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S U M M A R Y
We explain in detail how azimuthally anisotropic maps of surface wave phase velocity can
be parametrized in terms of generalized spherical harmonic functions, and why this approach
is preferable to others; most importantly, generalized spherical harmonics are the only basis
functions adequate to describe a tensor field everywhere on the unit sphere, including the
poles of the reference frame. We introduce here a new algorithm, designed specifically for
the generalized harmonic parametrization, to trace surface wave ray paths in the presence of
laterally varying azimuthal anisotropy. We describe the algorithm, and prove its reliability in
view of future applications.

Key words: global seismology, ray theory, ray tracing, seismic anisotropy, spherical
harmonics, surface waves.

1 I N T RO D U C T I O N

In the context of wave propagation, we call ‘anisotropic’ a medium

where the speed of a wave at each point depends on its direction of

propagation. In the Earth, we speak of ‘azimuthal anisotropy’ when

the wave speed changes with the azimuth of the seismic ray, with

respect to a fixed direction (usually the north or the east). Smith

& Dahlen (1973, 1975) first wrote a theoretical relation, valid in

a half-space medium, between slight perturbations δc in the phase

velocity c of Love and Rayleigh waves, and the azimuth ζ of their

direction of propagation,

δc(r, ζ )

c
= ε0(r) + ε1(r) cos(2ζ ) + ε2(r) sin(2ζ )

+ ε3(r) cos(4ζ ) + ε4(r) sin(4ζ ), (1)

where r is a two-vector denoting position on the half-space surface,

and the values of ε i (i = 0, . . . , 4) naturally change also as functions

of surface wave frequency ω.

Eq. (1) has been used to set up tomographic inverse problems,

based upon the ray theory approximation, to derive global maps of

the azimuthal anisotropy of Rayleigh and Love waves (Tanimoto

& Anderson 1984, 1985; Montagner & Tanimoto 1990; Laske &

Masters 1998; Ekström 2001; Trampert & Woodhouse 2003). The

effect of azimuthal anisotropy on surface wave propagation was

assumed to be small, and anisotropic maps were derived as small

perturbations to isotropic reference models. This way, the problem

of ray tracing through anisotropic media was avoided. Only few

authors (Tanimoto 1987; Mochizuki 1990; Larson et al. 1998) ex-

tended Woodhouse & Wong’s (1986) work in surface wave ray trac-

ing, to account for the effects of slowly laterally varying azimuthal

anisotropy on JWKB surface wave ray paths.

From Larson et al.’s (1998) article, one gathers that their im-

plementation of ray-tracing equations is entirely numerical, or

rests on the interpretation of eq. (1) as a purely scalar relation-

ship, with a pixel, or spline parametrization of anisotropic maps.

Trampert & Woodhouse (2003), in agreement with the earlier works

of Mochizuki (1986, 1993), suggest that generalized spherical har-

monics (e.g. Phinney & Burridge 1973; Dahlen & Tromp 1998,

appendix C) provide a more adequate parametrization; in fact, phys-

ical observables like the direction of fastest propagation, which

should have a regular behaviour throughout the globe, are likely

to become singular at the poles of the reference frame, when ε i are

described over grids of pixels or splines, or as combinations of non-

generalized (‘scalar’) harmonics. The problem is avoided when a

generalized spherical harmonic parametrization is chosen (Fig. 1).

(Note that Larson et al. (1998, eq. 2.41) do make use of generalized

spherical harmonics, but in an entirely different sense.)

We describe here a new surface wave ray tracing algorithm, valid

in the presence of azimuthal anisotropy, based on a generalized

spherical harmonic expansion of anisotropic phase velocity maps.

Our procedure is the most natural extension to the case of azimuthal

anisotropy of what has been done, with scalar spherical harmonic

parametrizations, for isotropic surface wave propagation; accord-

ingly, anisotropic maps expressed as combinations of generalized

spherical harmonics can be more easily rotated than pixel/spline

maps, to have the source–receiver great circle coincide with the

equator (simplifying the implementation of ray-tracing equations),

analytical results are available for path integrals and model deriva-

tives with respect to position, and the map resolution is independent

of location and of the reference frame.

2 T H E G E N E R A L I Z E D H A R M O N I C

PA R A M E T R I Z AT I O N

We shall describe here in more detail the treatment of Trampert &

Woodhouse (2003, Section 2).
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Figure 1. 2ζ direction of fastest propagation, 1/2 atan(ε2/ε1), shown with a stereographic projection around the North Pole, as mapped by Laske & Masters

(1998) (L& M98) from 80 s Rayleigh wave surface wave observations, and Ekström (2001) (E01) and Trampert & Woodhouse (2003) (T& W03) from 100 s

Rayleigh wave observations. The length of each segment is proportional to the amplitude of anisotropy.

Because generalized spherical harmonics are designed to describe

tensor, rather than scalar fields, we shall first rewrite eq. (1) in ten-

sorial form. Let us start by introducing a 2 × 2 tensor τ (θ , φ), with

components

τθθ = −τφφ = ε1, (2)

τθφ = τφθ = −ε2, (3)

and a 2 × 2 × 2 × 2 tensor σ(θ , φ), with

σθθθθ = σφφφφ = ε3, (4)

σθθφφ = −ε3, (5)

σθθθφ = −σφφφθ = ε4 (6)

(Trampert & Woodhouse 2003); the remaining entries ofσ coincide

with those whose indexes are a permutation of theirs, for example,

σ θθθφ = σ θθφθ = σ θφθθ = σ φθθθ , and so forth. Note that both τ

and σ are thus completely symmetric and trace-free. Denoting ν =
(−sin(ζ ), cos(ζ )), eq. (1) can be written

δc(θ, φ, ζ )

c
= ε0(θ, φ) + νiν jτi j (θ, φ) + νiν jνkνlσi jkl (θ, φ), (7)

where summation over repeated indices is implicit. In tensor nota-

tion,

δc(θ, φ, ζ )

c
= ε0(θ, φ) + ν · τ (θ, φ) · ν + νν:σ(θ, φ):νν. (8)

Again, dependence on the surface wave frequency ω is understood.

In Section 4, we shall require the azimuth to be measured counter-

clockwise from east. Eq. (1), however, holds independently of the

azimuth convention, although in general to a different definition of

ζ will correspond different numerical values of ε i (i = 0, . . . , 4); it

should be noted that, had the ray path azimuth in eq. (1) been defined

with respect to the north (e.g. Trampert & Woodhouse 2003) rather

than east, τ and σ would remain unchanged, provided that cosine

and sine be swapped in the definition of ν; eqs (7) and (8) would

then also hold in their present form.
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If the tensors τ and σ, and the vector ν are rotated according to

the rotation rule for tensors, eqs (7) and (8) will keep their form in

the rotated system, with no need to find ζ from ζ ′ (azimuth in the

rotated system) at each Runge-Kutta step.

Just like scalar functions on a sphere are most conveniently ex-

pressed as linear combinations of scalar spherical harmonics, vec-

tors and higher- order tensors should be written as combinations of

generalized spherical harmonics. In particular, it is useful to expand

the ‘contravariant’ components of a tensor of order q in terms of gen-

eralized spherical harmonics Y N
lm(θ , φ), as defined in Appendix A

below, with N depending on q and on the tensor component indexes

(e.g. Phinney & Burridge 1973; Dahlen & Tromp 1998, Appendix C;

Trampert & Woodhouse 2003); this way, the generalized spherical

harmonic coefficients of the rotated tensor can be simply found by an

ordinary matrix multiplication between its coefficients in the initial

reference frame, and a rotation matrix whose entries, quite inter-

estingly, are simply related to the values of generalized Legendre

functions (e.g. Dahlen & Tromp, Sections C.8.2 and C.8.6).

Let us denote τ++, τ−+, τ+−, τ−− the contravariant components

of τ . They are related to its θ , φ components through eq. (2.4) of

Phinney & Burridge (1973), simplified after accounting for the lack

of radial dependence of τ here,

τ++ = τθθ − iτθφ, (9)

τ−− = τθθ + iτθφ, (10)

and τ+− = τ−+ = 0. The latter equation further simplifies the treat-

ment that follows, with respect to that of Phinney & Burridge (1973),

as it implies that only generalized spherical harmonics with N =
±2 are needed.

From eqs (9) and (10) the relations

τθθ = 1

2
(τ−− + τ++), (11)

τθφ = 1

2i
(τ−− − τ++) (12)

follow. For eq. (7) to have physical meaning, the θ , φ components

of τ have to be real; this, together with eqs (11) and (12), implies

τ++ = τ−−∗
, (13)

with the superscript ∗ denoting complex conjugation. Generalized

spherical harmonic coefficients τ++
lm and τ−−

lm of the contravariant

components of the second-order tensor τ are defined

τ++(θ, φ) =
∞∑

l=0

l∑
m=−l

τ++
lm Y 2

lm(θ, φ), (14)

τ−−(θ, φ) =
∞∑

l=0

l∑
m=−l

τ−−
lm Y −2

lm (θ, φ). (15)

Substituting eqs (14) and (15) into (13),

∞∑
l=0

l∑
m=−l

τ++
lm Y 2

lm(θ, φ) =
∞∑

l=0

l∑
m=−l

τ−−∗
lm Y −2∗

lm (θ, φ), (16)

and making use of the relation

Y −2∗
lm = (−1)mY 2

l−m (17)

[e.g. Phinney & Burridge 1973, Appendix A; Dahlen & Tromp

1998, eqs (C.118)] and of the orthogonality of generalized spherical

harmonics, we prove the symmetry relation

τ++
lm = (−1)mτ−−∗

l−m . (18)

The number of coefficients necessary to express a real second-order

tensor as a combination of generalized spherical harmonics is half

that needed for a complex second-order tensor.

Now, after substituting eq. (9) on the left-hand side of eq. (14)

[equivalently, we could plug eq. (10) into the left-hand side of

eq. (15)],

τθθ − iτθφ =
∞∑

l=0

l∑
m=−l

τ++
lm Y 2

lm(θ, φ), (19)

and equating the real and imaginary parts separately, we find

τθθ =
∞∑

l=0

l∑
m=−l

(
Re

(
τ++

lm

)
Re

(
Y 2

lm

) − Im
(
τ++

lm

)
Im

(
Y 2

lm

))
, (20)

τθφ =
∞∑

l=0

l∑
m=−l

( − Im
(
τ++

lm

)
Re

(
Y 2

lm

) − Re
(
τ++

lm

)
Im

(
Y 2

lm

))
, (21)

where we have denoted Re(z) and Im(z), respectively, the real and

imaginary parts of any complex number z. Eqs (20) and (21) imply

that only generalized spherical harmonics with N = +2 need to

be computed. As it is customary with scalar spherical harmonics

in problems involving real functions (e.g. Dahlen & Tromp 1998),

in software implementations it is preferable to treat Re(Y 2
lm) and

Im(Y 2
lm) as separate real functions, and store Re(τ++

lm ) and Im(τ++
lm )

as independent real arrays. Denoted L the chosen maximum value of

l where, in practical applications, we interrupt the harmonic series,

we find that 2(L + 1)2 real coefficients (Re(τ++
lm ), Im(τ++

lm )) are

sufficient to identify both τ θθ and τ θφ . This number is reduced to

2(L + 1)2 − 8 when we take into account that Y 2
lm = 0 for l < 2. Note

that 2(L + 1)2 − 8 = (2L + 6)(L − 1) (Trampert & Woodhouse

2003).

A similar treatment (eqs 9–21) holds for the σ term of eqs (7)

and (8), and we shall omit it here for brevity. Because δc/c is real,

we find that only coefficients Re(σ++++
lm ) and Im(σ++++

lm ) of the

Y 4
lm harmonics are needed to represent the ‘4ζ ’ anisotropic effect.

Since Y 4
lm = 0 for l < 4, this number reduces to 2(L + 1)2 − 32 =

(2L + 10)(L − 3) (Trampert & Woodhouse 2003).

3 O T H E R PA R A M E T R I Z AT I O N S

While the images of Trampert & Woodhouse (2003) have been de-

rived directly as combinations of generalized spherical harmonics

[eqs (20) and (21), and analogous expansions for σ θθθθ , σ θθθφ],

other authors have employed different parametrizations. Laske &

Masters (1998), for example, write ε1 and ε2 as independent linear

combinations of scalar, real spherical harmonics (and neglect ε3, ε4

in their tomographic inversion); Ekström (2001) prefers spherical

splines (see also Becker et al. 2003).

Our preference for the generalized spherical harmonic

parametrization is not a matter of subjective choice, but rests on

theoretical considerations: the direction of fastest propagation ζ fast,

that is the value of ζ for which, at a given location r, δc(r, ζ )/c is

maximum, depends simultaneously on all ε i (i = 1, . . . , 4). Separate

expansions of each ε i , which can only extend up to a finite harmonic

degree, implicitly require each ε i to be relatively smooth, or well

behaved throughout the globe, but do not grant that a physical ob-

servable like ζ fast be globally well behaved at all: far from the poles

of the reference frame, the smoothness of each ε i is a sufficient

condition for ζ fast to be smooth; but near the poles ζ fast might be-

come singular as a result of each ε i being smooth. (Likewise, the θ -

and φ-components of a vector might each vary slowly near a pole,
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572 L. Boschi and J. H. Woodhouse

and the vector itself be consequently undefined at the same pole.)

The parametrization described here, with a tensorial expansion of τ
and σ in terms of generalized harmonics, is a way of avoiding the

problem altogether.

To illustrate this, we show in Fig. 1 maps of ζ fast around the North

Pole, derived by the authors mentioned above, and associated with

Rayleigh waves at periods between 80 and 100 s. In all plots of

Fig. 1 ε3 and ε4 are approximated with zero; the resulting quantity

is usually referred to as ‘2ζ fast azimuth’. By equating to zero the

A

B

C

D

E

F

Figure 2. (a) 2ζ direction of fastest propagation in a region of relatively high anisotropy not far from the equator, from Laske & Masters (1998); (b) the same

image, described as a sum over generalized spherical harmonics, up to degree 20; (c) same as (b), up to degree 29; (d), (e) and (f) same as (a), (b) and (c), but

only the region of the same maps surrounding the North Pole is now shown, in a stereographic projection centred on the pole.

derivative of ε1(r) cos (2ζ ) + ε 2(r) sin (2ζ ) with respect to ζ , we

find

ζfast = 1

2
atan

(
ε2

ε1

)
. (22)

Laske & Masters’ (1998) map is clearly singular at the North Pole

(although very smooth if looked at in a cylindrical equatorial pro-

jection); Ekström’s (2001) ζ fast is better behaved, owing to an ad hoc
design of the spline grid (Ekström, personal communication, 2005);
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only Trampert & Woodhouse’s (2003) image is entirely smooth at

the pole.

The images of Fig. 1 were plotted based on each author’s original

parametrization. It is not difficult, however, to find the generalized

harmonic expansion associated to each map. Anisotropic maps must

first be evaluated at each node of a regular grid that covers the

entire globe, the spacing between gridpoints being only limited by
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Figure 3. (a) 2ζ direction of fastest propagation around the North Pole, from Ekström (2001); (b) the same image, described as a sum over generalized

spherical harmonics, up to degree 20; (c) same as (b), up to degree 29; (d), (e) and (f) are the same as (a), (b) and (c), respectively, but the 4ζ fast directions

are shown.

available computational memory and speed. At the ith gridpoint θ i ,

φ i we rewrite eqs (20) and (21),

ε1(θi , φi ) =
L∑

l=0

l∑
m=−l

(
Re

(
τ++

lm

)
Re

(
Y 2

lm(θi , φi )
)

− Im
(
τ++

lm

)
Im

(
Y 2

lm(θi , φi )
))

, (23)
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574 L. Boschi and J. H. Woodhouse

ε2(θi , φi ) =
L∑

l=0

l∑
m=−l

(
Im

(
τ++

lm

)
Re

(
Y 2

lm(θi , φi )
)

+ Re
(
τ++

lm

)
Im

(
Y 2

lm(θi , φi )
))

. (24)

Each gridpoint thus identifies two rows of a matrix B whose entries

coincide with the known values Re(Y 2
lm(θ i , φ i )), Im(Y 2

lm(θ i , φ i )) at

all l, m (a one to one relation between the column index of B and

the couple l, m is established). We then perform a least-squares fit to

find the set of coefficients Re(τ++
lm ), Im(τ++

lm ) that best-fit ε1 and ε2,

implementing the least squares formula via Cholesky factorization

of BT · B (e.g. Press et al. 1992, Chapters 2 and 15; Trefethen &

Bau 1997, Lecture 11). It is remarkable that the problem turns out

to be unstable unless ε1 and ε2 are fit simultaneously.

Naturally, we find generalized spherical harmonic coefficients of

ε3 and ε4 by an analogous procedure, involving harmonics Y 4
lm.

The top panels of Fig. 2 show the 2ζ direction of fastest prop-

agation, according to Laske & Masters’ (1998), for 80 s Rayleigh

waves; the middle panels are obtained after finding the generalized

harmonic coefficients of the same maps, with the procedure outlined

above, up to maximum degree L = 20; the bottom panels illustrate

the result of extending the harmonic expansion to L = 29. Near

the equator (left panels) all maps coincide regardless of the value

of L: an expected result, since Laske & Masters’ (1998) original

parametrization only involved harmonics with l ≤ 12. The right
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Figure 4. 100 s Rayleigh wave ray paths for an arbitrarily chosen source–receiver geometry (Hokkaido to HRV), traced by our algorithm in Trampert &

Woodhouse’s (2003) model. The isotropic, 2ζ and 4ζ terms were all accounted for. Plot A includes the great circle (black curve) connecting source and receiver,

and the ray paths traced in the geographic (green curve) and rotated (red curve) reference frame. In this projection, no differences between the two ray paths

can be observed, and the red curve is entirely hidden under the green one. In plot B, the same ray paths are plotted in the rotated reference frame, whose equator

is identified by source and receiver, to emphasize discrepancies. Still, the two curves are practically coincident.

panels of Fig. 2, on the other hand, prove the inadequacy of a scalar

harmonic parametrization of tensorial quantities in the vicinity of

a pole; not even the degree-29 expansion is sufficient to reproduce

the image’s ill behaviour in the vicinity of the pole: there, Laske &

Masters’ (1998) separate parametrization of ε1 and ε2 causes ζ fast

to become undefined.

Fig. 3 suggests that Ekström (2001) spline parametrization at least

limits the problem in question; the L = 29 generalized harmonic

expansion does not reproduce entirely well Ekström (2001) original

map of the 2ζ fast direction (compare Figs 3a and c), but one must

consider that Ekström (2001) map has a significant high-l compo-

nent also elsewhere in the globe (Becker et al. 2003). Ekström’s

(2001) method will be described in full detail in an article that is

currently in preparation (Ekströom, personal communication), and

we postpone further discussion until after its publication.

4 R AY T R A C I N G

Larson et al. (1998, eqs 3.15 and 3.16) have derived for the ray-

tracing equations the simple form (consistent with the results of

Woodhouse & Wong 1986)

dθ

dφ
= − sin(θ )(tan(ζ ) + ∂ζ ln c)

1 − tan(ζ )∂ζ ln c
, (25)
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Surface wave ray tracing and azimuthal anisotropy 575

dζ

dφ
= sin(θ )∂θ + tan(ζ )∂φ ln c − cos(θ )

1 − tan(ζ )∂ζ ln c
, (26)

where θ denotes colatitude, φ longitude and ζ the ray path azimuth

measured counter-clockwise from east.

Eqs (25) and (26) must be integrated numerically to find the ray

path θ (φ), ζ (φ). Although they are valid in any reference frame,

their numerical integration is only possible so long as θ is a single-

valued function of φ; it is thus convenient to integrate them in a

reference frame where both source and receiver are located on the

equator. (For a ray-tracing algorithm to work regardless of the cho-

sen reference frame, at least three ray-tracing equations have to be

integrated simultaneously.)

We can see the integration of eqs (25) and (26) as a two-point

boundary value problem (e.g. Press et al. 1992, Chapter 17) with φ

as the independent parameter, and with the boundary condition θ =
0 to be satisfied at source and receiver; we use here the fifth-order

Cash-Karp Runge-Kutta method (Press et al. 1992, Chapter 16) to

integrate from source to receiver, and, since the initial azimuth ζ (0)

is unknown, we repeat the integration for a set of closely spaced

values of ζ (0), until the one satisfying the requirement that θ = 0

at the receiver is found. (We speak of ‘multipathing’ when more

than one value of ζ (0) satisfy the boundary conditions.) The search

for ζ (0) can be sped up, for example, through the shooting method

(Press et al. 1992, Chapter 17).

The value of c in the rotated system is most efficiently derived by

finding, before starting to integrate eqs (25) and (26), the general-

ized spherical harmonic coefficients of ε i (i = 1, . . . , 4) in the rotated

frame; this is achieved with a simple dot multiplication between the

corresponding non-rotated coefficient vectors and a rotation opera-

tor (Section 2 and Dahlen & Tromp 1998, Section C.8.6). The value

of c at any location along the ray path is then found, at each step

of the numerical integration of eqs (25) and (26), by a sum over

generalized spherical harmonics in the rotated frame.

The issues of speed and accuracy in the computation of general-

ized harmonics are addressed in Appendix A below.

5 VA L I DAT I O N

We could not benchmark our algorithm by comparison with some

established implementation of surface wave anisotropic ray theory,

because no public-domain software currently exists for this pur-

pose. We have devised a self-consistency test that is highly unlikely

to prove successful unless the code is entirely error-free. The ray

tracing eqs (25) and (26) are valid in any reference frame. Their nu-

merical integration is also possible in any reference frame, so long as

the function θ (φ) that identifies the ray path remains single valued,

which is the case for predominantly east–west ray paths, and so long

as (θ , φ) is sufficiently far from the poles, where, in a non-rotated

frame, the definition of ζ becomes ambiguous.

Given any eligible source-station couple, we can integrate

eqs (25) and (26) both in the rotated and (after modifying the code

slightly) geographical reference frames, and compare the results, as

illustrated, for example, in Fig. 4, for the case of a 100 s surface

wave travelling, in Trampert & Woodhouse’s (2003) map, between

the Hokkaido region in Japan and HRV station in Massachusetts; in

Fig. 4(b) ray paths derived from the two approaches are compared in

the rotated reference, and only a latitudinal band less than one degree

away from the source-station great circle is shown, to emphasize dis-

crepancies. Minor differences between the two curves result from

differences in the Runge-Kutta stepsizes, which are independently

determined according to the Cash-Karp Runge-Kutta method, and
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Figure 5. Finishing latitude (in degrees) of ray paths calculated in Ekström’s

(2001) (red crosses) and Trampert & Woodhouse’s (2003) (black squares)

100 s Rayleigh wave propagation models, with (y-axis) versus without

(x-axis) azimuthal anisotropy, from a set of randomly generated source-

station couples.

change during integration (Press et al. 1992); otherwise, the two ray

paths can be considered coincident.

We have successfully repeated this exercise for a number of ran-

domly chosen source-station couples, with latitude of both source

and station ≤45◦, and source-station azimuth between 50◦ and 130◦,

or 230◦ and 310◦ (i.e. predominantly east–west).

6 C O N C L U S I O N S

Generalized spherical harmonics provide the most natural

parametrization of azimuthally anisotropic maps of surface wave

phase velocity. Only in a generalized spherical harmonic description

can the direction of fastest propagation be adequately represented

throughout the globe, and discrete (pixel, splines) or scalar spher-

ical harmonic parametrizations are likely to lead to non-physical

singularities near the poles of the reference frame (Figs 1 and 3).

The generalized spherical harmonic parametrization is not

less practical than discrete (pixel, splines) ones; coefficients of

anisotropic maps in a rotated reference frame are found through

a simple matrix multiplication of the coefficient vector; the θ and

φ derivatives of the harmonics are known analytically; the resolu-

tion (the highest spatial frequency of lateral heterogeneities that can

be described by a set of basis functions) does not change laterally,

which is not the case for pixels or splines, and which might have

a non-negligible effect on tomographic applications (Trampert &

Woodhouse 2003).

We have implemented and validated a new surface wave ray-

tracing algorithm, designed for generalized spherical harmonic

parametrizations, and we have shown how any surface wave map

can be converted to our format. This completes the work of

Trampert & Woodhouse (2003), who applied the generalized

spherical harmonic parametrization to tomographic mapping of

anisotropic surface wave velocity anomalies.
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Figure 6. Squared amplitude anomaly with respect to a spherically sym-

metric earth model, derived with versus without azimuthal anisotropy, from

both Ekström’s (2001) (red crosses) and Trampert & Woodhouse’s (2003)

(black squares) models, for the same source-station couples as Fig. 5.

Two preliminary applications of our algorithm are illustrated in

Figs 5 and 6.

Following Tape (2003), we employ the ‘finishing latitude’ (i.e. the

latitude 90◦ − θ (�) of a path’s endpoint in the rotated frame) of a ray,

as a simple measure of the cumulative effect of the heterogeneities

(isotropic/anisotropic) it encounters. We have traced rays with and

without taking account of anisotropy, and plotted in Fig. 5 their

finishing latitude found from azimuthally anisotropic maps, against

that found from the isotropic component of the model only; we

have repeated this exercise for both Ekström’s (2001) and Trampert

& Woodhouse’s (2003) 100 s Rayleigh wave velocity maps. The

stronger azimuthal anisotropy mapped by Ekström (2001) results in

systematically larger path anomalies, at least for Rayleigh waves at

100 s period, with an effect comparable to that of purely isotropic

anomalies.

For the same set of source-station couples, we have computed

the squared ratio A2 (given by eq. 41 of Woodhouse & Wong 1986,

where a square root is missing) of 100 s Rayleigh wave amplitude

from our ray-tracing algorithm, versus amplitude of the same waves

in PREM; we have repeated this exercise in the presence and in

the absence of azimuthal anisotropy, and, for each source-station

couple, plotted in Fig. 6 the result of the former calculation against

that of the latter. In agreement with Fig. 5, the anisotropy maps of

Ekström (2001) have a stronger effect on surface wave amplitude.

Discrepancies between published maps of azimuthal anisotropy,

and their relation to observables like arrival angles, phase and am-

plitude anomalies of surface waves, deserve further investigation,

subject of our future work.
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A P P E N D I X A : A L G O R I T H M F O R T H E C A L C U L AT I O N O F G E N E R A L I Z E D

S P H E R I C A L H A R M O N I C S A N D RO TAT I O N M AT R I C E S

The generalized spherical harmonics Y N
lm(θ , φ) (Phinney & Burridge 1973) are:

Y N
lm(θ, φ) = eimφ P N m

l (cos θ ), (A1)

where

P N m
l (μ) = 2−l (−1)l−N

√
(l + m)!

(l + N )!(l − N )!(l − m)!
×

× (1 − μ)−(m−N )/2(1 + μ)−(m+N )/2

(
d

dμ

)l−m

[(1 − μ)l−N (1 + μ)l+N ].

(A2)

Equivalently,

Y N
lm(θ, φ) = eimφd (l)

Nm(θ ), (A3)

where d (l)
N m(θ ) = P N m

l (cos θ ) are the rotation matrix elements employed in the quantum mechanical theory of angular momentum (Edmonds

1960). Regarded as matrices in which N is a row index (−l ≤ N ≤ l) and m is a column index (−l ≤ m ≤ l), d (l)
N m(θ ) are the representations

of rotation group elements corresponding to rotation by θ about the y-axis of the standard coordinate system, in the (2l + 1)-dimensional

representation of the rotation group (see Edmonds 1960). Hence the algorithm described here can also be used to generate the rotation

matrices needed to rotate spherical harmonic coefficients and generalized spherical harmonic coefficients from one set of axes to another. If

the coordinate system is changed by a rotation having Euler angles α, β, γ (Edmonds 1960)the matrix multiplying the vector of expansion

coefficients is given by

D(l)
m′ m(α, β, γ ) = eim′γ d (l)

m′ m(β) eimα. (A4)

This matrix acts on a (column) vector of harmonic coefficients (−l ≤ m ≤ l) for each given value of l.
A formula equivalent to (A.2) is:

d (l)
N m(θ ) =

√
(l − N )! (l + N )!

(l − m)! (l + m)!
(cos θ/2)N+m (sin θ/2)N−m P (N−m, N+m)

l−N (cos θ ) (A5)

where P (α, β)
n (μ) are the Jacobi polynomials.

The algorithm we use to calculate d (l)
Nm(θ ) makes use of the following recurrence relation:√

(l − m) (l + m + 1) d (l)
N m(θ ) = −2 [(m + 1) cot θ − N csc θ ] d (l)

N m+1(θ )

−
√

(l − m − 1) (l + m + 2) d (l)
N m+2(θ ),

(A6)

together with the special case:

d (l)
N l (θ ) = (−1)l−N

√
(2 l)!

(l − N )! (l + N )!
(cos θ/2)l+N (sin θ/2)l−N . (A7)

For a given value of l, eq. (A.7) defines the values in the rightmost column (m = l) of the (2l + 1) × (2l + 1) matrix and the recurrence (A6)

is used to step down in column number (i.e. to the left along each row), to generate the entries in the row. In the first step use is made of the

fact that d (l)
N l+1(θ ) = 0 (the entries to the right of the rightmost column can be taken to be zero) and thus the second term on the right side of

(A6) is absent. In practise, the values in the rightmost column are initially set to 1, and then each row is subsequently rescaled by the value

given by (A7). This allows the algorithm to give correct results in cases where, for example, θ is very small, in which case the off-diagonal

elements of the matrix are also very small and the diagonal elements are close to 1. To avoid numerical overflow and underflow in such cases

an exponent for each element is stored in the initially unused (see below) left side of the matrix and when the values become very small during

rescaling that element is set to 0. It is necessary to iterate towards the diagonals to avoid numerical instabilities, particularly for high values

of l. Thus the recurrence along each row N is continued only as far as the element for which |m| = |N |. The part of the (2l + 1) × (2l + 1)

matrix thus filled is the triangle above the leading diagonal and below the subdiagonal. After the rescaling of the rows, the remainder of the

matrix is filled using the formulae:

d (l)
m N (θ ) = (−1)N−md (l)

N m(θ ) = d (l)
−N −m(θ ), (A8)

which relate elements through reflection in the diagonal and the subdiagonal.

In practise, the entries in the rightmost column are also generated by a recurrence relation starting at the top-right corner (N = −N max, m =
l), again making use of separately stored exponents to avoid potential numerical underflow and overflow. The necessary recurrence relation

follows easily from (A6).

An advantage of the strategy employed by this algorithm over other potential strategies is that the matrix needs to be generated only for the

values of N which are of interest in a given application; only the rows of the matrix corresponding to −N max ≤ N ≤ N max are calculated. The

middle row of the matrix, which is the only row if N max = 0, contains the scalar spherical harmonics Y 0
lm(θ , 0), (−l ≤ m ≤ l). In this study,

when it is required to trace rays through a given anisotropic model, we need N max = 4. To express the expansion coefficients of anisotropic

phase velocity in a rotated coordinate system, on the other hand, the full matrix is needed—that is, N max = l).
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A computer program implementing this algorithm can be obtained from the authors on request.

We do not claim that this algorithm is optimally efficient. If the application requires only small values of N max it may be advantageous to

make use of explicit representations of d (l)
N m(θ ) in terms of d (l)

0 m(θ ) (essentially the associated Legendre functions, used for the calculation of

scalar spherical harmonics) and its derivative with respect to θ . In the present application a more efficient scheme for ray tracing may be to

evaluate the contravariant components of phase velocity (in the sense of Phinney & Burridge 1973) on a grid capturing the ray, for example,

a latitude–longitude grid in the coordinate system in which the source and the receiver are on the ‘equator’. Such grids can be generated very

efficiently as it is necessary to evaluate d (l)
N m(θ ) only once for each value of θ that defines the grid.

See also Masters & Richards-Dinger (1998).
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