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ABSTRACT
We investigate the extent to which one can use a P(D) analysis to extract number counts of
unclustered sources from maps of the far-infrared background. Such maps currently available,
and those expected to emerge in the near future, are dominated by confusion noise resulting
from poor resolution. We simulate background maps with an underlying two-slope model for
N(S), and we find that, in an experiment of FIRBACK type, we can extract the high-flux slope
with an error of a few per cent, whereas other parameters are not so well constrained. However,
we find that, in a SIRTF-type experiment, all parameters of this N(S) model can be extracted
with errors of only few per cent.
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1 I N T RO D U C T I O N

Analysis of spatial fluctuations in the level of background radi-
ation has been used by radio (Scheuer 1974; Condon 1974) and
X-ray astronomers (Barcons & Fabian 1990) to gain information on
the number count–flux relation below the detection limit. Recently
(Lagache et al. 2000), fluctuations in the infrared background were
first detected in maps of the FIRBACK survey at a wavelength of
170 µm.

The spatial resolution currently available in the far-infrared is of
the order of arcminutes. As a result, observations at this wavelength
are confusion-limited. This means that the dominant contribution to
noise on sky maps at these wavelengths comes not from detector or
photon noise but from the superposition of light originating from
galaxies that are too close on the sky to be resolved individually. It
has been shown (Puget et al. 1999) that the energy coming from re-
solved sources on the FIRBACK maps comprises only 10 per cent
of the total energy while the rest is due to the unresolved back-
ground radiation. This means that other than fluctuation analysis
[‘P(D) analysis’], not much else can be done to study the N(S) of
the unresolved infrared sources in the far-infrared.

This study investigates the conditions under which P(D) analysis
can usefully constrain galaxy evolution scenarios. Guiderdoni et al.
(1998) have introduced a semi-analytical model of galaxy forma-
tion and evolution, and within this model suggested several scenar-
ios including different amounts of ultraluminous infrared galaxies.
For each of the scenarios, they calculated, among other things, faint
galaxy counts. They show that at 175 µm the source counts at fluxes
10–100 mJy are quite sensitive to the details of the galaxy evolution;
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therefore, knowing N(S) to high precision can help in choosing be-
tween the different scenarios of their galaxy evolution models. Sim-
ilarly Takeuchi et al. (2001) show that at 175 µm the number counts
at fluxes 10–100 mJy are very dependent on the galaxy evolution
models that they propose.

When using a simple power-law parametrization for the source
counts, errors of a few per cent in the parameters can give an error of
50 per cent in the number counts at fluxes of a few tens of mJy, i.e.
one anticipates that such counts at these flux levels will easily con-
strain the parameters. Additionally, at least in the above-mentioned
families of models in this flux range, the N(S) due to the different
models differ by an order of magnitude. This justifies attempting to
measure the N(S) parameters to high precision down to a few tens
of mJy. Note that the flux range of a few tens of mJy is far below
the detection limit of FIRBACK (180 mJy) and therefore, at the
moment, can be probed only via P(D) analysis.

Additionally one would also like to know how much information
one can gain about the number counts from specific confusion-
limited surveys like FIRBACK or SIRTF using a P(D) analysis.
This kind of study can be done using a Fisher matrix analysis where
one calculates the minimal errors of extracted parameters given from
the experiment and a parametrized theoretical model.

The analysis we carry out here does not take into account clus-
tering of sources. Some clustering of the far-infrared sources is of
course expected (Scott & White 1999; Haiman & Knox 2000; Knox
et al. 2001), but its amplitude is not yet determined at 175 µm. The
small area of the FIRBACK fields might not enable one to constrain
the source clustering accurately, but this situation might change with
the SIRTF observations, which cover larger areas of the sky (Dole,
Lagache & Puget 2003). The resolved sources on the FIRBACK
maps show a level of clustering consistent with zero. This is prob-
ably due to the small number of resolved sources (Guiderdoni and
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Lagache, private communication). Hence we are assuming, at this
stage, that sources are Poissonian distributed on the sky.

We find that we can constrain the slope of the number counts of
sources with high fluxes (�20 mJy) at least as well as has been done
by extracting individual strong sources. Other parameters (slope of
the number counts at low fluxes, normalization and break flux) are
not as well constrained in the FIRBACK type of experiment. How-
ever, in an experiment with smaller pixels and more of them (e.g.
SIRTF), we can extract all the parameters to within several per cent.
We also found some degeneracies between the different parameters
and saw that a better experiment like SIRTF cannot resolve these
degeneracies.

The paper is arranged as follows. We give an explanation of the
nature of confusion in sky surveys in Section 2. In Section 3 we
describe how we model the N(S) in order to extract it from the
data. In Section 4 we outline the method of analysing sky maps
in order to extract the parameters of the model. We describe the
implementation of the method and the results of analysing simulated
skies in Section 5.

2 C O N F U S I O N

The spatial fluctuations in the level of background radiation due
to the spatial distribution of the discrete sources that contribute to
the background are called ‘confusion noise’. At far-infrared wave-
lengths the level of the confusion noise dominates over any photon
or instrumental detector noise existing in today’s instruments. Thus,
while one can reduce the level of instrumental or photon noise by
long integration times, the confusion remains a strong characteristic
of far-infrared observations.

The full calculation of the probability distribution of the fluctu-
ations [P(D) in short] is classical (see Condon 1974; Barcons &
Fabian 1990) and given in the Appendix. Here we only give the
final result:

P(D) =
∫ ∞

−∞
�(ω) e−2πiωD dω, (1)

where D is the deflection from the mean level of flux and

�(ω) = exp

[
Apix

∫ ∞

0

dS
dN (S)

dS

∑
i

(e2πiωPi S − 1)

]
. (2)

The shape of P(D) depends on several inputs. First is the differential
N(S) relation, dN(S)/dS. This is the number of sources per steradian
with fluxes in [S, S + dS]. It also depends on the shape of the
beam, which is described by Pi, the point spread function (PSF) of
the telescope. Finally in (2) Apix is the pixel size. In general P(D)
will also depend on clustering of the sources if it is strong enough
(Barcons 1992), but, as mentioned before, we are going to deal with
a source distribution that is not clustered but Poissonian.

It was shown in Scheuer (1974) that the width of the curve (the 1σ

of the noise) is of the order of the flux for which there is one source
per beam. The very faint sources do not contribute at all to the shape
of the curve, but only to the mean level of the flux. This is because
there are very many of them within each beam and the change of
their number from beam to beam is relatively small and so does not
contribute to the fluctuations. The very strong sources contribute
only to the tail of the distribution. Typically the flux where there is
one source per beam is much lower than the resolution limit.

3 L O G N – L O G S O F I N F R A R E D S O U R C E S

Since this work is motivated by the FIRBACK survey, we will give in
the following a short description of the survey and of the dN(S)/dS

found for the resolved sources. These details will guide us when
we construct simulations to check our method of deriving dN(S)/dS
from the observed P(D).

3.1 The FIRBACK survey

FIRBACK (Puget et al. 1999; Lagache & Dole 2001; Dole et al.
2001) is a deep survey of 4 deg2 of the sky at 170 µm. The 4 deg2

were chosen in such a way that the foreground cirrus contamina-
tion was as small as possible. Thus one can get information on the
extragalactic radiation (Lagache & Puget 2000). In the FIRBACK
survey there were 106 sources detected above the sensitivity limit
of the experiment at 4σ , with fluxes between 180 and 2400 mJy.
The slope of the log N – log S curve was measured by Dole et al.
(2001) to be −3.3 ± 0.6 between 180 and 500 mJy.

3.2 Modelling source counts

In view of the above, we will assume a broken power law for the
source-count model: the slope at low fluxes has to become shallower
than 3.0 or the flux per pixel will diverge. Another motivation for this
two-slope model is the predictions coming from galaxy evolution
models discussed earlier. In all of the predictions, the number counts
exhibit a relative flattening at low fluxes.

Therefore we write dN(S)/dS as follows:

dN (S)

dS
=

{
Anorm S−γ1 for S � Sbreak,

Anorm Sγ2−γ1
break S−γ2 for Smin � S � Sbreak.

(3)

The parameters to be determined are the normalization, Anorm,
the flux of the break in the power law, Sbreak, and the two slopes,
γ 1 and γ 2. Since Smin does not change the shape of the distribution
and only affects the mean flux, and since we will be fitting for the
shape of the distribution and not for the mean flux, Smin becomes
irrelevant to the fitting process. It comes into play only in order to
fine-tune the mean flux to its value from data. In the following we
will refer to the four parameters commonly as θ , and the probability
distribution of the deflection will be written as P(D; θ ).

4 M E T H O D O F A NA LY S I S

4.1 Minimum χ2 method for binned data

Our data set is composed of several thousand measurements of in-
coming flux received by 46 × 46 arcsec2 pixels that point to different
directions in the sky. We will bin the data according to flux. In this
way we can compare the experimental distribution of the fluctua-
tions to a calculated P(D; θ ).

Binning data may proceed in two ways: (i) one way is such that
the bins are equal in length and the numbers of events vary from
bin to bin; or (ii) one may bin the data such that there is the same
number of events in each of the bins and the size of the bins changes
accordingly. We use the former method, but we manually increase
the bin size at the two tails of the distribution where there are very
few events, so as not to have bins with zero events. We thus have
three bins where there are around five events per bin, out of a total
of 60 bins.

A histogram is in fact a multinomial distribution. This is the
generalization of the binomial distribution to the case where it is
possible to have more than two outcomes for the experiment. In our
case the flux received by a pixel pointing in one of the directions in
the sky will be one result of the experiment, and the outcome might
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fall in any one of the bins. Let us call r1, . . . , rn the n possibilities for
the outcome of the experiment (in our case n different flux ranges
from the minimal to the maximal flux received in the map), and let
pi be the probability for a pixel to fall in bin i. The sum of all these
probabilities is of course unity, since every pixel falls in one of the
bins. We assume that the different pixels are independent (we will
justify this assumption in Section 5.2). Then, after N experiments of
measuring the incoming flux (N pixels in the map), the probability
that the fluxes will distribute with r1, . . . , rn pixels falling in the
bins will be given by

P(ri , N , pi ) = N !

r1!r2! · · · rn!
pr1

1 pr2
2 · · · prn

n . (4)

Some important properties of this distribution are that E(ri), the
expectation value for bin i, is given by E(ri) = Npi, and V(ri), the
variance for bin i, is given by V(ri) = Npi(1 − pi). When the number
of experiments becomes large, the multinomial distribution tends to
the multinormal distribution. In the case when there are many bins
and pi 
 1, the variance tends to be the expectation value. Thus
when we bin the fluxes we must take care to have enough bins such
that, on the one hand, pi 
 1 and, on the other, there are enough
pixels per bin so that the distribution of the number of pixels per bin
will be close to Gaussian. Then the overall likelihood of the data
can be written as follows:

L(r1, . . . , rn ; θ ) = Ce−Q2/2, (5)

where Q2, the quadratic form, is

Q2 =
n∑

i=1

n∑
j=1

cij

(
ri − µi

σi

)(
r j − µ j

σ j

)
, (6)

cij are the elements of the inverse covariance matrix C, given by

C = E[(r − µ)(r − µ)T], (7)

ri is the number of pixels within flux bin i, µi is the expected number
of pixels in the bin according to the model, and σ i is the square root
of the variance, in our case

√
µi . The correlation ρ i,j between bins

i and j is given by

ρi, j = Ci, j/σiσ j . (8)

If we assume that there are no or only negligible correlations be-
tween the errors in the bins, then the covariance matrix will be almost
diagonal. Therefore the quantity we need to minimize becomes

Q2 =
Nbins∑
i=1

(
ri − µi√

µi

)2

. (9)

This method is the ‘minimum chi-square method’ applied to his-
togram fits. When there are many events in each bin, then Q2 has
asymptotically a χ 2 distribution with [n − (number of fitted pa-
rameters)] degrees of freedom and the method is equivalent to a
maximum likelihood estimation method. Therefore, from now on
we will use the notation χ 2 = Q2. We are assuming that our way of
binning allows Q2 to behave close enough to χ2.

4.2 Fisher matrix analysis

As described before, we have several thousand measurements of the
flux S, and a model for N(S) that leads to a P(D; θ ) and we estimate
the parameters θ using the maximum likelihood method with the

binned data. There is a lower bound to the variance of an estimator,
which is related to the Fisher matrix, Fij,

Fi j = E

[
−∂ log L

∂θi∂θ j

]
. (10)

The Rao–Cramer–Frechet inequality states that, for any unbiased
estimator,�θ i � (F−1)1/2

ii , where�θ i is the 1σ error of the parameter
θ i. This inequality was used by several authors (e.g. Jungman et
al. 1996; Tegmark, Taylor & Heavens 1997; Efstathiou 1999) to
assess how well different parameters may be estimated in future
experiments.

In our case, where the the likelihood is multinormal, and the errors
depend on the parameters, the Fisher matrix becomes (Tegmark et al.
1997):

Fi j = 1

2

Nbins∑
k=1

∂µk

∂θi

∂µk

∂θ j

1

µk

(
2 + 1

µk

)∣∣∣∣
θML

. (11)

As we can see, the Fisher matrix depends solely on the model and on
the estimated parameters, {θ ML}. We can now calculate the minimal
variance for different experimental setups, namely as a function of
the number of pixels in the maps, or as a function of the size of the
pixel. In this way we can foresee how well we could extract the four
parameters from future experiments.

The inverse of the Fisher matrix is an estimate of the covari-
ance matrix, so by investigating F−1 one can locate degeneracies
between parameters and see if they might be resolved in different
experimental setups.

5 R E S U LT S

In this section we describe the analysis of simulated skies that we
have made in order to check theoretically the limits of our method
using the Fisher matrix analysis.

5.1 Simulations

We use mock images to check our algorithm. These images are built
in two steps. First we build a mock sky. This is a high-resolution
projected image of a given spatial distribution of sources. It is con-
structed by distributing point sources randomly on a 1.25 × 1.25
deg2 field. Each source is assigned a flux such that the overall num-
ber counts are consistent with our predetermined two-slope N(S).
We chose to model N(S) such that the main traits of the FIRBACK
maps are realized, such as the number of sources above 180 mJy
and the mean level of the background. Then we convolve it with
the instrumental effects in order to produce an image as close as
possible to real data. Finally we extract only the central 1 deg2 as
our map. A map produced in this way is presented in Fig. 1(a), and
its histogram is shown in Fig. 1(b). The map includes some 2 × 108

sources with fluxes ranging from 0.01 to 2000 mJy, and the param-
eters chosen were γ 1 = 3.3, γ 2 = 1.8 and Sbreak = 14 mJy and the
normalization was 0.18 × 1011.

5.2 Effect of different PSFs on correlation between flux bins

The total extent of the PSF of the FIRBACK instrument and of the
upcoming SIRTF is bigger than the size of a pixel in these exper-
iments. In FIRBACK the full width at half-maximum (FWHM) of
the PSF is equal to the pixel size. For SIRTF it is twice as wide
(Dole et al. 2003). In such cases we expect there to be some corre-
lation between adjacent pixels on the map. Given this, we want to
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Figure 1. Left: (a) 1 deg2 of simulated sky, with pixels of 46 × 46 arcsec2. The sky contains some 2 × 108 sources, described by a model N(S) given in
equation (3), with parameters as follows: γ 1 = 3.3, γ 2 = 1.8, Sbreak = 14 mJy and Anorm = 0.18 × 1011. Right: (b) The histogram of the simulated map
showing the fluctuations in the intensity. Note the skewed shape, with the tail due to the strong sources. This figure is available in colour in the on-line version
of the journal on Synergy.

quantify the extent to which these correlations may be manifested
as correlations between the different bins in the histogram.

To this end we should measure the correlation coefficients of
the histogram given different sized PSFs. The different PSFs we
used were constructed from the original one by rebinning again and
again. We quantify their extent with respect to the pixel size by
defining variable x, which is the ratio of the FWHM to the pixel
size. The x we used are 2.7, 1.1, 0.5, 0.3 and 0.1. Following this we
produced hundreds of sky maps based on the same underlying N(S)
relation. We convolved each with a PSF, produced a histogram, and
measured the sample correlation matrix. The process was repeated
for the different PSFs, and was done once without convolving with
any PSF but instead we rebinned the sky to the size of the pixel,
46 × 46 arcsec2.

If bins were not correlated at all, the correlation matrix would have
been the identity matrix. We found that there is a negligible level
of correlations with any of the PSFs, mostly less than 10 per cent.
The largest correlation seen was between a few neighbouring bins
for the largest PSF, near the centre of the histogram, at a level of
20 per cent. There is also no clear behaviour of ρ ij as a function
of the total coverage area of the PSF. This can be seen in Fig. 2,
where three randomly selected elements of the correlation matrix
are plotted as a function of the total coverage area of the PSF. In

Figure 2. Three randomly chosen elements of the correlation matrix, plotted
as a function of the total coverage area of the PSF. All correlations are less
than 10 per cent, and there is no clear trend of behaviour as a function of the
coverage.

light of this we will neglect the correlations between the bins and
estimate the parameters as described in the next section.

5.3 Estimating parameters

In order to find estimates for the four parameters Anorm, Sbreak, γ 1 and
γ 2, we first choose a small enough value for Smin. On the one hand,
this should be smaller than reasonable values of Sbreak, and, on the
other, it should be big enough to avoid numerical problems of inte-
gration. We then grid a large enough part of parameter space around
a reasonable point found by trial and error. Each of these grid points
will serve as a starting point for the minimization procedure. In this
way we have more chance of catching the lowest minimum. The
minimization procedure calculates the χ 2 and uses the derivatives
of the model to go downhill in parameter space until a lowest local
χ2 is found. We looked at the estimated parameters and their errors
to see whether they are all situated in the same part of the parameter
space. We repeated the procedure with several different binnings to
make sure that the results are not dependent on the binning. The
best fit is shown in Fig. 3. The reduced χ2 for this model is 0.96.
The errors of the estimated parameters will be discussed below.

Once we have a best-fitting set of parameters, we assume that it
is a good enough approximation of the real parameters. Then we
can continue to calculate the Fisher matrix elements for different

Simulation and best fit model
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Figure 3. The histogram of the simulated map with the best-fitting model.
This figure is available in colour in the on-line version of the journal on
Synergy.
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Figure 4. The errors on the estimated parameters (in per cent) as a function of (a) the number of pixels in the map and (b) the pixel size. The vertical line
shows where the FIRBACK experiment is on these graphs. This figure is available in colour in the on-line version of the journal on Synergy.

experimental parameters. We will calculate the minimal errors of
the different parameters as a function of pixel size and as a function
of the number of pixels in the map. In Fig. 4(a) one sees how the
errors reduce when we add more pixels to the map. In fact they
reduce as (number of pixels)−1 – and this behaviour is what we
expect from the definition of the Fisher matrix, equation (11). In
Fig. 4(b) one sees that the errors greatly reduce once we use smaller
pixel sizes in the experiment, with all errors at the level of only a
few per cent once we reach a pixel size of 15 arcsec2. This is very
encouraging because in the upcoming SIRTF experiment the pixels
will be of size 16 × 16 arcsec2.

Another point to look at is the comparison between the errors on
the estimated parameters in our algorithm, and the minimal errors
given from the Fisher matrix analysis. To this end we plotted, in
both Figs 4(a) and (b), a vertical line indicating the properties of
the FIRBACK and our simulations. On top of this line we put the
parameter errors we got from the minimization procedure. It is en-
couraging to see that these errors are only very slightly larger than
the minimal errors possible according to the Cramer–Rao–Frechet
lower bound.

Another way to see the great improvement in the precision of
the estimation is when one looks at the 1σ contours, which enclose
68 per cent of the joint distribution of several pairs of estimators,
while we marginalize over the other two parameters, as in Fig. 5.
The contours, independent of which plane we look at, encompass a
shrinking patch of the parameter space as we add pixels to the map or

Figure 5. The 1σ contours in the two-dimensional plane of three different pairs of parameters, while marginalizing over the rest. These contours are calculated
according to F−1. The filled hexagon gives the original parameters of the simulation on these planes. This figure is available in colour in the on-line version of
the journal on Synergy.

use smaller pixels. We have plotted the original parameters as filled
hexagons on top of the ellipses. It is important to note also that,
except for the normalization, the true parameters of the simulation
are enclosed within the 1σ contours of the original experiment.

5.4 Parameter degeneracies

Fig. 5 also shows us that there are degeneracies between the differ-
ent parameters. These degeneracies are not broken when we use a
more accurate experiment; they are ‘built in’ through the definition
of the model N(S). For example, as the model is defined, the nor-
malization is the number of sources with fluxes greater than 1 mJy.
Naturally, if we increase γ 1 we should increase the normalization
in order to remain within the error bars for N(S). In the following
we will look further into the degeneracies by looking at the deriva-
tives of the model with respect to the parameters in which we are
interested (Tegmark et al. 1997). The reason for this can be seen if
we look again at the expression for the elements of the Fisher ma-
trix (equation 11): they have the structure of a dot product between
vectors µk/θ i and µk/θ j. If one of these vectors is a linear combina-
tion of another, the Fisher matrix elements will be singular, and the
errors of the estimated parameters will be infinite. If the vectors are
completely orthogonal, then F and F−1 will be diagonal and thus
there will be no correlation between different parameters and their
errors. Usually there will be some level of correlation, which will
be manifested by a somewhat similar shape between the functional
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(a) (b)

Figure 6. Top: The derivatives of the model with respect to the four parameters at two pixel sizes, 46 × 46 arcsec2 and 20 × 20 arcsec2. Bottom: The
derivatives of the model with respect to the principal components. It is possible to see how the degeneracies disappear. This figure is available in colour in the
on-line version of the journal on Synergy.

shape of the different derivatives. By looking at the functional shape
of the derivatives, one may recognize such degeneracies. The way to
avoid any degeneracies between parameters will be to diagonalize
the Fisher matrix, thus changing the parameters into new ones that
are linear combinations of the originals. These parameters, however,
are not always physical, and thus do not have much meaning unless
they are very similar to the old ones, with not much ‘contamination’
from other parameters.

It is worth while to check whether or not, under improved exper-
imental conditions, these degeneracies, if they exist, are removed.
In Fig. 6 we plot the derivatives with respect to the usual four pa-
rameters and the derivatives with respect to the new, ‘diagonalized’
parameters (called principal components, PC1–4). On the left panel
we have the case for a pixel of 20 × 20 arcsec2, and on the right,
46 × 46 arcsec2. Again we can see that the degeneracies are not re-
moved by improving the experiment. Only diagonalizing the Fisher
matrix allows us to remove them. We also add a table that specifies
how the new parameters are built from the old ones. In the first row
we have the four parameters and in the first column we have the
four principal components. In each of the four rows we have the co-
efficients of the linear combination. The strongest coefficients are
marked in italics.

K γ1 γ2 Sbreak

PC1

PC2

PC3

PC4




0.32 0.91 0.24 −0.03

0.94 −0.34 0.03 −0.004

−0.11 −0.21 0.96 −0.09

0.0015 0.002 0.098 0.995




PC1 has the highest weight from γ 1 with some contribution from K
and γ 2. PC2 has the highest contribution from K and some contri-
bution from γ 1. PC3 is mostly γ 2 and some γ 1, and PC4 is almost
exclusively Sbreak. The degeneracies are to be expected since, as
mentioned before, P(D) analysis cannot give information at fluxes
much below the one source per beam flux level. In our simulation
this level is of the order of 7 mJy, and therefore it is reasonable that
for example γ 2, which is the slope of the counts below a few mJy,
is degenerate with the other parameters.1

6 D I S C U S S I O N

In this work we have explored the extent to which one can use
a P(D) analysis to gather information from far-infrared sky maps.
These maps are characterized by a very high level of confusion
noise, which arises as a result of the relatively poor resolution power
available at these wavelengths.

We created a simulated map of the sky with an underlying mod-
elled N(S). The model consisted of a two-slope model with a high-
flux slope greater than 3 and a shallower low-flux slope. It was cho-
sen this way following the finding of a steep slope of the number
counts of resolved objects in the FIRBACK maps and in agreement
with predictions of galaxy evolution models. The parameters of the
model are the two slopes, the break flux (where the slope changes)
and the normalization.

We then created the histogram of the simulated map and used
it to find the best-fitting parameters of the N(S) model and their

1 We thank the referee for pointing out this cause for the degeneracies.
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errors. After finding the best-fitted parameters, we used the Fisher
matrix analysis to calculate the minimal errors possible of these
parameters in experiments with different pixel sizes and in experi-
ments with different total number of pixels, including those of the
FIRBACK.

We found that our algorithm gives fitted parameters with almost
the minimal errors possible theoretically. The underlying parameters
of the simulated map were within 1σ of the best-fitted ones (except
for the normalization). This means that the tool we have constructed
in order to find number counts is quite reliable.

The Fisher matrix analysis shows that in an experiment with pixel
size of the order of 10 arcsec we will be able to find all parame-
ters with errors of only about a few per cent. The situation of the
FIRBACK experiment is quite different: it is only the high-flux
slope that can be found with a small error bar of ≈4 per cent. This is
somewhat better than what was found by individual source extrac-
tion from the maps (error of ≈20 per cent).

The advantage of the P(D) analysis that it is sensitive down to the
flux for which there is one source per beam – in the FIRBACK case
this is around a few mJy, much below the detection limit, which is
180 mJy. Also, the extraction of even the high-flux slope is straight-
forward and does not warrant an a priori extraction of sources or
other manipulation of the maps.

In order to be able to extract the other parameters of the num-
ber counts, we will have to wait for the SIRTF experiment. In that
experiment, the pixel size is 16 × 16 arcsec2 and the number of
different points measured on the sky is up to an order of magni-
tude larger than for FIRBACK. In this case the precision of esti-
mation is enhanced due to both factors: smaller pixels and more of
them.
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A P P E N D I X A : P RO BA B I L I T Y D I S T R I BU T I O N
O F BAC K G RO U N D F L U C T UAT I O N S

The shape of the curve describing the probability that a pixel will
accumulate a certain level of flux depends on a few factors. These
are the point spread function of the telescope, the pixel size and
shape, and the source number counts N(S).

We are assuming some properties for the sources that make up
the background: the sources are point-like, they are not clustered,
and once a source is ‘found’ its flux is a random variable distributed
according to the number count–flux relation, N(S).

The integrated flux seen by a pixel pointing in direction n will be

Spix(n) =
∫

d�n′ G(n − n′)S(n′), (A1)

where d�n is the solid angle in direction n; G(n − n′) is the beam
profile, i.e. the convolution of the point spread function of the imag-
ing instrument and the pixel profile; and S(n) is the flux per unit solid
angle coming from direction n. Now we can calculate the probabil-
ity density of Spix (the probability that a certain pixel will receive
flux Spix). In order to do that, one first calculates the characteristic
function of Spix, which is given by

�(ω) = 〈
e2πiωSpix

〉
. (A2)

Then the probability distribution for Spix will simply be the Fourier
transform of �.

Say there are K sources. Then the total flux received by a pixel
should be written as the following discrete sum:

Spix(n) =
k∑

i=1

Si G(n − ni ). (A3)

The probability of finding K sources in the sky, with fluxes S1, . . . ,
Sk and in directions n1, . . . , nk, is

F (k)(n1,S1, . . . , nk,Sk) = (4πµ)k

k!
e−4πµ(4π)−k

k∏
i=1

f (Si ), (A4)

where µ is the mean number of sources per unit solid angle, and f (S)
is the probability that a source has a flux in the range [S, S + dS]. This
is a product of the Poissonian probability to find K sources while the
mean number of sources is expected to be µ and the probability to
find a source with flux Si given the model N(S), all this per steradian
[hence the term (4π)−k]. The normalization condition is that the sum
of the probabilities to find any number of sources in any direction
is unity:

∞∑
k=0

∫
d�n1

∫ ∞

0

dS1

· · ·
∫

d�n1

∫ ∞

0

dSk F (k)(n1,S1; . . . nk,Sk) = 1. (A5)

Using the normalization condition and the form of Spix, we may now
calculate the characteristic function, which becomes

�(ω) = exp

[
Apix

∫ ∞

0

dS
dN (S)

dS

∑
i

(
e2πiωPi S − 1

)]
, (A6)

where Pi is the pixelized PSF and Apix is the area of the pixel in
steradians. The integration over the angles is separate from that over
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flux and gives Apix. This is justified in our case because, although the
PSF is quite extended, outside of the pixel it has very small values. So
now we may write the expression for P(Spix) as the Fourier transform
of the characteristic function:

P(Spix) =
∫ ∞

−∞
�(ω) e−2πiωSpix dω. (A7)

The above expression gives the probability that a pixel will receive
an amount of flux equal to Spix. We will be working with a slightly
different expression – the probability to get a certain flux above

or below the mean flux on the map, D, defined as Spix = D +
〈Spix〉,

P(D) =
∫ ∞

−∞
�(ω) e−2πiωD dω. (A8)

Once we have P(D) we may integrate between the bins and multiply
by the total number of pixels in the map to get the expected number
of pixels falling within each bin.
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