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ABSTRACT
We measure the redshift-space reduced void probability function (VPF) for 2dFGRS volume-
limited galaxy samples covering the absolute magnitude range M bJ −5 log10 h = −18 to
−22. Theoretically, the VPF connects the distribution of voids to the moments of galaxy
clustering of all orders, and can be used to discriminate clustering models in the weakly non-
linear regime. The reduced VPF measured from the 2dFGRS is in excellent agreement with
the paradigm of hierarchical scaling of the galaxy clustering moments. The accuracy of our
measurement is such that we can rule out, at a very high significance, popular models for galaxy
clustering, including the lognormal distribution. We demonstrate that the negative binomial
model gives a very good approximation to the 2dFGRS data over a wide range of scales, out
to at least 20 h−1 Mpc. Conversely, the reduced VPF for dark matter in a � cold dark matter
(�CDM) universe does appear to be lognormal on small scales but deviates significantly beyond
∼4 h−1 Mpc. We find little dependence of the 2dFGRS reduced VPF on galaxy luminosity.
Our results hold independently in both the North and South Galactic Pole survey regions.
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1 I N T RO D U C T I O N

The galaxy distribution on the largest scales displays striking
geometrical features, such as walls, filaments and voids. These
features contain a wealth of information about both the linear and
non-linear evolution of galaxy clustering. The nature of such clus-
tering is dependent on many large- and small-scale effects, such
as the cosmological parameters, galaxy and cluster environmental
effects and history, the underlying dark matter distribution, and the
way in which the dark and luminous components of the Universe
couple and evolve. By probing the lower and higher orders of galaxy
clustering, one thus hopes to shed light on those physical processes
on which the clustering is dependent.

The traditional tool used to analyse such distributions has been the
two-point correlation function (Davis & Peebles 1983; Davis et al.
1988; Fisher et al. 1994; Loveday et al. 1995; Norberg et al. 2001;
Zehavi et al. 2002), providing a description of clustering at the lowest
orders. However, despite its usefulness, the two-point correlation
function only provides a full clustering description in the case of a
Gaussian distribution. A more complete account of clustering must
include correlation functions of higher orders, although these are
often difficult to extract [for an analysis of galaxy clustering in
the 2dFGRS up to sixth order, see Croton et al. (2004) and Baugh
et al. (2004)].

In light of this, researchers have looked towards other clustering
statistics to glean higher-order information from a galaxy distribu-
tion. Historically, many astronomers have favoured using void statis-
tics (e.g. Fry 1986; Maurogordato & Lachieze-Rey 1987; Balian &
Schaeffer 1989; Fry et al. 1989; Bouchet et al. 1993; Gaztañaga &
Yokoyama 1993; Vogeley et al. 1994). This approach is useful in
that results are easily obtainable and are well supported by a solid
theoretical framework (White 1979; Fry 1986; Balian & Schaeffer
1989), which directly relates the void distribution to that of galaxy
clustering of higher orders.

In this paper we employ the completed 2dFGRS data set to
undertake a detailed analysis of the void distribution using the
reduced void probability function. We rely heavily on the well-
established theoretical framework that connects the void distribution
with galaxy clustering of all orders (equation 1). The distribution of
voids and the moments of galaxy clustering of all orders are known
to be intimately linked, and the study of one can reveal information
about the other that would otherwise be difficult to measure. Our
goal is thus to use the reduced void probability function to investi-
gate if galaxy clustering in the 2dFGRS obeys a hierarchy of scaling,
and on what physical scales this scaling holds. We explore a num-
ber of phenomenological models of galaxy clustering that exhibit
hierarchical scaling, and use these models to help clarify the way in
which higher-order clustering is constructed.1

This paper is organized as follows. In Section 2 we give a brief
review of the theory behind the void statistics to be employed in
our analysis. In Section 3 we present the 2dFGRS data set, and in
Section 4 the counts-in-cells method we use to measure the void
statistics is explained. Our results are presented in Section 5, and
in Section 6 we provide a discussion and summary of our con-
clusions. Throughout, we adopt standard present-day values of the
cosmological parameters to compute comoving distance from

1 Recently Hoyle & Vogeley (2004) also measured the VPF of the 2dFGRS
galaxy distribution. However, their analysis focused more on the physical
properties of voids in the 2dFGRS volume, rather than on the hierarchical
nature of galaxy clustering itself.

redshift: a density parameter �m = 0.3 and a cosmological con-
stant �� = 0.7.

2 VO I D S TAT I S T I C S

2.1 The void probability function

For a given distribution of galaxies, the count probability distribu-
tion function (CPDF), PN(V), is defined as the probability of finding
exactly N galaxies in a cell of volume V randomly placed within
the sample. In the case where N = 0 we have the void probabil-
ity function (VPF), P0(V). A choice of spherical cells with which
to sample the distribution makes P0 a function of sphere radius
R only. The VPF can be related to the hierarchy of p-point correla-
tion functions by (White 1979):

P0(R) = exp

{ ∞∑
p=1

[−N̄ (R)]p

p!
ξ̄p(R)

}
. (1)

Here N̄ is the average number of objects in a cell of volume V , and
ξ̄p is the pth-order correlation function averaged over V . A com-
pletely random (Poisson) distribution has ξ p ≡ 0 for all p > 1, and
thus P0 reduces to a simple analytic expression:

P0P(R) = exp[−N̄ (R)]. (2)

Any departure from this relation is therefore a signature of the pres-
ence of clustering.

2.2 Hierarchical scaling

The idea that higher-order clustering arises in a hierarchical fashion
from the two-point correlation function appears naturally in pertur-
bation theory and also in the highly non-linear regime of gravi-
tational clustering (e.g. Peebles 1980), and is supported by much
observational evidence (e.g. Maurogordato & Lachieze-Rey 1987;
Fry et al. 1989; Gaztañaga 1992; Bouchet et al. 1993; Bonometto
et al. 1995; Benoist et al. 1999; see Bernardeau et al. 2002 for a re-
view). The concept can be generalized by assuming that each p-point
correlation function depends only on the product of the two-point
correlation function and a dimensionless scaling coefficient, Sp:

ξ̄p(R) = Sp ξ̄
p−1(R), (3)

where we have dropped the subscript 2 for the two-point correlation
function on the right-hand side for convenience [see Baugh et al.
(2004) and Croton et al. (2004) for the measured values of Sp up to
p = 6 in redshift space for the 2dFGRS].

The hierarchical idea is directly applicable to the VPF, which is
itself dependent on an infinite sum of p-point correlation functions.
The hierarchical assumption allows us to remove the higher-order
correlation functions from equation (1):

P0(R) = exp

[ ∞∑
p=1

(−N̄ )p

p!
Sp ξ̄

p−1

]
. (4)

Furthermore, the above scaling relation allows us to express the VPF
as a function of N̄ ξ̄ only, where the scaling variable N̄ ξ̄ approxi-
mately represents the average number of galaxies in a cell in excess
of that expected given the mean density of the sample. We formal-
ize this idea by first considering the analytic VPF expression for a
purely random sample (equation 2). For the hierarchical situation,
we can define a parameter χ , with P0 = e−N̄χ , called the reduced
void probability function (see Fry 1986):

χ = − ln (P0)/N̄ . (5)
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We note here that, independent of the hierarchical assumption, χ

normalizes out the Poisson contribution to the distribution, and it is
clear that the effects of clustering will appear as values of χ < 1.
Combining equations (4) and (5), the reduced VPF takes the form

χ (N̄ ξ̄ ) =
∞∑

p=1

Sp

p!
(−N̄ ξ̄ )p−1. (6)

This exhibits the scaling advertised above, and the shape of χ (N̄ ξ̄ )
thus characterizes the distribution of voids. If the scaling relation
assumption holds, we expect all different galaxy samples of different
density and clustering strength to collapse on to one universal curve,
since all are a function of the same scaling variable. The curve will
not be universal for different magnitude ranges if it turns out that
the coefficients Sp are a strong function of galaxy magnitude. The
values of Sp have recently been shown to depend at best only weakly
on magnitude (see Croton et al. 2004).

In the hierarchical picture, when N̄ ξ̄ � 1 one always recovers
the Poisson VPF, χ (N̄ ξ̄ ) = 1, regardless of the actual clustering
pattern or its strength. In the regime where N̄ ξ̄ < 1 we see from
equation (6) that the reduced void probability function is domi-
nated by the Gaussian contribution: 1 − 1

2 N̄ ξ̄ . Thus the interesting
observational window, where we can separate different clustering
models, comes for values of N̄ ξ̄ larger than unity. In practice, this
only seems to happen at scales R larger than a few h−1 Mpc, where
N̄ ∼ R3 is large and dominates ξ̄ ∼ R−2. On smaller scales, where
ξ̄ > 1, N̄ ξ̄ will always be small, and galaxy samples will typically
be too sparse to show measurable deviations from the Gaussian con-
tribution. Thus, it should be stressed that the VPF is a good discrim-
inant of weakly non-linear clustering only. In the highly non-linear
regime voids do not provide us with much information.

Although the expansion given in equation (6) is technically only
valid for small values of N̄ ξ̄ , the implications for clustering do
extend beyond this. For large values of N̄ ξ̄ , models with different
hierarchical amplitudes Sp give different reduced void probabilities
χ : as N̄ ξ̄ increases, the value of χ gets smaller and the resulting
VPF gets larger (with respect to the corresponding Poisson case).
The Gaussian CPDF (Sp = 0) produces the smallest values of χ

and therefore the largest deviations in the VPF. As we will illustrate
with the models below, larger values of Sp > 0 will result in larger
values of χ (N̄ ξ̄ ).

2.3 Phenomenological models

In presenting our reduced VPF results, we follow the lead of Fry
(1986) and Fry et al. (1989) and compare with a number of model
scaling relations that differ in the way they fix the scaling coefficients
Sp. We give a brief description of these models here, and refer the
reader to the cited papers and references therein for further details.
In Fig. 1 we summarize the behaviour of each.

2.3.1 Minimal model

The first model is the so-called minimal cluster model, the mo-
tivation of which is to consider a clumpy galaxy distribution of
clusters, the cluster distribution in space itself being Poisson with
a Poisson galaxy occupancy. This is reminiscent of the halo model
(e.g. Cooray & Sheth 2002) but with a Poisson halo/cluster pro-
file. Evaluating the set of Sp values from the distribution function
generated by this model leads to a functional form for χ of

χ = (1 − e−N̄ ξ̄ )/N̄ ξ̄ (minimal),

Sp = 1 (skewness: S3 = 1). (7)

Figure 1. Reduced void probability χ for different models (left to right
at χ ∼ 0.4): Gaussian (long-dashed-dotted, equation 12), minimal (long-
dashed, equation 7), BBGKY (short-dashed-dotted, equation 10 with Q =
2/3), negative binomial (continuous, equation 8), thermodynamic (dotted,
equation 9), lognormal (short-dashed) and BBGKY (short-dashed-dotted,
equation 10 with Q = 1).

Fry (1986) speculated that this model represents a lower bound on
the allowable functions χ (N̄ ξ̄ ) in any consistent hierarchical model.

2.3.2 Negative binomial model

The second model, commonly called the negative binomial model,
has been used in a number of fields with different physical mo-
tivations (Klauder & Sudarshan 1968; Carruthers & Shih 1983;
Carruthers & Minh 1983; Fry 1986; Elizalde & Gaztañaga 1992;
Gaztañaga & Yokoyama 1993). After a set of T independent trials
with probability q for ‘success’ and p = 1 − q for ‘failure’, the prob-
ability of having S number of successes and F = T − S number of
failures is given by the binomial distribution:

P(S) = (F + S)!

S! F!
(1 − q)F q S .

The negative binomial distribution describes the probability for hav-
ing S number of successes after a fixed number F of failures:

P(S) = (F + S − 1)!

S! (F − 1)!
(1 − q)F q S .

Note that in the binomial case what is fixed is the total number of
trials.

We can identify a ‘success’ as finding a galaxy in a cell, so that
PN = P(N = S) is the CPDF. The fixed number of failures, F, is
assumed to be inversely proportional to ξ̄ (the larger ξ̄ , the smaller is
the number of failures to count a galaxy in a cell). The probability for
a failure p is assumed to be proportional to the product N̄ ξ̄ (because
of clustering there is an N̄ ξ̄ rms excess of galaxies within a cell with
N̄ density: the larger this clumpiness, the larger the probability to
miss galaxies in a random cell). After fixing the proportionality con-
stants, this leads to F = 1/ξ̄ and p = N̄ ξ̄ /(1 + N̄ ξ̄ ) (for a different
derivation see Gaztañaga & Yokoyama 1993). This model is a dis-
crete version of the gamma probability distribution (see Gaztañaga,
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Fosalba & Elizalde 2000). The reduced VPF and cumulants in this
case are
χ = ln (1 + N̄ ξ̄ )/N̄ ξ̄ (negative binomial),

Sp = (p − 1)! (skewness: S3 = 2). (8)

2.3.3 Thermodynamic model

The third model was first suggested by Saslaw & Hamilton (1984)
and arose from a thermodynamic theory of the properties of grav-
itational clustering. The original model had a fixed degree of
virialization (temperature or density variance) for all cell sizes, but
such behaviour is inconsistent with observations. The model was
later extended (see e.g. Fry 1986) to include a different level of
virialization at each scale, to be identified with the variance ξ̄ as a
function of scale. The results are

χ = [
(1 + 2N̄ ξ̄ )1/2 − 1

]
/N̄ ξ̄ (thermodynamic),

Sp = (2p − 3)!! (skewness: S3 = 3), (9)

where (2p − 3)!! = (2p − 3) × (2p − 5) × (2p − 7) . . . and
truncates at zero.

2.3.4 Lognormal distribution

The lognormal distribution (e.g. Coles & Jones 1991; Weinberg &
Cole 1992) is often used as a phenomenological model for galaxy
and dark matter clustering. Although no analytic expression exists
for the reduced void probability, it can be estimated numerically
(see above references) and is found to behave similarly to the ther-
modynamic model, as shown in Fig. 1 (note how the dotted and
the short-dashed lines overlap). As in the thermodynamic model,
the lognormal distribution also has a large skewness: S3 = 3 + ξ̄

(which exactly tends to the thermodynamic value S3 → 3 on large
scales where ξ̄ → 0). In fact, it should be noted that the lognormal
model is not truly hierarchical, as it does not have constant moments
Sp, but in practice the variations have little effect on the reduced
void distribution.

2.3.5 The BBGKY model

The BBGKY model of Fry (1984) provides a prescription for χ and
Sp as an asymptotic solution to the BBGKY kinetic equations:

χ = 1 − [γ + ln (4QN̄ ξ̄ )]/8Q (BBGKY),

Sp = (4Q)p−2 p

2(p − 1)
(skewness: S3 = 3Q), (10)

where γ = 0.577 21 . . . is Euler’s constant. This asymptotic solution
is only a good approximation for large values of N̄ ξ̄ . When N̄ ξ̄

becomes small, for completeness we simply match it to the nearest
model.

The skewness in the BBGKY model contains a free parameter,
S3 = 3Q, with the restriction that Q > 1/3. Fry (1984) used Q � 1,
which was close to the then observed S3 � 3 value measured from
the three-point function in real space (inferred from projected maps).
Croton et al. (2004) and Baugh et al. (2004) have since shown that
S3 is in fact closer to S3 = 2 in the 2dFGRS, corresponding to the
case where Q = 2/3. Both possibilities are shown as short-dashed-
dotted lines in Fig. 1, with the upper curve for Q = 1 and the lower
curve for Q = 2/3. Since we later show that neither of these Q
values with the BBGKY model are able to match the data very well,
for the sake of clarity we omit the lower Q = 2/3 curve in subse-
quent figures. The upper curve is retained in order to demonstrate
the range of possible χ values that a hierarchical model may have.

2.3.6 Poisson and Gaussian distributions

In addition to the above models we also use the analytic expressions
of the reduced VPF for purely Poisson and Gaussian distributions.
Trivially, from equation (6) we see that

χ = 1 (Poisson), (11)

and

χ = 1 − 1
2 N̄ ξ̄ (Gaussian),

Sp = 0 (skewness: S3 = 0). (12)

The latter only makes sense for small values of N̄ ξ̄ , but note that,
even when the underlying distribution is not Gaussian, the above
expression always gives a good approximation to the void
probability in the limit of small N̄ ξ̄ .

3 T H E DATA S E T S

3.1 The 2dFGRS data set

In our analysis we use the completed 2dFGRS (Colless et al. 2003).
The catalogue is sourced from a revised and extended version of the
APM galaxy catalogue (Maddox, Efstathiou & Sutherland 1990),
and the targets are galaxies with extinction-corrected magnitudes
brighter than bJ = 19.45. Our galaxy sample contains a total of
221 414 high-quality redshifts. The median depth of the full survey,
to a nominal magnitude limit of bJ ≈ 19.45, is z ≈ 0.11. We consider
the two large contiguous survey regions, one in the South Galactic
Pole (SGP) and one towards the North Galactic Pole (NGP), and
restrict our attention to the parts of the survey with high redshift
completeness (>70 per cent). Full details of the 2dFGRS and the
construction and use of the mask quantifying the completeness of
the survey can be found in Colless et al. (2001, 2003).

A model accounting for the change in galaxy magnitude due to
redshifting of the bJ filter bandpass (k-correction) and galaxy evo-
lution (e-correction) was adopted following Norberg et al. (2002):

k(z) + e(z) = z + 6z2

1 + 20z3
. (13)

This model gives the mean k+e-correction over the mix of different
spectral types observed in the 2dFGRS sample, and was shown by
Norberg et al. to account accurately for such observational effects
when estimating 2dFGRS galaxy absolute magnitudes.

3.2 Volume-limited catalogues

The 2dFGRS galaxy catalogue is magnitude-limited, meaning that
the survey is constructed by observing galaxies brighter than the
fixed apparent magnitude limit of bJ = 19.45. A magnitude-limited
galaxy catalogue is not uniform in space, since intrinsically fainter
objects may be missed even if they are relatively nearby, while the
most luminous galaxies will be seen out to large distances. This non-
uniformity of the magnitude-limited catalogue must be dealt with
for a correct statistical analysis, and the simplest way to do this with
a catalogue the size of the 2dFGRS is by constructing a volume-
limited catalogue (VLC) from the magnitude-limited sample.

Volume-limited catalogues are defined by choosing minimum and
maximum absolute magnitude limits. These limits, along with the
intrinsic apparent magnitude limits of the survey, define minimum
and maximum redshift boundaries via standard luminosity–distance
relations (Peebles 1980). The VLC is built by selecting galaxies
whose redshift lies within the minimum and maximum bound-
aries just determined, and whose absolute magnitude lies within the
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Table 1. Properties of the combined 2dFGRS SGP and NGP volume-limited catalogues (VLCs). Columns 1 and 2 give the faint and bright absolute magnitude
limits that define the sample. Column 3 gives the median magnitude of the sample, computed using the Schechter function parameters quoted by Norberg
et al. (2002). Columns 4, 5 and 6 give the number of galaxies, the mean number density and the mean inter-galaxy separation for each VLC, respectively.
Columns 7 and 8 state the redshift boundaries of each sample for the nominal apparent magnitude limits of the survey; and columns 9 and 10 give the
corresponding comoving distances. Finally, column 11 gives the combined SGP and NGP volume. All distances are comoving and are calculated assuming
standard cosmological parameters (�m = 0.3 and �� = 0.7).

Mag. range Median mag. N G ρ ave dmean zmin zmax Dmin Dmax Volume
MbJ − 5 log10 h MbJ − 5 log10 h (10−3/h−3 Mpc3) (h−1 Mpc) (h−1 Mpc) (h−1 Mpc) (106 h−3 Mpc3)

−18.0 −19.0 −18.44 23290 9.26 4.76 0.014 0.088 39.0 255.6 2.52
−19.0 −20.0 −19.39 44931 5.64 5.62 0.021 0.130 61.1 375.6 7.97
−20.0 −21.0 −20.28 33997 1.46 8.82 0.033 0.188 95.1 537.2 23.3
−21.0 −22.0 −21.16 6895 0.110 20.9 0.050 0.266 146.4 747.9 62.8

specified absolute magnitude limits. Such galaxies can be displaced
to any redshift within the VLC volume and still remain within the
bright and faint apparent magnitude limits of the magnitude-limited
survey. Table 1 presents the properties of the combined NGP and
SGP volume-limited catalogues used in this paper.

4 M E A S U R I N G T H E G A L A X Y D I S T R I BU T I O N

To measure the void probability function, we use the method of
counts in cells. The survey volume is uniformly sampled with a
large number (2.5 × 107) of randomly placed spheres of fixed ra-
dius R, and we record the number of times a sphere contains exactly
N galaxies. Our choice of massive oversampling ensures a high
level of statistical accuracy in the calculation (Szapudi 1998). The
CPDF can then be found as the probability of finding exactly
N galaxies in a randomly placed sphere:

PN (R) = NN

NT
, (14)

where NN is the number of spheres that contain exactly N galaxies
out of the total number of spheres thrown down, N T. By definition,
the void probability function is the probability of finding an empty
sphere:

P0(R) = N0

NT
. (15)

The mean number of galaxies expected inside a sphere of radius R
is readily calculated from

N̄ (R) =
∑

N PN (R), (16)

and this estimation of N̄ for each individual VLC is found to be
independent of scale and indistinguishable from that determined
from the known mean galaxy density. The volume-averaged two-
point correlation function, ξ̄2, is found directly from the second
moment of the CPDF:

ξ̄2(R) = 〈(N − N̄ )2〉 − N̄ (R)

N̄ (R)2
. (17)

We have also carried out an independent counts-in-cells analysis
by placing the spheres at the positions of a regular spatial lattice
that homogeneously oversamples the survey area. The results are
insensitive to these details.

The 2dFGRS has an inherent spectroscopic galaxy incomplete-
ness that will change the results of any void analysis (Colless et al.
2001). In addition, as a result of the irregular geometry of the
survey boundaries, it is difficult to guarantee that every sphere will
be completely contained within the regions we wish to measure.

Since the CPDF is sensitive to such effects, we adopt a technique
that accurately accounts for such deficiencies. This method is ex-
plained and tested in Appendix A (see also Croton et al. 2004).

4.1 Error estimation

We estimate the error on our void statistics using the set of
22 mock 2dFGRS surveys described by Norberg et al. (2002; see also
Cole et al. 1998). These mock catalogues have the same radial and
angular selection function as the 2dFGRS and have been convolved
with the completeness mask of the survey. The mock catalogues are
drawn from the Virgo Consortium’s � cold dark matter (�CDM)
Hubble Volume simulation and thus include sample variance due to
large-scale structure [see Evrard et al. (2002) for a description of
the Hubble Volume simulation]. The 1σ errors we quote correspond
to the rms scatter over the ensemble of mocks (see Norberg et al.
2001). We have compared this estimate with an internal estimate
using a jack-knife technique (Zehavi et al. 2002). In the jack-knife
approach, the survey is split into subsamples. The error is then the
scatter between the measurements when each subsample is omitted
in turn from the analysis. The jack-knife gives comparable errors to
the mock ensemble for the VPF measurement.

5 R E S U LT S

We begin with Fig. 2, where we plot the reduced void probabil-
ity function, χ , individually as a function of both the mean galaxy
number, N̄ , and the variance, ξ̄ , in the top and bottom panels re-
spectively. The physical scale given on each top axis corresponds
to values for the −20 > M bJ− 5 log10 > −21 VLC only, and is in-
cluded for reference (for VLCs of different mean density, the scale
at which a given N̄ or ξ̄ will occur will be different). Note that for
VLCs fainter than our reference this scale shifts to the right in the
top panel and to the left in the bottom panel. The converse is true
when considering brighter galaxies than the reference.

The main feature of this figure is that neither N̄ nor ξ̄ individually
show hierarchical scaling when plotted against χ . Note that smaller
values of χ correspond to larger deviations from a Poisson distri-
bution. Brighter galaxy samples show behaviour which is closer to
that of the Poisson distribution for any given value of N̄ or ξ̄ ; how-
ever, this merely reflects the fact that the brightest VLCs are also
the sparsest (Table 1).

We now test for hierarchical scaling in the 2dFGRS, as outlined in
Section 2.2. In Fig. 3 we plot the reduced void probability function,
χ , as a function of the scaling variable N̄ ξ̄ . In this way we eliminate
the dependence of the void probability on the variance and mean
density. This figure shows VLCs ranging in absolute magnitude from
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Figure 2. The 2dFGRS reduced VPF, χ = − ln(P0)/N̄ , as a function of
(top) the mean galaxy number, N̄ , and (bottom) the variance of the distri-
bution, ξ̄ , as measured for volume-limited catalogues in varying luminosity
bins (Table 1). Smaller values of χ imply larger deviations from a Poisson
distribution. The reference scale given on the top axis is for the −20 >

M bJ − 5 log10 > −21 VLC only (each N̄ and ξ̄ value individually corre-
sponds to different scales for each VLC). Notice that neither variable displays
hierarchical scaling when plotted individually against χ .

−18 to −22. If a scaling between correlation functions of different
orders exists, we expect to see that all points for each catalogue
fall on to the same line. Again we provide a reference scale on the
top axis, given for the −20 > M bJ− 5 log10 > −21 VLC, and note
that for fainter galaxy samples this scale shifts to the right, and
conversely for brighter samples. Overplotted are the scaling models
previously discussed in Section 2.3: (bottom to top) the Gaussian
(equation 12), minimal (equation 7), negative binomial (equation 8),
thermodynamic (equation 9), lognormal and BBGKY (equation 10,
Q = 1) models respectively.

Fig. 3 demonstrates the clear signature of hierarchical scaling in
the clustering moments of the 2dFGRS. All points are seen to follow
a tight path (within the error bars) out to values of N̄ ξ̄ ∼ 30, and
sit close to the negative binomial model prediction along this entire
range. Such values encompass galaxy clustering from the deeply
non-linear to the linear regime, revealing hierarchical scaling out to
scales of ∼20 h−1 Mpc or more.

For comparison, in Fig. 3 we also present the dark matter re-
duced VPF measured from the �CDM Hubble Volume simula-
tion (particle mass 2.3 × 1012 h−1 M�) (Evrard et al. 2002). We
independently analyse 100 randomly placed cubes of side length
200 h−1 Mpc (approximately equal in volume to our M∗ galaxy

volume-limited sample), from which the rms is then plotted. In con-
trast to the 2dFGRS galaxies, the dark matter follows a lognormal
distribution out to values of N̄ ξ̄ ∼ 6 (a scale of approximately R ∼
4 h−1 Mpc in the simulation), but then deviates strongly on larger
scales (the last point plotted corresponds to R = 10 h−1 Mpc in the
simulation).

To highlight the differences between the 2dFGRS galaxy reduced
VPF and the negative binomial prediction, in Fig. 4 we show the frac-
tional difference between the two. Also included are the ‘bounding’
models closest to the negative binomial: the minimal and thermo-
dynamic models. All 2dFGRS points plotted are consistent with the
negative binomial model at the 2σ level. At larger values of N̄ ξ̄ we
find some small departures from the negative binomial model, and
it is interesting to note that these deviations appear the greatest for
the faintest VLC. This could be explained by the weak dependence
of Sp on galaxy luminosity found by Croton et al. (2004), where
fainter samples typically had larger Sp values than brighter sam-
ples (albeit with large error bars). The effect of such an increase in
the hierarchical picture would result in a value of χ closer to unity
(equation 6).

An important feature of Fig. 3 is the inconsistency of the re-
duced void probability function with a Gaussian distribution across
all scales considered (up to approximately 30 h−1 Mpc). On large
scales where the galaxy correlation functions become too small to
measure independently, the value of N̄ is found to increase faster
than ξ̄ decreases, and thus χ is still affected strongly by higher-
order correlations. It is clear that even in the quasi-linear regime,
where one would expect galaxy clustering to be very simple, higher-
order correlations still play a significant role in the make-up of the
large-scale distribution.

To evaluate the robustness of the results seen in Fig. 3, we apply
two tests to illustrate the degree of confidence we should have in
believing the existence of hierarchical scaling in the 2dFGRS. First,
one of the most valuable features of the 2dFGRS is that we have
available data from two totally independent regions on the sky, the
SGP and NGP. So far we have been calculating our void statistics
from the combined volume of the two, but it is useful to check that
the scaling properties still exist in the two regions independently.
This we do in the top panel of Fig. 5, where the large symbols
represent the SGP and small symbols the NGP. It is immediately
clear that galaxies from both the SGP and NPG regions indepen-
dently obey hierarchical scaling and reproduce the negative binomial
results discussed previously to good accuracy.

Secondly, we test the scaling properties seen in Fig. 3 by calcu-
lating the reduced VPF for randomly diluted samples of galaxies.
Such dilutions leave the two-point correlation function unchanged,
and within the hierarchical paradigm the scaling exhibited in Fig. 3
should also remain unchanged. This test is shown in the bottom
panel of Fig. 5, where we have diluted each of the VLCs used in
Fig. 3 by factors of 0.5 (large symbols) and 0.25 (small symbols). We
again see that the trend for hierarchical scaling exists and follows the
negative binomial model, consistent with our previous conclusions.

6 D I S C U S S I O N

The 2dFGRS represents an enormous improvement in volume and
number of galaxies over previous surveys, such as the CfA or the
SSRS samples. Here we measure the galaxy distribution over a
wider range in both variance (ξ̄ ∼ 0.3–20) and mean galaxy number
(N̄ ∼ 10−4–102). The impact on the VPF can be seem by comparing
Fig. 3 above to fig. 7 in Gaztañaga & Yokoyama (1993), where
the CfA and SSRS data cannot discriminate between the negative

C© 2004 RAS, MNRAS 352, 828–836



834 D. J. Croton et al.

Figure 3. The reduced VPF, χ = − ln(P0)/N̄ , as a function of the scaling variable N̄ ξ̄ for the four 2dFGRS galaxy VLCs from Table 1. The dark matter
reduced VPF, as measured from the �CDM Hubble Volume simulation, is shown as large diamonds. In all cases, smaller values of χ imply larger deviations
from a Poisson distribution. The reference scale given on the top axis is for the −20 > M bJ −5 log10 > −21 VLC only (each N̄ ξ̄ value corresponds to a different
scale for each VLC). If hierarchical scaling is present in the galaxy distribution, all points should collapse on to a single line, which is clearly seen. The six
curves represent the hierarchical models discussed in Section 2.3 (equations 7–12).

Figure 4. The fractional difference between the negative binomial model
and the 2dFGRS, thermodynamic and minimal reduced VPFs. The reference
scale given on the top axis is for the −20 > M bJ − 5 log10 > −21 VLC only
(each N̄ ξ̄ value corresponds to a different scale for each VLC). Some error
bars have been omitted for clarity. All 2dFGRS results are consistent with
the negative binomial model at the 2σ level.

binomial and the thermodynamic models. As shown here in Figs 3
and 4, although the agreement is not always perfect, the negative
binomial does much better, by far, than any of the other models
considered in the literature. This includes the lognormal distribution,
which is close to the thermodynamic model (Fig. 1) and is widely
used as a phenomenological clustering model. These results are
valid independently in the NGP and SGP regions of the survey,
and do not change when we randomly dilute the galaxy samples
(Fig. 5). The lognormal distribution does, however, appear to be a

good representation for the distribution of dark matter on smaller
scales (less than ∼ 4 h−1 Mpc), although not at larger scales. The
differences between the galaxy and dark matter reduced VPFs can
be understood by noting the differences between their higher-order
volume-averaged correlation functions, as shown by Baugh et al.
(2004).

The 2dFGRS reduced void probability function appears to behave
differently from the one presented by Vogeley et al. (1994) for the
CfA-1 and CfA-2 samples, which show more scatter with magnitude
and values well above the negative binomial model (compare their
fig. 4 to our Fig. 3). Here we do not observe any significant departure
from the scaling models on scales larger than R ∼ 8.5 h−1 Mpc
as they had previously found. In contrast, our results indicate that
hierarchical scaling exists in the galaxy distribution out to scales of
at least R ∼ 20 h−1 Mpc.

Although some heuristic derivations exist for the negative bino-
mial distribution (see Section 2.3), we have not found a satisfactory
physical explanation for the very good performance of this model.
The value of the skewness for the negative binomial model, S3 =
2, is quite close to the direct measurement in the 2dFGRS: S3 =
1.86 –2.03 (Baugh et al. 2004). Other phenomenological models,
such as the thermodynamic or the lognormal distribution, have larger
values for the skewness (S3 � 3). A similar trend was found by
Baugh et al. for the higher-order coefficients S4, S5 and S6. In this
respect it is not totally surprising that the negative binomial does
better. The one freedom the reduced VPF has is in the value of the
scaling coefficients that appear in the sum in equation (6). If these
coefficients are found to match that predicted by a particular hier-
archical scaling model, then one would expect their reduced VPFs
to look similar.

Perturbation theory with Gaussian initial conditions predict
Sp values that are universal and only depend on the local spectral
index. They are therefore a known function of scale. Such scale
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Figure 5. Two tests of the scaling properties seen in Fig. 3 using the re-
duced VPF, χ = − ln(P0)/N̄ , as a function of the scaling variable N̄ ξ̄ .
(top) Independent SGP and NGP VLCs show identical scaling to that
seen in Fig. 3. Here the large symbols represent the SGP result, and the
small represent the NGP result. (bottom) The same combined VLCs as
in Fig. 3, but now diluted by factors of 0.5 (large symbols) and 0.25
(small symbols). If hierarchical scaling exists in the galaxy distribution,
dilution should make little difference to the results found in Fig. 3. For
both panels, the dotted curves represent the same six models plotted in
Fig. 3 and discussed in Section 2.3. Some error bars have been omitted for
clarity.

dependence, however, breaks the hierarchy in equation (3), and
therefore the universality of the scaling in equation (6). On the other
hand, redshift-space distortions and biasing tend to wash away this
scale dependence (see e.g. fig. 49 in Bernardeau et al. 2002), an
argument that has been used to explain the good performance of the
scaling hierarchy. However, as shown by Baugh et al. (2004) and
Croton et al. (2004), the measured Sp values do not seem to match the
expectations in either dark matter models or mock galaxy surveys
(both in redshift space). The reasons for this, and a more physi-
cally motivated interpretation of the negative binomial model, will
provide important constraints to be matched by models of galaxy
formation.
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A P P E N D I X A : C O R R E C T I N G F O R
I N C O M P L E T E N E S S I N T H E 2 dF G R S

The 2dFGRS is spectroscopically incomplete to a small degree,
resulting in missed galaxies (see Colless et al. 2001), and some

C© 2004 RAS, MNRAS 352, 828–836



836 D. J. Croton et al.

spheres used in our counts-in-cells analysis may straddle the survey
boundaries or holes, resulting in missed volume. Such influences
will induce an artificial ‘voidness’ that will be picked up by our VPF
measurements, and any analysis that neglects these effects will tend
to overpredict the VPF. Thus it is desirable to devise a method with
which one can confidently correct for such incompleteness. This is
not a trivial exercise, since weighting schemes that work with other
statistics (e.g. Efstathiou et al. 1990) cannot necessarily be applied
here, as the VPF will remain uncorrected (how does one weight no
galaxies?). Such techniques will lead to an underestimation of the
mean density of galaxies and an overestimation of the influence of
the voids. Ideally, we need to ensure that any correction faithfully
reproduces the full CPDF of the complete distribution for all orders
of galaxy clustering.

To resolve these problems we have adopted the following method.
When a satisfactory sphere location is found in the 2dFGRS wedge,
we project the sphere on to the sky and estimate, using the survey
masks (Colless et al. 2001), the average completeness f within the
sphere. Owing to the incompleteness effects described above, we
typically will have f < 1. Instead of viewing this incompleteness
as missed galaxies, we instead consider it as missed volume, and
to compensate we scale the radius of the sphere according to R′ =
R/ f 1/3 . This new radius gives an effective sphere volume with in-
completeness equal to that of a 100 per cent complete sphere with
the original radius. Galaxies are counted within the new radius R′,
but contribute their counts to the scale R. Each sphere we place is in-
dividually scaled in this way according to its local incompleteness,
as given by the masks. We note that, as a result of our chosen ac-
ceptable minimum incompleteness of 0.7, spheres are never scaled
beyond the radius bin R under consideration. Thus each correction
applies only to the value of the VPF at each radius point plotted.

We have tested the robustness of our method by comparing mea-
surements of the CPDF using a fully sampled, complete Hubble
Volume 2dFGRS mock VLC (Norberg et al. 2002) with those from
the same mock but which have been made artificially incomplete
using the survey masks (spectroscopically, and including irregu-
lar boundaries and holes) and then corrected. In Fig. A1 we show
the results for PN versus radius, where N = 0 (the VPF), 2, 6,
20 and 70 (note other N values are omitted for clarity, but all be-
have similarly over the scales where the VPF is of interest to us).
Here the points with error bars are the complete PN , the solid lines
are the equivalent corrected incomplete PN , and the dashed lines rep-
resent the uncorrected incomplete PN . As can be seen, the complete
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Figure A1. Correcting for incompleteness in the 2dFGRS. The CPDF, PN ,
for a Hubble Volume 2dFGRS mock VLC in the magnitude range −19 >

M bJ − 5 log10 > −20: (left to right) N = 0 (the VPF), 2, 6, 20 and 70. The
points with errors represent the complete mock, the solid line is the corrected
incomplete mock, and the long-dashed line is the uncorrected incomplete
mock. Note the uncorrected incomplete mock always lies outside the error
bars.

points and corrected lines are fully consistent, whereas the uncor-
rected values almost always lie off the complete points and well
outside their error bars (note the steepness of each curve, which
is plotted on a log scale). The P0 curve in particular demonstrates
that such incompleteness effects must be accounted for to obtain
correct void measurements; simply building volume-limited cata-
logues is not enough and will lead to an overprediction of the scale
and frequency of voids in the survey. Our method can be applied
to any counts-in-cells analysis where incompleteness in the galaxy
distribution is present.
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