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Given three natural numbers k, l, d such that k + l = d(d + 3)/2, the Zeuthen number Nd (l)

is the number of nonsingular complex algebraic curves of degree d passing through k

points and tangent to l lines in P
2. It does not depend on the generic configuration C

of points and lines chosen. If the points and lines are real, the corresponding number

NR

d (l, C ) of real curves usually depends on the configuration chosen. We use Mikhalkin’s

tropical correspondence theorem to prove that for two lines, the real Zeuthen problem is

maximal: there exists a configuration C such that NR

d (2, C ) = Nd (2). The correspondence

theorem reduces the computation to counting certain lattice paths with multiplicities.

1 Introduction

Given l lines and k = d(d + 3)/2 − l points in CP 2, how many nonsingular complex alge-

braic curves of degree d pass through the k points and are tangent to the l lines? This

is a particular instance of the Zeuthen problem. For generic configurations of points

and lines, there are finitely many solutions to the problem and we call Zeuthen number

the number Nd (l) of solutions. Here we consider the corresponding question for real

data: assume that the points and the lines are real, how many degree d real curves pass
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through the k points and are tangent to the l lines? In other words, what values can take

the real Zeuthen number NR

d (l, C ) of real solutions? This number usually depends on the

configuration C , and, clearly, the (invariant) number of complex solutions is an upper

bound.

Whether there exists a generic configuration for which all the solutions are real is

a natural and classical question in real enumerative geometry. It is said that the problem

is maximal if such a configuration exists. For l = 1, it was shown by Ronga [4] that the

Zeuthen problem is maximal in the above sense (i.e. all the curves can be real). In this

article, we show that the problem for two lines is also maximal.

Theorem 1.1. For any integer d ≥ 2, there exists a configuration C of two real lines and

d(d + 3)/2 − 2 real points such that all the degree d curves passing through the points

and tangent to the lines are real,

NR

d (2, C ) = Nd (2). �

The techniques we use are those developed by Mikhalkin in [3]. The statement is

proved using correspondence theorems to tropicalize the problem and the lattice path

algorithm to count the number of tropical curves. I would like to thank G. Mikhalkin and

E. Shustin for useful discussions.

2 Tropical Tangency and Algorithm

2.1 Tropical tangency

We use here the terminology introduced in [3] without recalling definitions and ba-

sic properties of tropical curves. General tropical tangency has been discussed in

Mikhalkin’s note [2]. Here we consider a simple special case of tangency with respect to

toric divisors i.e. in our projective plane setting, the three axes which are the closures

of one-dimensional orbits of the torus action (see also [1]). Recall that a plane tropical

curve is dual to a subdivision of its Newton polygon such that the weight of an edge of

the curve is equal to lattice length of its dual edge. A simple tangency to a coordinate

axis in the algebraic world translates to a weight 2 unbounded edge in tropical world.

Definition 2.1. We say that a tropical curve C with Newton polygon � is tangent to an

axis corresponding to the edge δ ⊂ � if in the dual subdivision there is a 1-simplex of

length greater or equal to 2 included in δ (see Figure 1.). �
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Fig. 1.. Tropical conic tangent to the horizontal axis and dual triangulation of its Newton

polygon

We only consider here simple tangencies (i.e. the weight of the corresponding

edge is 2).

Under the degeneration process described in [3] Section 6.1, a family of curves

tangent to some axes and passing through the right number of points has a tropical limit

curve which is tangent (in the above sense) to the axes.

All configurations considered here will be generic. The multiplicity mult(A) of a

tropical curve A and the multiplicity multR(A) of a real tropical curve is defined as in [3],

Definitions 4.15 and 7.10. The proof of Theorem 1.1 we give will use the so-called lattice

path algorithm of counting tropical curves with multiplicity. The multiplicity of a path

is explained in Section 2.2.

Theorem 2.2. Let l ≤ 3 be a positive integer. The number of complex algebraic curves

of degree d passing through d(d + 3)/2 − l points and tangent to l lines is equal to the

number of degree d tropical curves through d(d + 3)/2 − l points and tangent to l chosen

axes counted with multiplicities. �

Theorem 2.3. Let l ≤ 3 be a positive integer. Let T be a configuration of d(d + 3)/2 − l

points. Let NR

trop,d,T be the number of degree d real tropical curves counted with multiplic-

ities passing through C and tangent to l chosen axes. Then there exists a configuration

C of d(d + 3)/2 − l real points and l real lines, such that NR

d (l, C ) = NR

trop,d,T . �

The first statement can be extracted from [2] and [3] and the second one can be

deduced from the first one analyzing, as in [3], which tropical curves actually produce real

algebraic curves (see [3] Section 8, p. 365 and Propositions 6.17, 6.18, 8.21, and Theorems 1
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and 3). Alternatively, one can also deduce Theorem 2.2 from Shustin’s Lemma 5.4 and

Theorem 5 in [5].

2.2 Lattice path algorithms

As in [3] Sections 7.2 and 7.4, placing the points on a line of negative irrational slope

and sufficiently far away from one another, one obtains algorithms to count the relevant

tropical curves. We describe below in our special cases the slightly modified Mikhalkin’s

algorithms (see [3] Sections 7.2 and 7.4) that take tangencies into account. We refer to [3]

for a more developed presentation of lattice path algorithms.

Let � be the triangle with vertices (0, 0), (d, 0), (0, d) (that is the Newton polygon

of a generic curve of degree d). Let l ≤ 3 be a positive integer and p1, . . ., pl be integer

points on l different edges of �. Choose a nearly horizontal line L of R
2 with a very

small negative irrational slope and consider the orthogonal projection λ : R
2 → L ∼ R.

Let p (resp. q) be the point of � where λ reaches it’s minimum (resp. maximum). Let

γ : [0, n] → � be an increasing (piecewise linear) lattice path from p to q avoiding the

pi’s (i.e. γ ([0, n] ∩ Z) ⊂ � ∩ Z
2 \ {p1, . . ., pl} and λ ◦ γ is increasing). We define inductively

positive and negative multiplicities µ± of γ . Let α+ (resp. α−) be the path supported by

the upper edge of � (resp. the vertical and lower edges of �). The multiplicities µ±(α±)

of α± are 1. If the path γ is neither α+ nor α− then it divides � into two closed regions

�+ and �−, where �± contains α±. Let k be the smallest integer such that �± is locally

strictly convex at γ (k). Consider the path γ ′ : [0, n − 1] → � defined by γ ′( j) = γ ( j) if j < k

and γ ′( j) = γ ( j + 1) if j ≥ k. We set

µ±(γ ) := 2area(T )µ±(γ ′),

where T is the triangle with vertices γ (k − 1), γ (k), γ (k + 1). The multiplicity µ(γ ) is defined

by µ(γ ) = µ+(γ ) · µ−(γ ). Here is the statement in our particular case.

Let δ1, . . ., δ3 be edges of � and ηi be the set of integer points in the relative interior

of δi.

Theorem 2.4. Let l ≤ 3 be a positive integer. The number Nd (l) is equal to the sum of the

multiplicities of the λ-increasing lattice paths [0, d(d + 3)/2 − l] → � avoiding p1, . . ., pl

over all {p1, . . ., pl} ∈ η1 × · · · × ηl . �
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There is a real version of the algorithm to count real curves. We briefly explain

how to obtain it from the previous one in our special case and refer to [3] for details.

One now needs to consider “signs” on intervals [ j − 1, j] for j = 1, . . ., n and

“phases” of edges which are the images of those intervals. Let s ∈ Z
2
2 be a choice of

“sign” on each interval. Suppose γ ( j) − γ ( j − 1) = (yj, xj) ∈ Z
2, j = 1, . . ., n. Let Sj be the

quotient of Z
2
2 by the equivalence relation (X, Y) ∼ (X + xi mod 2, Y + yi mod 2), (X, Y) ∈ Z

2
2.

It induces a phase σ j(s) ∈ Sj on each corresponding edge [γ ( j − 1), γ ( j)] of the image of

γ in �. If S = (S1, . . ., Sn) ∈ (Z2
2)n is a choice of “signs,” we denote by σ (S) the n-tuple of

induced phases σ1(S1), . . ., σn(Sn).

Let σ = (σ j) j=1,. . .,n, σ j ∈ Sj be any choice of phases on the edges of the image

of γ . The real multiplicity µR(γ , σ ) of a path γ equipped with phases σ is given by

µR(γ , σ ) = µR

+(γ , σ ) · µR

−(γ , σ ), where µR

±(γ , σ ) are defined inductively as above. The path γ ′

is obtained as before and we set µR

±(α±, σ ) = 1 and

µR

±(γ , σ ) = a(T )µR

±(γ ′, σ ′),

where

• a(T ) = 1 if the lattice area (twice the usual one) of T is odd. In this case the

phase σ ′
k is chosen such that the three classes σk, σk+1, and σ ′

k do not share a

common element.

• a(T ) = 0 if all sides of T have even lattice length and σk �= σk+1.

• a(T ) = 4 if all sides of T have even lattice length and σk = σk+1. Then define

σ ′
k := σk.

• a(T ) = 0 if σk and σk+1 do not have a common element.

• a(T ) = 2 if T has exactly one even side distinct from [γ (k − 1), γ (k + 1)]. Then

σ ′
k is defined by the fact that it should have a common element with σk and

σk+1.

• If [γ (k − 1), γ (k + 1)] is the only even side of T , then one should consider the

path γ ′ with the two choices of σ ′
k satisfying the above condition (i.e. µR

±(γ , σ ) =
µR

±(γ ′, σ ′
1) + µR

±(γ ′, σ ′
2)).

Theorem 2.5. Let l ≤ 3 be a positive integer. For any choice of S ∈ (Z2
2)d(d+3)/2−l , there ex-

ists a configuration of d(d + 3)/2 − l generic points such that the number of degree d real

curves among the Nd (l) complex ones is equal to the sum of the multiplicities µR(γ , σ (S)) of
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Fig. 2.. Case of one line

the λ-increasing signed lattice paths (γ , σ (S)) : [0, d(d + 3)/2 − l] → � avoiding p1, . . ., pl

over all {p1, . . ., pl} ∈ δ1 × · · · × δl . �

3 Maximality

3.1 Case of one line

The case of one line was studied by Felice Ronga [4] who proved maximality and com-

pleteness of the real Zeuthen problem. We give a tropical proof of the maximality for one

line.

As we can choose the line to be any of the axes, we will consider two cases: first,

the line at infinity and then ordinate axis. To count the lines tangent to the infinity line, we

need to count lattice paths of maximal length avoiding one of the interior points (m, d −
m) of the hypothenus h of �. Consider the constant sign sequence ((+, +), . . ., (+, +)) (we

denote by + the zero element of Z2 and by − the nonzero one). We have d − 1 choices

for the point (m, d − m) and, as shown in Figure 2., for each one the lattice path has

multiplicity 2. Thus, the total number of curves passing through our configuration is

2(d − 1). When considering the ordinate axis, the paths must avoid a point on the vertical

edge v of � and we choose the sign sequence Sd(d+3)/2−1, which is constant and equal to

(+, +) except for the d − 1 first terms that are (−, +), (+, +), (−, +), (+, +), . . ., (−, +), (+, +)

for d odd and (+, +), (−, +), (+, +), . . ., (−, +), (+, +) for d even. Again as shown in Figure 2.,

each path has multiplicity 2.
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Fig. 3.. The two-lines case

3.2 Main theorem

We prove that for two lines, there is a configuration of d(d + 3)/2 − 2 points and two

lines for which all the (nonsingular) curves of degree d passing through the points and

tangent to the lines are real.

Proof. We can choose the lines to be the infinity line and the ordinate axis. Consider

the sign sequence Sd(d+3)/2−2 of length d(d + 3)/2 − 2 defined in Section 3.1. We just need

to see that for each pair of integer points lying respectively in the interior of the edges h

and v, we have a lattice path of multiplicity 4 to prove that NR

d (2, C ) = (2(d − 1))2.

If the point on h is not (1, d − 1), then the picture splits into two independent

parts: the band [0, 1] × [0, d] and the triangle with vertices (0, 1), (0, d), and (d − 1, 1). Both

parts were studied for the case l = 1 in previous section and contribute each for 2 in the

multiplicity (see Figure 3.).

If the first point is (1, d − 1), one just needs to notice that the signed segments

on v behave exactly as if the one of length 2 was split in two of length 1 and the sign

distribution was that of second case of Section 3.1. Hence, the multiplicity of these paths

is also 4 (see Figure 3.). �
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