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ABSTRACT

Laser Interferometer Space Antenna (LISA) might detect gravitational waves from mergers
of massive black hole binaries strongly lensed by intervening galaxies. The detection of
multiple gravitational lensing events would provide a new tool for cosmography. Constraints
on cosmological parameters could be placed by exploiting either lensing statistics of strongly
lensed sources or time-delay measurements of lensed gravitational wave signals. These lensing
methods do not need the measurement of the redshifts of the sources and the identification of
their electromagnetic counterparts. They would extend cosmological probes to redshift z < 10
and are then complementary to other lower or higher redshift tests, such as Type Ia supernovae
or cosmic microwave background. The accuracy of lensing tests strongly depends on the
formation history of the merging binaries, and the related number of total detectable multiple
images. Lensing amplification might also help to find the host galaxies. Any measurement
of the source redshifts would allow us to exploit the distance-redshift test in combination
with lensing methods. Time-delay analyses might measure the Hubble parameter H, with
an accuracy of >10km s~ Mpc~!. With prior knowledge of Hy, lensing statistics and time
delays might constrain the dark matter density (8§ €2 = 0.08, due to parameter degeneracy).
Inclusion of our methods with other available orthogonal techniques might significantly reduce
the uncertainty contours for €2\ and the dark energy equation of state.

Key words: gravitational lensing: strong — gravitational waves — methods: statistical — cos-
mology: theory.

1 INTRODUCTION

Observation of gravitational waves (GWs) by extragalactic sources
is going to open a new window for astronomy. The space-based
Laser Interferometer Space Antenna (LISA; Danzmann et al. 1996)
is expected to observe up to several hundreds of events per year
(Sesana et al. 2005; Sesana, Volonteri & Haardt 2007; Sesana et al.
2011). The loudest signals at LISA frequencies, f ~ mHz, should
originate from coalescing massive black hole binaries (MBHBs)
with total masses in the range 10°~ 10’ Mg out to z ~ 10-15
(Hughes 2002; Klein, Jetzer & Sereno 2009).

Whenever a new experimental set-up to observe the universe
starts working, new possibilities open up. In a previous paper, we
discussed a potential new channel for LISA science: multiple imag-
ing of GW sources by intervening strong-lensing galaxies (Sereno
et al. 2010). Lensing of distant sources has been long considered as
a test for cosmological theories (Refsdal 1966; Paczynski & Gorski
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1981; Turner 1990; Fukugita et al. 1992; Kochanek 1993; Sereno
2002; Chae 2003; Sereno & Longo 2004; Sereno 2007; Gilmore
& Natarajan 2009; Jullo et al. 2010, and references therein). GW
sources might allow for a variation of these classical tests.

The main novelty of making cosmography with LISA relies on the
property of MBHBs of being standard sirens (Schutz 1986). The
luminosity distance to the inspiral GWs can be determined with
good accuracy, and several methods have already been proposed to
exploit this property (Holz & Hughes 2005; Shapiro et al. 2010;
van den Broeck et al. 2010; Hilbert, Gair & King 2011). The main
idea on the table is to build up the Hubble diagram. The relation
between distance and redshift changes for different cosmological
theories or different cosmological parameters. However, the redshift
cannot be measured from the analysis of GWs alone. The use of
MBHBs as cosmological probes should rely on the identification of
the electromagnetic counterpart in order to measure the redshift of
the source.

Lensing offers an alternative tool. In the classical Hubble dia-
gram, we compare observed distances with theoretical expectations
depending on cosmology and redshift, which has to be measured in
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an independent way. When performing cosmography with lensing,
we compare some quantity inferred from the lensing analysis, which
is in general a combination of cosmological distances, with the the-
oretical expectation, which depends on the cosmological model. To
perform these tests we need either the measured distance to the
source or the redshift. In usual lensing studies of quasars or radio
sources, we exploit the measured redshifts of the sources (Kochanek
1993; Chae 2003). In lensing studies of LISA sources, we should
determine the distances to the sources. The identification of the
electromagnetic counterpart of the signal is then not necessary to
perform the cosmological tests, and we can bypass the weakest link
in the already proposed cosmographic methods with LISA.

The chances of observing multiple images of the same GW source
with LISA are sizeable for a broad variety of formation histories,
ranging from < 40 to 100 per cent for a 5-yr mission according to
the redshift distribution of the sources and their intrinsic signal-to-
noise ratio (S/N; Sereno et al. 2010). It is then worth investigating
what kind of cosmographic tests might be possible with LISA lens-
ing. Strong lensing by ground-based GW detectors was discussed in
Wang, Stebbins & Turner (1996), which considered the constraints
on the amount of matter density in compact lenses as derived from
lensing statistics in the context of advanced Laser Interferometer
Gravitational-Wave Observatory (LIGO)-type detectors. Gravita-
tional lensing of GWs was also considered to measure the relative
transverse velocity of a source-lens—observer system (Itoh, Futa-
mase & Hattori 2009) or to obtain information about the typical
mass of lens objects (Yoo et al. 2007) or as a systematic effect ham-
pering the detection of a very weak primordial GW signal (Seto
2009).

Here, we focus on the LISA mission and its potential to probe
cosmological parameters by strong-lensing methods. In Section 2,
we review some basics of lensing of GWs by galaxies. In Section 3,
we develop a formalism for the computation of probabilities to
detect transient lensing events. In Section 4, we discuss how to
infer the luminosity distance to a multiply imaged GW source.
Cosmological tests based on either lensing statistics or time-delay
measurements of GW sources are introduced in Section 5. Section 6
lists the assumptions made for a plausible lensing scenario, whereas
Sections 7 and 8 contain our forecasting of the lensing test accuracy.
Section 9 is devoted to some final considerations.

As reference model we consider a flat A cold dark matter
(ACDM) model with Qy = 0.3,2, = 0.7 and & = 0.7, where
h is the Hubble constant Hy in units of 100 km s~! Mpc~'.

2 BASICS OF GRAVITATIONAL LENSING

The statistics of gravitational lenses have become a standard tool
for cosmology (Kochanek 1996; Chae 2003; Sereno 2005; Zhu &
Sereno 2008, and references therein). The differential probability
of a background source to be lensed by a foreground galaxy with
velocity dispersion between o and ¢ + d o in the redshift interval
from z4 to zg + d zq4 is

d’t dn c

dr
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where s, is the cross-section of the deflector and d n/d o is the
differential number density of the lens population.

2.1 Lens mass density

Departures from spherical symmetry and details of the radial mass
distribution of the lens galaxy induce a relatively small effect on

lens statistics and are unimportant in altering the cosmological limits
(Maoz & Rix 1993; Kochanek 1996; Mitchell et al. 2005). We can
therefore approximate early-type galaxies as singular isothermal
spheres (SISs). Two images of a compact source aligned with the
lens form at xy =y £ 1 if y < 1, with flux magnification 4
= (1/y) £ 1. Here, x and y are the image and the source angular
position normalized to the angular Einstein radius, 8¢ = 47 (o /c)?
Dy /Ds. The angular diameter distances between the observer and
the deflector, the deflector and the source and the observer and the
source are, respectively, Dy, Dys and D.

In GW lensing, at variance with the usual lensing, we directly
observe the waveform, which is amplified by AL = /. The
delay between the arrival time of the images, A r =7_ — 14, is
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2.2 Lens population

The lens distribution can be modelled by a modified Schechter
function of the form (Sheth et al. 2003)
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where « is the faint-end slope, 8 is the high-velocity cut-off and n,
and o, are the characteristic number density and velocity dispersion,
respectively. An evolving galaxy density can be parametrized with
1,(z) = nyo(l + 2" and o, = 0, 9(1 + 2)*»* (Chae 2007). For
a constant comoving number density, v, = Vy+ = 0.

2.3 Detection thresholds and bias

Lens discovery rates are affected by the ability to observe multiple
images (Kochanek 1993; Sereno et al. 2010). For optically luminous
quasars or radio sources, lensed systems are detected by selecting
resolved multiply images; intrinsic variations show up with a time
delay in each image. On the other hand, due to the low angular
resolution and the transient nature of the sources, lensed GWs in
the LISA context are detected as repeated events in nearly the same
sky position.

The source position is limited to an allowed range, ym, <y <
Ymaxs for which multiple images are detectable. The upper limit
Ymax depends on the lens mass, the arrival time, the threshold S/N
(S/Ny,) and the unlensed amplitude of the source (S/Niy,) (Sereno
et al. 2010).

We require that lensing amplification pushes the signal of the
S/Ng
S/Nint

second image above threshold, A_ > , which limits the source

position to
N
(S/Nm> o
S/ Nim

The minimum y,,;;, excises the region near the central caustic where
wave optics is effective and the interference pattern covers the mul-
tiple images. For the LISA waveband, geometric optics is adequate
and we can put yn,;, = 0 (Sereno et al. 2010).

For our forecasting we deal with known properties of the source
population so that we do not need to correct for the magnification
bias (Fukugita & Turner 1991; Fukugita et al. 1992; Sereno et al.
2010).

C)

Y = Ymax =
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3 STATISTICS FOR TRANSIENT PHENOMENA

Due to the finite duration of the survey, lensing statistics of transient
phenomena involve accounting for some missing events due to time
delay (Oguri et al. 2003). The cross-section of a SIS for a time-
limited survey is

Ser(za, 0) = TR / f(At(y: 0, za))ydy, &)
~ Ymin

where Rg = Dy 6§ is the Einstein radius and f(A ?) is the fraction of

lenses with time delay A 7 that can be observed. For lasting images,

as for quasars or radio sources, f(A 1) =1,

S:r = ZWR]% (ylzxax - yrznin) . (6)

We consider a uniform distribution of arrival times during the
time survey, T, If the monitoring is continuous, then

At

fan =1- T (M

for A t < Ty, and O otherwise (Oguri et al. 2003). The resulting
cross-section weighted for the arrival time distribution is
2 At,
3 Tsur
In the following, we specialize to the case of geometric optics
(ymin = 0)

The differential probability d 7 /d z4 for a source to be lensed by
a deflector in the interval between z4 and zy + dzq can be obtained
integrating the differential probability in equation (1). For each lens
redshift z4 there is a maximum velocity dispersion o ,,x such that
Ser(0) < 0 for 0 > 0 max. In practice, o .y 1S quite large (>0,) and
the corresponding galaxy density is almost null, dn/do (0 max) ~
0. When integrating the differential optical depth, we can then take
O max — 00. We get

Ser = 7'[D§9é (yr%lax - yl?nin) - (ygnax - y‘i‘i“) : ®)

r 5]
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where I" is the Euler y function.

The total optical depth for multiple imaging of a compact source,
T, gets a quite compact form for a constant comoving density,
v = Vo+ = 0. After integration,

®

=

_F . _1T[B+a)/Bl At,
= [Ds(1 + z9)]” Yimax {1 7T @ +a)/B] Tsur] , (10)
where

163 o.0\* I'[(4+a)/B]
F, = 167 n*‘()( - ) g (11)
and
at, =327 (22)" 221 4 2 (12)

The optical depth 7 is a function of the source redshift z; and
intrinsic S/N (through yn.x); the cosmological parameters enter in
the angular diameter distances.

4 DISTANCE DETERMINATION

In a seminal paper, Schutz (1986) showed that measurements of the
amplitude, frequency and frequency derivative of the inspiralling
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massive binary black holes could yield a precise estimate of their
luminosity distance. This would allow us to measure the distance
in a novel way, making GW sources potentially powerful standard
sirens.

Each harmonic of the inspiral polarizations is inversely propor-
tional to the distance, p o 1/Dy, where Dy is the luminosity dis-
tance. For well-modelled systems, LISA will be able to measure
the luminosity distance (but not the redshift) to MBHBs with 1-10
per cent accuracy. The measurement precision is largely limited by
pointing error and weak-lensing distortion (Lang & Hughes 2006;
Klein et al. 2009). Gravitational lensing will randomly magnify or
demagnify the MBHB signal, and thus systematically modify any
distance measurement (Holz & Hughes 2005).

LISA should detect independently two above-threshold signals
in the same sky position in order to claim lensing. The two lensed
waveforms are identical, apart from an overall factor connected to
lensing amplification. For each image p o« AL /Dy, where the suffix
refers to the lensing parity of the image and not to the polarization.

The distance to the lensed source can be inferred in the following
way. The ratio of the amplifications A_ /A, can be measured from
p—/p+, and one can directly infer the source position, y,

y_ 1=lA /Al
1+|A_JA,|

Once the source position is known, one can quantify the amplifica-
tion of each image, A, and estimate the luminous distance. As a
consistency check of the lensing hypothesis one should find that the
value of y does not depend on the frequency as is the case instead
for the amplitudes. Since lensing amplification can be expressed
in terms of the scaled lens position y, knowledge of the lens ve-
locity dispersion is not needed. Such methodology can be easily
generalized to lenses more complex than the simple SIS.

The method above is effective only with regard to strong lensing
by a single deflector plane. Weak lensing is well recognized as a
potential noise in the determination of the distance to GW sources.
Amplification due to large-scale structure cannot be filtered out and
will still contribute the main uncertainty in the determination of Dy .
There are proposals on how this effect could be, at least partially,
corrected. Convergence maps reconstructed using galaxy flexion in
addition to shear might help to reduce the lensing-induced distance
errors by up to 50 per cent (Shapiro et al. 2010; Hilbert et al. 2011).
A Gaussian distance error with a standard deviation of 10 per cent
was then added to each luminosity distance to simulate the effect
of weak-lensing errors. A more realistic error should grow with
redshift, but we also tested that results are nearly unaffected by
assuming a 20 per cent error.

Magnification or demagnification of signals affects strong-
lensing observables too (Asada 1998). However, the universe is
quite homogeneous at the high redshifts (z = 10) probed by LISA
sources (Wang 1999). Magnification effects are also somewhat
washed out after averaging over many independent lines of sights
(Sereno, Piedipalumbo & Sazhin 2002). Lensing statistics are then
not heavily affected by the lensing dispersion in the distance—
redshift relation (Covone, Sereno & de Ritis 2005).

13)

5 COSMOLOGICAL TESTS

The lensing optical depth depends on both source redshift and dis-
tance. In standard lensing statistics of radio sources or quasars, the
source redshift is known and we can estimate the distance assum-
ing a given cosmological model, i.e. a given set of cosmological
parameters. Dealing with lensing statistics of observed GWs, we
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know the luminosity distance to the source and we have to work the
other way: given a set of cosmological parameters, we estimate the
source redshift and, on turn, the angular diameter distance.

The analyses of the GW-form allow us to infer the luminosity dis-
tance to the source, whereas lensing quantities are written in terms
of angular diameter distances. In the general theory of relativity,
luminosity and angular diameter distances are related through the
Etherington principle, Di, = (1 + z)*D. Throughout, luminosity
distances are denoted by the suffix ‘L’. It is also useful to remember
that in a flat universe, Dys = Ds — Dya(1 + z4)/(1 + z).

5.1 Lensing statistics

The likelihood function for lensing statistics can be written as
(Kochanek 1993; Chae 2003; Mitchell et al. 2005)

Ny NL
L) = [ =[] prs» (14)
i=1 j=1

where {€2;} is the set of cosmological parameters that characterizes
the model under investigation. Lens statistics do not depend on the
Hubble constant (Kochanek 1993; Chae 2003). Ny is the number of
multiple-imaged sources and Ny is the number of unlensed sources.
P is either dr /dzg for known lens redshift or T for unknown z4. In
principle, a test based on lens statistics can then be performed even
without lens identification.

For given values of the cosmological parameters, the relation be-
tween z and Dy is unique. Given the measured D, , we can compute
the angular diameter distances and Ly, for each set of cosmological
parameters.

The main source of statistical uncertainty is by far the Poissonian
noise due to the small number of events. For our forecasting about
the accuracy of lensing statistics, the error on Dy, which is of the
order of <10 per cent, is then negligible.

5.2 Time delay

It has been long known that time-delay measurements can be used to
constrain cosmological parameters (Refsdal 1966; Saha et al. 2006).
If we measure A t and constrain the lens properties with either
lensing or other follow-up imaging or spectroscopic observations,
we can get an estimate of D, = Dy Dys /D and in turn constrain the
cosmological parameters. Differently from lens statistics, we need
the lens redshift to carry out cosmography with time delays. For
each measured A ¢, we can write a x 2 contribution as

DObs - D 2 DObs — D 2
2 7. _ A At L L
Xay (Qishyzg) = < (;D2?S > + ( 5 DO% ) . 15)

In the above equation, the superscript ‘Obs’ denotes the measured
value of the corresponding quantity. DY is measured with the lens-
ing analysis; the observed value of the luminosity distance D is
obtained from the waveform investigation. D4, and D are func-
tions of the cosmological parameters and the source redshift. Due
to the uncertainty § DP* on DP, the source redshift is not perfectly
known and has to be considered as a model parameter. The second
term in the right-hand side of equation (15) shapes the information
on the luminosity distance obtained from the analysis of the signal
as a Gaussian prior. Once data analysis of LISA data is really per-
formed, best estimates of luminosity distances to mergers are going
to be determined together with their probability distributions. More
realistic priors for the time-delay likelihood should be shaped after
these computed distributions.

The likelihood built on time delays is

Np
1
EAr(Qi;h;Zs,i)O(exp{_zZXiU} ’ (16)
J

where the sum extends on the lensed systems. The unknown source
redshifts {zsy,-} are N additional model parameters. The cosmo-
graphic approach with time delays is not affected by Poissonian
noise, whereas the error on Dy is an important source of statistical
uncertainty. The main cosmological dependence is on the Hubble
constant, since distances o 1/H,.

6 A SCENARIO FOR LENSING

We tested the predictive power of the lensing methods on a class of
flat cosmological models with dark matter, 2y, and a dark energy
fluid whose equation of state is parametrized by a constant equa-
tion of state w. Within such a context, our ‘true’” ACDM model is
described by €y = 0.3 and w = —1. A state-of-the art analysis of
the cosmic microwave background radiation with informed priors
can constrain the Hubble constant with an accuracy <2 per cent
(Komatsu et al. 2011) and estimates should be even more tight
by the time LISA is flying. Such error is much smaller than the
uncertainties on D and D%,

We then consider two frameworks for cosmological parameter
forecasting. Either we focus on the determination of the Hubble
constant or we take H, as known and concentrate on what lensing
with LISA can do for the dark sector.

6.1 Deflectors

A proper modelling of the distribution of the lensing galaxies is cen-
tral in lensing statistics. Early- or late-type populations contribute
to the lensing statistics in different ways, and type-specific galaxy
distributions are required. As a conservative approach, we did not
consider lensing by spiral galaxies. Late-type galaxies contribute no
more than 20-30 per cent of the total lensing optical depth, and the
knowledge of their number density is plagued by large uncertainties
(Chae 2003; Mitchell et al. 2005).

In our analysis we used the results of Choi, Park & Vogeley
(2007) who analysed data from the Sloan Digital Sky Survey Data
Release 5 to derive the velocity dispersion distribution function
of early-type galaxies. They modelled the galaxy population as a
modified Schechter function, with n, o = 8.0 x 1073 h* Mpc =3, 0,0
=144+ 5kms™", @ =2.49 £ 0.10 and 8 = 2.29 + 0.07. We keep
constant the comoving number density of galaxies.

Even if the LISA angular resolution is quite poor, ~30 arcmin
to 1°, lenses are expected to be very massive and luminous. In
case the deflector can be identified and its redshift measured, the
corresponding Einstein radius can be estimated and one can accu-
rately determine the angular position of the source. This way one
could identify the source (more precisely its images) as well with
follow-up observations and thus get also its redshift.

6.2 Sources and lenses

The number of detectable multiple images depends on the build-up
of formation history (Sereno et al. 2010). Massive mergers at high
redshifts can produce very loud GW emission with a noticeable op-
tical depth to lensing but are expected to be quite rare. On the other
hand, minor mergers might be more frequent but with a lesser lens-
ing probability due to intermediate redshift and lower intrinsic S/N.
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Figure 1. PDFs for the redshift of the three lensed sources. PDFs have
been obtained by repeatedly extracting a triple from the intrinsic redshift
distributions of the simulated LISA sources. Each source was weighted by
its optical depth to lensing.

The total lensing probability balances the total number of events,
from few dozens to several hundreds detectable coalescences per
year (Sesana et al. 2011), and their intrinsic loudness. Throughout,
the monitoring time for LISA is fixed to T, = 5yr. The expected
number of lensing events goes from <1 to 4 (Sereno et al. 2010).

We considered two scenarios for the abundance of LISA sources.
In a first pessimistic case, we derived cosmological constraints from
a single lensing detection. In a more optimistic scenario, three
multiple-image events might be seen by LISA. This is the case
for example for some hybrid formation histories, such as the ‘Hy-
bridII” model of Sereno et al. (2010). Mergers were generated in the
reference ACDM model. For each source we computed the lensing
probability. As a threshold for detection we took S/Ny, = 8. A mean
of ~2.8 detectable lensing events is expected.

We extracted the properties of the three lensed sources from
their parent distribution, weighting each source by its optical depth
to lensing. The probability density function (PDF) for the source
redshifts (sorted according to their z) is plotted in Fig. 1. According
to the mean properties of the distributions, we fixed the three source
redshifts for our forecasting at z; >~ 4.5,6.2 and 9.3.

The corresponding lens redshifts were extracted as the zq which
maximizes dr /dzq for a given z; (see Fig. 2). We got zg >~ 0.9, 1.0
and 1.0. Since the cosmological volumes started shrinking with
redshifts, the peak of the probability is always at zg ~ 1, with
no regard to the source redshift. Together with the expectation of

dr/dz, [1073]

Zd

Figure 2. Differential lensing probability for different source redshifts.
Probabilities were obtained through equation (9). Intrinsic S/N are 400, 12
or 36 for zg = 4.5, 6.2 or 9.3, respectively.
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being very massive, their moderate redshift might make the lenses
identifiable.

For the pessimistic scenario, we computed the most likely lensing
configuration in the case of only one lensing event detected in the
‘HybridII’ formation history. The source is at z; ~ 7.4 and the
corresponding deflector is at zq >~ 1.0.

7 FORECASTING FOR UNKNOWN SOURCE
REDSHIFTS

For our forecasting, we exploit different priors according to whether
we focus on either H or Q) and w. When we deal with the Hubble
constant, the accelerated expansion of the Universe is assumed to
be propelled by a cosmological constant, so that w = —1 is our delta
prior for the dark energy. As far as the dark matter is concerned,
as a first case we assume no previous information, i.e. a prior in
the form of a uniform distribution, P(Qy) = 1 for 0 < Qy < 1.
Alternatively, we shape results from other methods as a very mild
Gaussian prior centred on the ‘true’ value €2y = 0.3 and with a quite
large dispersion oq,, = 0.1. The prior on / is a flat distribution non-
null between 0 and 2.

When we focus on the dark sector, H| is kept to its reference value.
As prior for the cosmological parameters we consider a uniform
distribution in the square 0 < Qy < land —2 < w < 0.

7.1 Lensing statistics

Lensing statistics of GW sources might constrain the dark matter
density and the dark energy equation of state. It does not depend on
H,. We simulated the measurements of the luminosity distances by
adding a Gaussian noise of 10 per cent to the true value. However,
since the Poissonian error is the main one, even by doubling the
error on the distances the inferred posterior probability of €y and
o from lensing statistics is unaffected in any sensible way.

The likelihood was computed in a grid. The posterior probabil-
ity function for the cosmological parameters is plotted in Fig. 3.

00— T 1

—0.5)

T
3 —1.0Hh
Ll
R}
1
1

15l
'

-2.04

Qu

Figure 3. Posterior probability for 2y and w as derived from lensing statis-
tics in the case of three lensed sources. Grey-shadowed regions or thick
contours (full, dashed or long-dashed lines) refer to lensing statistics either
exploiting information on lens redshift or assuming zq to be unknown. Con-
tours are plotted at fraction values exp (—2.3/2),exp (—6.17/2) and exp
(—11.8/2) of the maximum, which would denote confidence limit region of
1o, 20 and 30 in a maximum likelihood investigation, respectively.
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Lensing statistics can be performed considering either known or
unknown lens redshifts. Precise information on zg makes the up-
per limit on the estimated €2); much stronger. The accuracy on Qy
is ~0.24 for three lenses with measured redshift.

7.2 Time delays

The distance combination D,, is the basic source of information
on cosmology from time-delay measurements. The uncertainty in
the measurement of D4, depends on the accuracy with which we
can measure the time delay and the lens mass distribution. For
transient events, time delay can be measured with great accuracy
(Oguri et al. 2003) so that the main source of error is from the
uncertainties in the mass distribution of the deflector. Lenses are
expected to be at redshifts zg ~ 1 and to be very luminous so
that follow-up spectroscopy and photometry should be performable.
Further constraints come from the lensing modelling exploiting
image positions and time delay. An uncertainty on D,, of the order
of 20 per cent is a conservative assumption; an uncertainty of 10
per cent is more optimistic and more adequate to the case of a deep
follow-up.

When considering time delay, together with the cosmological
parameters we have to consider as unknown model parameters the
redshifts of the lensed sources. For our optimistic (pessimistic) lens-
ing scenario, we have to add three (one) unknown source redshifts
to the cosmological parameters to characterize the model.

7.2.1 Hy

Forecasting for the Hubble constant is summarized in Table 1. The
quoted uncertainty on H, is the standard deviation of the marginal-
ized posterior probability density. For each case, the parameter
space (Hy and 2y plus the source redshifts) was explored running
four Markov chains of 2.5 x 10* samples each. Chain convergence
was checked through the Gelman and Rubin ratio (Gelman & Rubin
1992; Lewis & Bridle 2002), which was well under 1.05 for each
parameter.

Table 1. Predicted uncertainty on the Hubble constant (column 5) un-
der different hypotheses for the number of observed lenses (column 1),
uncertainty on Da, (column 2), previous knowledge of the lens redshifts
(column 3) and prior on Q) (column 4; a Gaussian prior centred on 0.3
with dispersion of 0.1 or a uniform distribution between 0 and 1).

Lenses  8Da¢/Da; (per cent) Zs P(Q2m) Sh
3 10 Known Qv =03+0.1 0.11
3 10 Known 0<Qu=<l1 0.21
3 10 Unknown Qyu=03+0.1 0.12
3 10 Unknown 0<Qu=<1 0.23
3 20 Known Qu=03+£0.1 0.11
3 20 Known 0<Qu<=<1 0.24
3 20 Unknown Qy=03+0.1 0.20
3 20 Unknown 0<Qm <1 0.26
1 10 Known Qu=03+0.1 0.13
1 10 Known 0<Qum<1 0.30
1 10 Unknown QM =03£0.1 0.18
1 10 Unknown 0<Qu<1 0.31
1 20 Known Qu=03+0.1 0.14
1 20 Known 0<@m<1 0.31
1 20 Unknown QM =03+0.1 034
1 20 Unknown 0<Qm<1 0.38

Even a mild prior on Q2 is very helpful in breaking the degen-
eracy between H, and the density parameters. With three lenses
modelled with deep follow-up observations, an accuracy of 64 ~
0.12 can be achieved. This figure is larger than the present uncer-
tainty, but it would provide a direct test on H, without need for
calibration or distance scale ladder in an unexplored redshift range,
z < 10. Even a single lens detection could provide interesting limits,
6h ~ 0.20 or 0.26 according to the a priori degree of knowledge on
the dark matter density.

7.2.2 Dark energy

Time-delay measurements might also constrain dark matter and
dark energy. In Fig. 4, D, is plotted as a function of the cosmo-
logical density parameters. Lensing by LISA exploits very distant
sources. The dependence on cosmological parameters is then some-
what orthogonal to tests exploring a lower redshift range, such as
observations of Type Ia supernovae. This can be seen by comparing
constant contours of either D4, or luminosity distance in the region
of interest of the parameter space.

Since the total number of lenses is small, lensing methods alone
sample only a restricted redshift interval and are not able to break
the degeneracy in the Q2y—w plane. As can be seen in Fig. 4, even
with an extremely accurate but single measurement of D,,, the
degeneracy on the dark energy equation of state would be severe.
A better observational accuracy could only reduce the confidence
regions which would still be very elongated along the degeneracy
direction. Even with a very small error on D 4,, the accuracy on Q2
is still affected by the degeneracy. The degeneracy can be broken
only by combining with other tests exploring different redshifts.

Together with €, and w we have to consider as unknown model
parameters the redshifts of the lensed sources. For our optimistic
lensing scenario, we have to add three unknown lens redshifts to the
two cosmological parameters. We explored the parameter space by
running four Markov chains of 5 x 10* samples each. This was more
than enough to reach convergence, with the Gelman and Rubin ratio
(Gelman & Rubin 1992; Lewis & Bridle 2002) being well below
1.01 for each parameter. The prior for each source redshift was
uniform and non-zero for z; > z4.
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Figure 4. Dx;(zq = 1, z = 7) (thick lines) and Ds(zs = 1) (thin lines) as a
function of the cosmological parameters. Values of D, (Ds) are normalized
to their value at Q) = 0.3 and w = —1 and run from 0.7 (0.8) to 1.6 (1.4)
in steps of 0.1. The Hubble constant is fixed to & = 0.7.
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Figure 5. Marginalized posterior probability for Qy and w as derived from
three measured time delays. Grey-shadowed regions are for (SD(K'[’S /Dg‘t’S =
10 per cent; thick (full, dashed or long-dashed) lines are for SD?,’S /Dgtt’S =
20 per cent. Contour values are as in Fig. 3.

The marginalized posterior probability function for 2y and
is plotted in Fig. 5. After marginalization, the uncertainty on 2y
is ~0.11 or ~0.21 for 8D /DY = 10 or 20 per cent, respec-
tively. Since the redshift range is the same and the time-delay test
is still based on angular diameter distances, the degeneracy in the
parameter space is similar to lensing statistics.

A less optimistic expectation for the accuracy in the determina-
tion of the luminosity distances translates into worse cosmological
constraints. However, the effect is not so dramatic. Assuming a
20 per cent relative error on Dy, the uncertainty on €2y after
marginalization would be ~0.12 or ~0.22 for DS /DS = 10
or 20 per cent.

The time-delay test might be effective even for a single detected
lensing event, when we get § 2y ~ 0.18 for D> /DS = 10 per
cent.

7.3 Lensing statistics and time delays

To consider lensing statistics and time delays at the same time, we
used a combined likelihood £ o Lgu La,. The parameter space
was explored as in the time-delay case. The marginalized posterior
probability function for 2y and w is plotted in Fig. 6. We assumed
that the Hubble parameter is known. The confidence regions are
more confined than for lensing statistics or time delay alone, but the
equation of state is still undetermined. The marginalized probability
for Q2 is plotted in Fig. 7.

The dark matter density parameter might be determined with
an accuracy of ~0.10 (0.18) for three lenses and D0 /DQ% =
10 per cent (20 per cent). Due to the small number of lenses, the
final accuracy is mainly determined by the time-delay test.

8 FORECASTING FOR KNOWN SOURCE
REDSHIFTS

In a best case scenario, source redshifts might be determined. In
fact, lensing might help in finding the electromagnetic counterparts
of the GW signals. Together with the GWs from the coalescence,
galaxies harbouring the merging black holes should be lensed as
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Figure 6. Marginalized posterior probability for Qy and w as derived from
both lensing statistics and time delays in the case of three lensing events.
Regions and contours are as in Fig. 5.

N

w

PDF
[\

—_—

(=)

04 0.6 08 1.0
Qur

S T
(e
(=]
[}

Figure 7. Marginalized posterior probability for €2\ as derived from both
lensing statistics and time delays in the case of three lensing events. The thick
and the thin lines are for SDSA)?S / Dg’;‘“ = 10 and 20 per cent, respectively.

well. Multiple optical images of the host galaxy might then be de-
tected in the vicinity of the deflector. The fluxes of the images should
be magnified in agreement with the relative amplification of the GW
signals, and their position relative to the lens should match the pre-
diction from the analysis of the lensed waveforms (see Section 4).
Follow-up observations should make the photometric or spectro-
scopic determination of the source redshift possible. In principle
and very speculatively, the source redshift might be estimated even
if only the most magnified optical or radio image of the host galaxy
is brought overthreshold. In such a case, the lensed galaxies could
not be found as usual by comparing the spectra or the multiband
fluxes of nearby galaxies, but we should look for a galaxy whose
distance from the lens is in agreement with the prediction from the
lensing analysis of the lensed GWs.

However, the inclusion of magnification ratios in lensing anal-
yses is problematic for two main reasons (Saha et al. 2006): first,
optical flux ratios may be contaminated by microlensing and dif-
ferential extinction; secondly, relative magnifications along dif-
ferent directions are weakly coupled with time delays, because
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Figure 8. Posterior probability for Qy and w as derived from three mea-
sured time delays of sources with known redshifts. Grey-shadowed regions

are for aDgt;s /Dg’;S = 10 per cent; thick lines are for SD(XES /Dgt;s = 20 per

cent. Contour values are as in Fig. 5.

magnification measures the local second derivative of the arrival
time. Future searches for host galaxies should account for this.

Once the redshift of a lensed source is known, one can strengthen
the lensing tests by exploiting the distance—redshift comparison for
the source, as usually done when building the Hubble diagram. The
additional information on the source redshift makes the lensing con-
straints on the cosmological parameters much tighter. To estimate
the impact of known source redshifts on our forecasting, we remade
the analysis of Section 7 by fixing the z, values to their actual values.
Now, the only free parameters to be inferred are the cosmological
parameters. In our studio-case, we are left with just two parameters
(either Hy and 2y or 2 and w).

Constraints from the analysis of time delays get much stronger.
The second term in the right-hand side of equation (15), which
before stood to account for an uncertainty and could only help
to estimate the source redshift, provides now an additional strong
constraint on the cosmological parameters. Posterior probability
densities were computed on a two-dimensional grid.

Uncertainties on 4 range from 0.1 to 0.3 (see Table 1). Once the
source redshift is fixed, even a single lensing event can provide
very interesting bounds. The expected accuracy on H, from lensed
GWs compares very well with more standard results from time-
delay analyses. Saha et al. (2006) obtained §# ~ 0.1 for 10 lensing
galaxies.

Results for time-delay constraints on dark matter and dark en-
ergy are represented in Fig. 8 for the case of three lenses and in
Fig. 9 for one lens. Thanks to the additional constraint from the
distance-redshift relation, confidence regions in the Q2y—w plane
are much more restricted than for unknown source redshifts. Due to
the degeneracy, the accuracy improvement for the determination of
Q is not so significant. With three lenses, the uncertainty on Qy
is ~0.08 or ~0.09 for §DQ /DY = 10 or 20 per cent, respectively.
Improvement is more significant for the case of only one lens, when
the uncertainty on Qy is ~0.11 or ~0.12 for 8D /DY = 10 or
20 per cent, respectively.

The lensing statistics test is not very helpful in such an optimistic
scenario. Combined posterior probability densities are plotted in
Fig. 10. Confidence regions are very similar to those obtained ex-
ploiting only the time delays.
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Figure 9. Posterior probability for Qy and  as derived from one measured
time delay of a source with known redshift. Regions and contours are as in
Fig. 8.
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Figure 10. Posterior probability for €2 and w as derived from both lensing
statistics and time delays in the case of three lensing events with known
source redshifts. Regions and contours are as in Fig. 8.

9 CONCLUSIONS

The serendipitous discovery of multiple images of GW sources by
LISA might offer new possibilities for astronomical investigations.
Gravitational lensing has been long considered as a tool for cos-
mography. Here, we considered the peculiarities of cosmological
tests with lensed GW sources. Both time-delay measurements and
lensing statistics were investigated, which required to develop a
treatment of lensing probabilities for transient events.

A couple of features of the discussed methods deserves partic-
ular attention. The main appeal of lensing methods is that they do
not need the electromagnetic counterpart to be identified. Classical
lensing tests can be developed with knowledge of either the source
redshift or the distance. This is different from the usual cosmo-
graphic approach proposed for LISA, which attempts to build up
the Hubble diagram from the measured distances to the binaries.
Inspiral GWs encode the luminosity distance to a binary, but they
do not encode the source cosmological redshift. To build the Hub-
ble diagram, the electromagnetic counterpart of the GW emission
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needs to be localized independently to determine the event redshift.
Lensing methods can overcome such a shortcoming.

LISA sources are expected to lie at very high redshifts. Even if the
accuracy of the proposed lensing tests is not competitive with the re-
sults from Type Ia supernovae or the cosmic microwave background,
the explored redshift range would be quite unique and cosmological
parameters might be tested with direct methods out to z < 10. The
proposed methods are still based on cosmological distances but, due
to the distinct redshift range explored, are orthogonal to other tests
at lower z.

This circumstance could make very interesting their use in com-
bination with other techniques. Let us just consider a still very mild
constraint on the dark energy equation of state, whose upper allowed
limit is lowered from O to —0.5 in the following example. In our
optimistic scenario (three lenses, §Dx;/Da, = 10 per cent), the ac-
curacy on the dark matter parameter from the time-delay test would
improve from § €y 22 0.11 to 0.09 for unknown source redshifts or
from § 2 >~ 0.08 to 0.06 for known z values.

At the very least, even in a pessimistic scenario with just one
lens the cosmological concordance model might be tested in an
independent context and the Hubble constant would be directly
measured up to very high redshifts. The ability to identify the lens
is crucial to the discussed methods. For high-redshift sources with a
small S/N, the sky location accuracy might be quite poor, ~1 deg?.
Several hundreds of sources are expected to be localized in such
error boxes. However, to claim lensing, two above-threshold signals
have to be observed in the same sky position. By combining the
statistical estimated positions for the two sources, the final error box
should be reduced by half. Lensing theory can also contribute to
candidate selection. Deflectors should be around redshift 1, where
we should consider a comoving volume of ~1-3 x 10'© Mpc?.
Lenses are also expected to be very massive, which makes them
rare. Considering a numerical density of >10~* Mpc~3, we expect
just a dozen of lens candidates in the LISA error box.

In a more optimistic scenario, the lensed signal might be very
loud, which would allow a much more precise determination of the
source position. In a best case scenario, lensing amplification of the
source could be enough to make the electromagnetic counterpart of
the source detectable in both images.

The certified accuracy of cosmological lensing methods with
LISA can be obtained only with a good knowledge of the galaxy
formation history and merging rates. This is the essential ingre-
dient to estimate the number of multiple lensing events expected
to be detected by LISA (Sereno et al. 2010). Nevertheless, even
in pessimistic scenarios cosmological tests based on gravitational
lensing of GWs by LISA seem to offer a new and independent way
to investigate the properties of dark matter and dark energy and
fix the global distance scale. From an alternative point of view, if
we are very confident on the estimates of cosmological parameters
as obtained from independent tests, lens number counts with LISA
might be used to constrain galaxy formation and evolution up to
zS 3.
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