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For Paul Erdos on his 80th birthday
The Erdos-Turan law gives a normal approximation for the order of a randomly chosen
permutation of n objects. In this paper, we provide a sharp error estimate for the
approximation, showing that, if the mean of the approximating normal distribution is
slightly adjusted, the error is of order log~1/sn.

1. Introduction

Let <T denote a permutation of n objects, and 0{cr) its order. Landau [13] proved that
max^log0(cr) ~ {nlog«}1/2. In contrast, if a is a single cycle of length n, logO(o-) = log/*,
such cycles constituting a fraction 1/n of all possible cr's. In view of the wide discrepancy
between these extremes, the lovely theorem of Erdos and Turan (1967) comes as something
of a surprise: that, for any x,

^*{<r: log O(&) < I log2 n + x$ log3 n}1'2} ~ O(x),

where O denotes the standard normal distribution function. In probabilistic terms, their
result is expressed as

P[{|log3«}-1/2(logO(o-)-|log2n) < x] ~ <D(x), (1.1)

with o- now thought of as a permutation chosen at random, each of the n! possibilities being
equally likely. They remark that

'Our proof is a direct one and rather long; but a first proof can be as long as it wants to be. It would
be however of interest to deduce it from the general principles of probability theory.'

* This work was supported in part by NSF grant DMS90-05833 and in part by Schweizerischer NF Projekt
Nr 20-31262.91.
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168 A. D. Barbour and S. Tavare

They also entertain hopes of finding a sharp remainder for their approximation.
Shorter probabilistic proofs of (1.1) are given by [5], [6] and [1], the last exploiting the

Feller coupling to a record value process. Stein (unpublished) gives another coupling proof,
with an error estimate of order log"1'4n{log logn}1'2, which he describes as 'rather poor'.
In fact, [16] sharpens the approach of Erdos and Turan, showing that the first correction
to (1.1) is a mean shift of — logw log log n, and that the error then remaining is of order at
most O (log~1/2 n log log log n). Nicolas also conjectures that the iterated logarithm in the
error is superfluous. Our birthday present is to show this, by probabilistic means, not only
for the uniform distribution on the set of permutations, but also under any Ewens sampling
distribution. Since many combinatorial structures are, in a suitable sense, very closely
approximated by one of the Ewens sampling distributions (see [4]), the result carries over
easily to many other contexts. A typical example is the l.c.m. of the degrees of the factors
of a random polynomial over the finite field with q elements, thus improving upon a
theorem of [15].

Consider the probability measure /ie on the permutations of n objects determined by

M*) ^> (1-2)
6 in)

where k{cr) is the number of cycles in a, 6 > 0 is a parameter that can be chosen at will, and
where rising factorials are denoted by

If 6 = 1, the uniform distribution is recovered. Under /*„, the probability of the set of
permutations having a} cycles of lengthy, 1 ^y ^ «, is given by

as may be verified by multiplying the probability (1.2) by the number of permutations that
have the given cycle index.

The joint distribution of cycle counts given by (1.3) is known as the Ewens sampling
formula with parameter 6. It was derived by Ewens [8] in the context of population genetics.
Ewens [9] provides an account of this theory that is accessible to mathematicians.

Under the Ewens sampling formula, the joint distribution of the cycle counts converges
to that of independent Poisson random variables with mean 0/i as n -»• oo. Indeed, using the
Feller coupling, the cycle counts for all values of n can be linked simultaneously on a
common probability space with a single set of independent Poisson random variables
with the appropriate means. The following precise statement of this fact comes essentially
from [2].

Proposition 1.1. Let {£pj > 1} be a sequence of independent Bernoulli random variables
satisfying

1] ( M )
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A Rate for the Erdos-Turdn Law 169

Define (ZimJ>\) by

zjm= E & ( i - & « ) . . . ( i-&*_i)£«*. (i-5)
i-m+1

and set Z, = Zi0 and Z = (Zp j ^ 1). Define C(n) = (C/«), j Ss 1) by

n-i

= Z}-Zun_, + gn_j+1{\ -£n_j+2)... (1 - £ „ ) (1.6)

for 1 O < n, setting Cf(n) = Oforj > n. Then P^C^n), . . . , Cn{n)) = (ax,..., an)] is given by
(1.3), and the Zi are independent Poisson random variables with EZ} = 6/j. Furthermore, for

=j+l]^ C/«) ^ Z} + l[Jn = j \ , (1.7)

where Jn and Kn are defined by

./n = min{/>l :£n_,+ 1 = l} and Kn = min{/> 1 :gn+j = 1}. (1.8)

With this representation, the order of the random permutation is 0n(C<n)), where, for any
aeN00,

n
On(a) = l.c.m. {i: l^i^n,a(>0}^ Pn(a) = f ] i"'-

t-i

On the other hand, from (1.6), C,(«) is close to Zj for each; when n is large, so log On(C
(n>)

might plausibly be well approximated by log On(Z). Now functions involving Z are very
much easier to handle than are the same functions of C<n), because the components Z, of
Z are independent and have known distributions. In particular, log On(Z) is close enough
for our purposes to log Pn{Z) — 6 log n log log n, and

is just a sum of independent random variables. The classical Berry-Esseen theorem [10,
p. 544, Theorem 2] can thus be invoked to determine the accuracy of the normal
approximation to its distribution.

The above arguments, justified in detail in Section 2, lead to the following result.

Theorem 1.2. If C(n) is distributed according to the Ewens sampling formula (1.3) with
parameter 8,

sup
LIJ J V * ) J

= O({logn}-1/2).

It would not be difficult to give an explicit bound for the constant implied in the error term.
Indeed, the leading contributions arise from a Berry-Esseen estimate, for which the
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170 A. D. Barbour and S. Tavare

necessary quantities are estimated in Proposition 2.4, from inequality (2.1), for which (2.2)
and Lemma 2.5 already provide a bound, and from the next mean correction, which
requires a more careful asymptotic evaluation following (2.4).

A process variant of Theorem 1.2 can also be formulated. Let Wn be the random element
of £»[0,1] denned by

j (

Theorem 1.3. It is possible to construct C(n) and a standard Brownian motion W on the same
probability space, in such a way that

2. Proofs

As previously indicated, the proof of Theorem 1.2 consists of showing that logOn(C(n)) is
close enough to log On(Z), which in turn is close enough to log Pn(Z) — 6 log n log log n. The
Berry-Esseen theorem then gives the normal approximation for log Pn(Z).

For vectors a and b, define \a—b\ = £ ( K —6J- Since On(a) ^ On(b) n|6"a| whenever a and
b are vectors with a ̂  b, it follows from (1.7) that

log On(Z) - (Yn + 1) log n ^ log On(C«">) ^ log On(Z) + log n, (2.1)

where Yn = £"_i Z^n is independent of C(n), and

d

Inequality (2.1) combined with (2.2) is enough for the closeness of logOn(C
(n>) and

log O,(Z).
Next, we can compute the difference between log On(Z) and log Pn(Z) using a formula

of [5] and [14]:

logPn(Z)-logOn(Z) = I ' I (Dnp.-iyiogp, (2.3)
P s> 1

where £ and £ denote sums over prime indices, and

Dnk= E Zy

Considering first its expectation, observe that, since (d— 1)+ = d— 1 +I{d= 0),

E(Dnk-ir=EDnt-l+P[Dnlc = 0]

= Ank-l+e-^^(AnkA\A2
nk), (2.4)
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A Rate for the Erdos-Turdn Law 171

where

if*-

and f(r+ 1) = Ej-i./"1- Hence

/*„:=£ {log/>n(Z)-log <9n(Z)}= £ ' £ log/>E(£>np!-l)+

= E ' I ! l°S/ ' (An p«-l+exp{-An p S})= X!' 0P'1

p « ^ 1 p ^ log n

= 8 log «log log n + O(log n),

where the estimates use (2.4), integration by parts, and Theorems 7 and 425 of [11].
For the variability of log(9n(Z) — log Pn(Z), we now need two lemmas.

Lemma 2.1. For p =i= q prime and s, t~^ 1,

Proof. Set

K = E-T1. A2 = E r l and s = E r1 =̂  ,
i-i i-i i-i psq'
V'M Ql\i v'q'\l

and write Dx = Dnp> and D2 = Dnqi. Then, in the expansion

t[D2 = 0])

0],D2) + Cov (/[£>! = 0],/[£»2 = 0]),

the first contribution is evaluated as

= E{EE(Z,-/-10)(Z,-I-10)
p'U «'l<

because of the independence of the Z/s . For the second contribution, we have

Cov (Z)l51[D2 = 0]) = P Tfl {Z( = 0}l {E(£»x | D2 = 0) - ED,} = - 0 £ " « \
L(7i J

and similarly for the third, and for the last we have

Cov(/[!>! = 0],/[£>2 = 0]) = e-w.+*.){e«s_ 1} ̂  ^-«w.+V9.
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172 A. D. Barbour and S. Tavare

Hence

Cov((£>!- 1)+, (£>2-1)+) = 6g{\ - e - ^ . - e ^ ' + e - ^ ^ 8 } < 0g,

proving the lemma.

Lemma 2.2. For 1 ̂  .$ < f,

Cov{{Dn v .- \)+,(Dnp,-1)+) < 0/T<(l + log«).

Proof. The argument runs as for Lemma 2.1, with Aj defined as before, but now with

The computations now yield

Cov (£>!, £»2) = 6g; Cov (Z>x, I[D2 = 0]) = - d^e~ex'; Cov (I[D1 = 0], £»2) = - 0A21

and

Cov (/[£>! = 0],7[D2 = 0]) = e-flA-(l - e ^ 2 ) ,

and thus

C O V ( ( £ > 1 - 1 ) + , ( £ ) 2 - 1 ) + ) =

The two lemmas enable us to control the difference between log On(Z) and log .PB(Z) as
follows.

Proposition 2.3. For any K > 0,

P[|logi>n(Z)-log<9n(Z)-/*J > tflogn] =

Proof. Write

log/>n(Z)-log<9n(Z) = f i;' + £'
\p«log2n p>log2n

= F 1 + F 2 + F 3 ,

say. Lemmas 2.1 and 2.2 give

p « l o g 2 n P P # 9«log 2 n

= O (log n (log log H)2);

it follows from (2.4) that

p > log2 n
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A Rate for the Erdos—Turdn Law 173

and Lemmas 2.1 and 2.2 imply that

\i 17 ̂  \-'i 2 v- <9(l+log«) v,". . r-, 0(l+log«)
Var K3 «: £ log2/> £ 5 + E log/^log^ £ — 2 — = O(log«).

p s . ( » 2 Z7 p + 8 s , ( » 2 PI

Thus, by Chebyshev's inequality,

P[ I rx - E KJ > § tflog n] = O (log"1 R (log log nf);

P[ | F2 - E V2\ > | tf log «] = <9 (log"1«),

and

proving the proposition.
We now use the closeness of the quantities log On(C

(n)), log On(Z) and log Pn(Z)-/in to
prove Theorem 1.2. To do so, we introduce the standardized random variables

log/>n(Z)-|log2« |
c I . c

' °2n ~

and

logO,(C(" ))+/tn-^log*/i

whose distributions we shall successively approximate. Since the quantity log Pn(Z) can be
written in the form ^".iZ^logy as a weighted sum of independent Poisson random
variables, the normal approximation for SXn follows easily from the Berry-Esseen theorem.

Proposition 2.4. There exists a constant cx = c^ff) such that

sup|P[Sln ^ x]-O(x)\ sj qlog-^n.
X

Proof. It is enough to note that

t ®&, logy) = 6 tj"1 Iog7 = \ (log2 n + 0(1)),

that

£ Var (Z, log/) = 6 t r logV = | (log3 n + 0(1))

and that
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174 A. D. Barbour and S. Tavare

indeed, for j ^ 6,

E|Z,-EZ,|3 = - + ̂ re-e!i *£ -[

and hence, for

Z E|Z,-EZ,|8log3y ^ 6[l+2e-*] E^ logV = L , J(log4n + O(l)). (2.5)
i-i i-i 4

In order to show that S2n and S3n have almost the same distribution as Sln, because of
Proposition 2.3 and (2.1), one further lemma is required.

Lemma 2.5. Let U and X be random variables with snpx\¥[U ^ x] — <I>(x)| < rj. Then, for
any e > 0,

^ e ] . (2.6)

If W and Y are independent random variables with EY < oo, and if \ W— U\ ^ Y, then

(2.7)

Proof. The first part is standard. For the second, let Su = P[W^y]-$>(y) and set
A = supj, |^|. Write p = 3EY and p = P[Y > p], so that p ^ 1/3. Then, since, for any x,
{U «S x} => {W+ Y s£ x}, it follows that

P[U ^ x] ^ ! P[W^ x-y]FY(dy)
JJlO.co)

-p]+ f ®(x-y)FY(dy)-pA,
J {p, oo)

where FY denotes the distribution function of Y. Hence, comparing as much as possible to
—p), it follows that

-p)
V2n

implying that

4EY

A similar argument starting from {U ^ x} <= {W — Y^ x} then gives

of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0963548300001097
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 14:32:41, subject to the Cambridge Core terms

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0963548300001097
https:/www.cambridge.org/core


A Rate for the Erdos-Turdn Law 175

The choice of x being arbitrary, it thus follows that

4EF

also, and hence that

as claimed.
To complete the proof of Theorem 1.2, apply (2.6) with Sln for U and S2n — Sl n for X,

taking r) = c1log~1/2n from Proposition 2.4 and e = log~1/2n. By Proposition 2.3,

P[|S2n-Slnl >e] = p[|logi>n(Z)-logOn(Z)-/,n| > e /|log3nl = O(('°flog"f),

and hence, from (2.6),

sup|P[52n ^ x]-d>(x)| < c2log"1/2n
X

for some c2 = c2{6). Now we can apply (2.7) with U = S2n and W = S3n, since (2.1) implies
that \U-W\^Y, with Y = {(0/3)logn}-1/2(yn + l), giving

sup|P[S3n < x]-<t>(x)\ = O(log-1/2«(1 + E O =
X

in view of (2.2). This is equivalent to Theorem 1.2.
To prove Theorem 1.3, we use essentially the same estimates. First, from (2.1),

|logO[n(](C<">)-log<9[n(](Z)| ^ (1 + r j l o g n

for all 0 ̂  t < 1, and then, from (2.3),

0<logP [ n ( ] (Z)- logO [ n l ) (Z)

= £ ' I (Dln.1p.-iy\ogp^ £ ' £ (£>np.-l)
+logp.

P « > 1 P 8 > 1

Hence

E{ sup llogO^CC^-log^^^OOoglogBlog/i).

Now

logP^Z) = £ Z,log/= Er^logy + V^TTT) f jlog/irffl,̂ ),
?-i ^-i Jo

where

B / r t - V I _

CPC3
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176 A. D. Barbour and S. Tavare

can be realized as

1)}-1'2 { /W(M+1)) - <¥([«'] +1)}

using a Poisson process P with unit rate. Also, since

t[Bn{t)-B{t)]- ?{Bn(s)-B(s)}ds sup \Bn(t)-B(t)\,

the uniform approximation of Bn by a standard Brownian motion B, in the form

sup |5n(O

as carried out using the theorem of Komlos, Major and Tusnady [12] in the case 0 = 1 in
[3], now implies the conclusion of Theorem 1.3: take W(t3) = V3jl

osdBn(s).

References

[I] Arratia, R. A. and Tavare, S. (1992) Limit theorems for combinatorial structures via discrete
process approximations. Rand. Struct. Alg. 3 321-345.

[2] Arratia, R. A., Barbour, A. D. and Tavare, S. (1992) Poisson process approximations for the
Ewens Sampling Formula. Ann. Appl. Probab. 2 519-535.

[3] Arratia, R. A., Barbour, A. D. and Tavare, S. (1993) On random polynomials over finite fields.
Math. Proc. Cam. Phil. Soc. 114 347-368.

[4] Arratia, R. A., Barbour, A. D. and Tavare, S. (1993) Logarithmic combinatorial structures.
Ann. Probab. (in preparation).

[5] Best, M. R. (1970) The distribution of some variables on a symmetric group. Nederl. Akad.
Wetensch. Indag. Math. Proc. Ser. A 73 385-402.

[6] Bovey, J. D. (1980) An approximate probability distribution for the order of elements of the
symmetric group. Bull. London Math. Soc. 12 41-46.

[7] Erdos, P. and Turan, P. (1967) On some problems of a statistical group theory. HI. Ada Math.
Acad. Sci. Hungar. 18 309-320.

[8] Ewens, W. J. (1972) The sampling theory of selectively neutral alleles. Theor. Popn. Biol. 3
87-112.

[9] Ewens, W. J. (1990) Population genetics theory- the past and the future. In: Lessard, S. (ed.)
Mathematical and statistical developments of evolutionary theory, Kluwer Dordrecht, Holland,
177-227.

[10] Feller, W. (1971) An introduction to probability theory and its applications, Volume II, 2nd
Edition, Wiley, New York.

[II] Hardy, G. H. and Wright, E. M. (1979) An introduction to the theory of numbers, 5th Edition,
Oxford University Press, Oxford.

[12] Komlos, J., Major, P. and Tusnady, G. (1975) An approximation of partial sums of independent
RV'-s, and the sample DF. I. Z. Wahrscheinlichkeitstheorie verw. Geb. 32 111-131.

[13] Landau, E. (1909) Handbuch der Lehre von der Verteilung der Primzahlen. Bd. I.
[14] De Laurentis, J. M. and Pittel, B. (1985) Random permutations and Brownian motion. Pacific

J. Math. 119, 287-301.
[15] Nicolas, J.-L. (1984) A Gaussian law on FQ[X]. Colloquia Math. Soc. Jdnos BolyaiTA 1127-1162.
[16] Nicolas, J.-L. (1985) Distribution statistique de l'ordre d'un element du groupe symetrique.

Ada Math. Hungar. 45 69-84.

of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0963548300001097
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 14:32:41, subject to the Cambridge Core terms

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0963548300001097
https:/www.cambridge.org/core

