruppen

A pair (A, u) is now called a (generalised) solution of (2.2) if
(i) (A, u)eRxHy

and
(i) T'Tu— F(u) = Au holds in (Hp)*, i.e.

(T'Tu, v)—(F(u), v)= Alu, v)

for all ve Hy. A is called a (L?-) bifurcation point for (2.2) if there exists a
sequence {(A,, u,)} of (generalised) solutions to (2.2) such that

6 u,#0, VneN,
(ii) A=A and |luflr—0 forn—om.

We want to show that A =0 is a bifurcation point for (2.2) and that there exist
infinitely many bifurcating branches; to do this we need ¢ to be weakly sequen-
tially continuous. This is guaranteed by the following assumption.

(A1*) f satisfies Condition (A1) and A;(x) — 0 for |x| —  whenever p,= and
f(x,s) is odd with respect to s.

Then the following result holds.

ProrosiTioN 2.2, Let Condition (A1%) hold. Then F is completely continuous and
compact; more precisely

u, — u in Hy > F(u,)— F(u) in (H;)* forn — «.

CorOLLARY 2.3. Let Condition (A1*) hold. Then ¢: Hy — R is weakly sequen-
tially continuous.

Proof. This follows from the compactness of ¢'=F. See [6, Satz 39.22].

3. The functional J,
For A <0, we put
Nlullx = I Tul®= A Jul?, ¥ ueHy.

Note that |||.[|, and ||.|lr are equivalent norms in H;. We now define a functional

J,. whose critical points are (generalised) solutions to (2.1); critical points in turn

will be found via a theorem of Ljusternik—Schnirelman type for the free case.
We put

JuHr =R, uw—J(w):=3lullf-e).

In order to control the radial behaviour of J,, we make the following assumption
on f.

(A2*) There exist constants & = g >0 such that for every s eR
Fx, t)=t7F(x,5)=0 whenevert=1
and

F(x, t8)=t>"°F(x,8)=0 whenever 0st=1.
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The existence of infinitely many bifurcating branches 311
Further,

e(u)>0 forall wue H\{0}.
Note that Condition (A2*) will be satisfied if the function f is of the form

fx9)= X q(x)Is|s (3.1)

i=1

with g;(x)> 0 for almost all x eR™ and o; > 0. (Simply take g:=min{o;: 1=i=m},
g:=max{o;: 1=i=m})

In order to have a quantitative control on the radial behaviour of J,, we
introduce a second functional on Hr:

0 (u=0),
L:Hr =R, u— L) =9 3 [ullR—Nulliy@) (e Hy, |lull, = 1),

3l =R w@w)  (ue Hr, 0<|ul, = 1),
where
$(u):=efflull,) for ueH\{0}.

Then I, is a majorant functional for J, whose radial behaviour can be completely
controlled. In fact, the following lemma follows immediately from the definition
of I, and Condition (A2%).

LemMma 3.1. Let Condition (A2*) be satisfied. Then

@) L (w)=1I(u) whenever |ull,=1.
(i1) J\w)=L(u) forall ueHr
Let us now have a look at the radial behaviour of I,. For any fixed u € Hy\{0},
we put
a:[0,x) >R, t—a(t):=L(tu),
ie.
0 (t=0),
a(t) =9 3t MullR— 7 NullZZ ww) ©O<e=1/|ull),
st ullR = w2 e@) = 1/ully).
Then
0 (t=0),
a'(t) =9 tllullR{1 -2+ ull @)} ©O<e<1/ull),
el {1- Q2+ o) lullg g} > full),
and

a(/lull) = llwll {1- 2+ &)},

a’s (MMl = Meelllx {1 - 2+ @)w ()},
where a’ and a’, are the left and right derivatives. Hence a can be extremal for
t=1 only if

llully = {2+ @)g(w)} "o>1
or

Mully = {2+ @)@} <1.
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312 Hans-Jorg Ruppen
In the case where g = & =: o, both conditions reduce to
1=2+o) ) [[ulf.
We put

M,:= MPUM®
where A
M :={ue H\{0}: [Jull, = {2+ )¢ @)} > 1},

M@= {ue Hr\{0}: Jlulll, = {2+ &)} <1}
(In the case where g =& = o, simply set
M, :={ue Hy\{0}: 1= 2+ o)) |u|R.)
The two following lemmas give the central properties of these sets.

LemmMa 3.2, Let u € H\{0} be fixed. If I, (tu) is maximal for t = 1 then uc M,.

Lemva 3.3.

() If ue MY, then I, (u) = g/(4+20) JJulli> /(4 + 20).
(i) If ue M, then I, (u) =6/(4+26) |ull < a/(4+26).
(iii) If 6 =¢ =0 and ueM,, then I,(u) = o/(4+20) [|ullz.

As mentioned above, we investigate the critical points of J, via a theorem of
Ljusternik—Schirelman type given by Ambrosetti and Rabinowitz; (I,)-(Is) will
therefore refer to conditions on J, given by these authors in [1]. We now show
that J, in fact satisfies these conditions if the following assumption is made on f.
(A3*) There exists q>2 such that for all s€R and almost all x eRY

f(x, 8)s =q%(x,s)=0.
Note that f satisfies this condition if f is of the form given in (3.1); simply set
q:= 2+qa. Assumption (A3*) means that
(F(u), uy)=qge(u)=0 forall wueHry;
Assumptions (A2*) and (A3*) together give that
(F(u), u)=z2¢{u)>0 forall ueH\{0}. (3.2)

We now suppose that f satisfies Conditions (A1*), (A2*) and (A3*) and show

that J, satisfies Conditions (I,)-(Is) in [1].

(I}) There exists p, >0 such that J,>0 on B,\{0} and J,Za >0 on S, where
B,:~ {ueHy |lull, <p} and S,: = B,

Proof. The proof can be found in [5]. For completeness, we just recall that, for
ueHry,

1 m
L@z ulR-5 X K [Tul ful®
i=1
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The existence of infinitely many bifurcating branches 313
by (3.2) and Proposition 2.1. Hence,

A0 Z R 11~ max {m [ulf 2 A]#/2)

and, since a; + 8;> 2, the proof is complete. [
(I,) There exists e € Hy\{0} such that J,(e)=0.

Proof. This follows immediately from (I;) and (Is) (see below). In fact there
exist infinitely many such elements. []

(1) If {u,} is a sequence in Hr such that
0 <y (u,)=sup J(u,) <o

and
W' gz s— 0 for n— oo,

then there exists a subsequence {u,} such that u,. converges in Hy. to some 1.
Proof. For a proof see [5].

Remark. Condition (I;) is the Palais—Smale condition (PS)™.

1, J. is even: Jy(u)=J(—u) for all ue H;.

Proof. By (A1%), ¢ is an even functional. Therefore J, is also even. O
(Is) For any finite dimensional subspace Z of Hr, the set Z N{uec Hy: I, (u) =0} is
bounded.

Proof. For a proof see [5].

4. The existence of infinitely many solutions
According to {1], we set
T:={geC(0,1], Hy): g(0)=0 and g(e)=1}
where e is the element whose existence is given by (I,);
Iy:={he C(Hy, Hy): h(0)=0,
h is a homeomorphism from Hy to Hy and h(B)c AO}
where i
B:={ueH;:||ull, <1} and Ay:={ueHy:J,(u)z=0};
I'*:={h el4: h is odd};
I'.:={K < H;: K is compact in Hy, K is a symmetric set i.e. ~K =K,
y(KNh(@B)zk, Vhel* (keN)}
where <y is the genus of a set

If Conditions (A1%), (A2*) and (A3*) are satisfied, equation (2.1) has for each
A <0 infinitely many (generalised) solutions corresponding to the critical values b*
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314 Hans-Jorg Ruppen
and bi(k e N), where

@) b*:=inf max J,(u),
gel’ ueg(0,1]

(i1) b}:= inf max J, (u).
Kel', uek

5. Behaviour of the solutions as A —> 0~

We discuss the behaviour of the solutions u} to equation (2.1) which correspond
to the critical values by when A — 0. Accordingly, we make the following
assumption on f:

(A4*) There exist constants A, 8, t>0 such that
Flx, ) Z A(L+|x]) " |s]*
for all |s| < & and for almost all x e RN where 8 and t satisfy the inequalities
0<8<1 and 0<it<2+g-6—Ndg/2,

where G and o are the constants of Condition (A2*).

Note that Condition (A4*) is satisfied by a function f of the form (3.1) if
a(x)ZAA+x])" foralmostallxeRN (i=1...m).

What we want to show is that under Assumptions (A1%*)-(A4*) bifurcation will occur
at the point A =0.

Let p(t):=Y*_J a;t' be a polynomial of degree =k — 1. We often identify p(t)
and p:=(aq, a,,...,ar_1) €R*. The space R* will be considered to be equipped
with the norm

lplle: = max{la;]: i=0,..., k—1}, Vp=(ae...,a_1)cR";

this norm is equivalent to the usual one
k=1 1
”lp]”::{z alz} 3 Vp:(aO’-’-aak—l)eRk-
For p eR¥, we set

dy:= “pz(lylz)e‘z‘y" dy}

1
2
’

L= 4 [IyPLp (P - p(yPPe>" dy,

K=27A b p(yPIPoe e ay,

fyl=1
We first give some properties of d,, L, and K.

LemMA 5.1. d, depends continuously on p, for all peR".
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The existence of infinitely many bifurcating branches 315

Proof. Let
p = (a07 e ey ak—l)eRka
€ ::(80, ey Sk_l)ERk,
pte:=(ap+eg,...,0 1+¢&_) Rk
Then

dz,.—d?= J’s(lylz)p(lﬂz)e*z'y'zdy+Isz(lylz)e—z‘y'zdy

L L ffeavrera

0
J £i; [yFe ™" dy}

2k—-2 i
=Y Y &Ca+e) I\)’\EG*ZW dy,
i=0 j=0
where a; = g, =0 for s = k. Therefore,
dZ,.—d2—0 as el —0.
This proves the continuity of d,. []
LeMMA 5.2. There exists a constant ¥ >0 such that
0=L,=Zplf, VpeR®.
Proof. Let p=(aq, ..., a,_1) €R*. Then

0=L,=4 [IyPIpQyP) - pUyPPe " dy

k—1 2
=4 sz { Z [G+Va;1—a;) ]yi2i} e P gy,
i=0
where q, is taken to be zero. Since

|G+ Dajoy—a;|=(k+ 1) max{la]: i=0,..., k—1}

=(k+1)pll.
we have

OéLp<4(k+1)ZJ|YI2{Z !W'} 2P dy . |Ipli.

i=0
If we put

k—1 2
2= a2 [P { T b} era,

i=0
the lemma is proved. [

Lemma 5.3. (i) K, depends continuously on p, for all peR*. (ii) K, =0 if and
only if p=0.
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Proof. (i) Let p:= (aq,..., ax_1) eR¥,
e:= (€g, ..., &_1)€ER* with |lell, <1.
Thén
K,..=2"'A J Iy 1(p + &)y PP 7e D dy.

lvl=1
If one takes as dominating function

y > [y Py P)PTe @My eRN,
where

5= Y (al+ Dr'

i=0
the Lebesgue dominated convergence theorem gives
Kp+s - Kp as Henk — 0.

(ii) This follows from the definition of K,. O
For peR* and A <0, we put

Upp (x):=p(=A [x[)e*", xeRN,
and we consider the following subspace
Z(k, A):={u,,(x): peR*} < Hp.
By Condition (Is), the set
Zk,A),:=Z{k, \Y{u e Hy: J,{u)=0}

is bounded in H; and hence in Z(k, A). The following proposition shows that this
boundedness is uniform if |A| is small enough.

ProOPOSITION 5.4. Let Conditions (A1*)-(A4*) hold and put
Z(k, ) :={uyr (x) e Z(k, \): |lpll = 1.
Then there exists a constant Ao€[—1, 0) such that

Z(k, M), < Z(k,\) whenever Ae€(A,0).

Proof. Let Z:={u,,(x)€ Z(k, A): |pll =1}. For the majorant functional I, we
show that

Lz (u)<0 whenever Ae(X,,0).

The conclusion of the proof follows from the radial behaviour of I, and the
connection between J, and I,.
We first remark that

Nl = 1A [T d3,

| Tup a P = AL,
and
Ml allZ= AN, +dY)  forall uy,,(x)e Z(k, A).
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The existence of infinitely many bifurcating branches 317
These equalities can easily be verified by a direct computation. We now put
y(p):=2max|u,,(x)|, VpeR"
xRN

and
yo:=min{y(p): peR* with |[pl, =1}

Note that y(p) is always finite and depends continuously on p. Since y(p)>0
whenever p# 0, we thus have y,> 0. If § is the constant in Condition (A4%*), we
have, by (A2%),

eupn) = w(y—ép—) : % up,x>

= [y(p)/6]2+”¢(;(% “m)

where
_{6— if y(p)/éd<i
o otherwise.

Therefore, by (A4%),

ﬂP(up,x)é[y(p)/a](2+")/2+&)2_‘AI x| [p(A [x[DP+7er @ gy

Ix|=1

= [y(p)/S ](2+0)/(2+6’)2—tA IAl(t_N)/z J ‘ylﬂ |p(_|yl2)2+&e—(2+&) lylz dy

lylz=1
if |]A|=1. Hence, for |A|=1,

e(u, )=C K, - A7
where
C:= min {[yo/8]*" /), y,/8}>0.

If we set
D:=max{L,+d2: peR* with |pl|,=1},
K:=min{K,: per* with |[pl, =1},

we have, by Lemmas 5.1, 5.2 and 5.3, that D and K are finite and positive.
Hence, for A ¢[—1, 0),

L (up ) =2 AL, + d3) - CK,, [A|4N72
= l)\l(r—N)/Z(% I)\ ll—t/2D —-C- K)
Therefore, there exists some Age[—1,0) such that
L(u,\)<0 forall u,,(x)eZ

where A € (A,,0). O

Remark. By the proof of Lemma 2.7 in [1],
Z(k,\)eT, (keN) for Ae(r,0).
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PROPOSITION 5.5. Let Conditions (A1*)—(A4%) hold and let A, be given by
Proposition 5.4. Then there exists a constant €[\, 0) such that

P, )=2 forall u,, e Z(k, \)\{0}
where A € (A, 0).
Proof. For u,, e Z(k, M\{0}, we have

() = @ (Ml ) Z et IR0 (140

where
_ {5 if Jupar =1,
o= .
o otherwise
Hence,
Plup ) Z{A|"NAL, +dDYT? G, K - AT
where
C,: = min {[y(p)/8]%"/* P y(p)/8}.
But since
Yltu, )= (u,,) forall >0,
we get

() Z D™ PCK A"

where C, D and K are the same as in the proof of Proposition 5.4 and where « is
given by

k=(N2-1)(A+0a/2)+(t—N)/2<—-1+Ng/4—g/2+1/2<—-G/2<0.
So
Y(u,,) >~ for A—0" uniformly on Z(k, V\{0}. O

Proposrtion 5.6. Let Conditions (A1%)-(A4*) hold. Let u} be the (generalised)
solution to (2.1) corresponding to the critical value b}(A <0, k eN). Then
br—0 as A—0".
More precisely,
Y=0() for A—0".
Proof. Suppose that g <&. For ¢ = @, the proof remains the same except that
M is replaced by M,. Suppose A €(A,,0). Then

0<bp= inf maxJ,(u)
Kel', uekK

A

max I, (u)
ueZ(k,\)

= max L (u)
ueZ(kA)NME

since Z(k, \)NM = & by Proposition 5.5. If we put
tu):=[2+&)P) VoL, +d2) = AN
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and
Z)\ = {up,)\ € Z(k7 A) “p”k = 1}1
then
t(upn)u,n € M whenever u,, € Z,
and so

O0<bi=max I, (t(u)u)

ue”zZ,

= ¢/(4+26) max |[|t(u)ull?

ueZ,

= g/(4+26) max [2+ &) (u) ]2

ueZ,
= const |A| 72/
by the proof of Proposition 5.5. Since —2«/d > 1, we have
*=o(A) for A—=0". O
We are now ready to prove the main theorem.

THEOREM 5.7. Let Conditions (A1*)~(A4%*) hold. Then (i) for A <0, equation
(2.1) has infinitely many distinct pairs of (generalised) solutions {(A, £u})}h.on; {il)
A =0 is a bifurcation point for equation (2.1), i.e.

ludlr =0 as A—0".

Proof. (i) This is a result of Section 4.
(i1) Let u} be a critical point of J,:

JLup=by,  Ji(up=0.

Therefore,

d .

u Lul-1=0, ie. [ludllR=(Fup), uw).
But

bi= 3wl — @ (ui)
=3(F(up), upy— @) =o@) for A—0
and thus by (A3%)
2 Z2Gg-Deup)z0— )=o) for A—0".

Therefore,

(F(up), upy=0() for A—07,
1.e.
llurlz=0() for x—0".

Since [[ullx = ||Tul| and [Jull, = VIA||lu| for all u e Hy, we have
”Tuk”2 = O()\)’

el = o(1),
lulz=0(1) for A—0". O
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320 Hans-Jorg Ruppen
6. An alternative approach

There is another approach to the problem (2.1) given by Stuart [4].
We put

J(u):=3|Tul?>—o(u) for ueH;
and
M,:={uecHy:|ul|=r} for r>0.

Then critical points of J |, are (generalised) solutions to (2.1) and it is sufficient
to verify the hypotheses of Theorem 4 of [§]. The main point is to show that
Assumption (S4) is satisfied for all jeN and this can be done (under the
assumptions on f given below) using functions of type (1.1) and calculations
similar to those of Section 5. The details will appear in [7].

Let us make the following (weaker) assumptions on f:

(A2) F(x,t5)=t°F(x,5)=0 forall seR all t=1 and almost all x eR™.

(A3) f(x, s)s=2%F(x,8)=0 for all scR and almost all x eR".

(Ad) There exist positive constants ¢, 8, A and t such that 0 <o <2(2—1t)/N and
Fx, )= A +|x)7"|s|** for all 0=5 =8 and almost all x cR".

THEOREM 6.1. Let Conditions (A1%*), (A2)-(A4) hold. Then, for r>0 small
enough, there exist infinitely many distinct pairs of (generalised) solutions (A7,
+u) eR X Hy for equation (2.1) such that

funll=r, AL<0  forallneN.
lupllr — 0, Al—=0" asr—0"

Let us remark that the question as to whether Condition (A1*) can be
weakened remains open.
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