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Abstract. High-energy radiation and particles profoundly affect circumstellar disk gas and
solids. We discuss stellar high-energy sources and summarize their effects on circumstellar disks.
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1. Circumstellar disks subject to high-energy radiation and particles
Stellar X-rays may heat circumstellar disks to > 1000 K at AU distances, as suggested

by, e.g. H2 2.12μm (Bary et al. 2003) and CO fundamental+overtone emission (Najita
et al. 2003). X-rays may also ionize disks more efficiently than cosmic rays at similar
distances, thus driving accretion through the magnetorotational instability (Glassgold
et al. 1997). They may further dominate disk photoevaporation in the 10–40 AU range,
resulting in mass loss rates of order 10−9 M� yr−1 (Ercolano et al. 2009).

What high-energy photons do reach the disk surface at all? Average neutral gas col-
umn densities around classical T Tauri stars (CTTS, NH ≈ 1021 − 1022 cm−2 , Güdel
et al. 2007a) typically exceed those of weak-lined T Tauri stars, suggesting excess gas
located relatively close to the star. This gas easily absorbs EUV radiation, as do disk
winds (Hollenbach & Gorti 2009), questioning the role of EUV radiation in CTTS disks.
Absorption may be even more severe in some strong accretors where accretion streams
seem to absorb all X-rays below ≈ 1 − 2 keV (Güdel et al. 2007b).

Increasing X-ray absorption with increasing disk inclination provides, nevertheless,
direct evidence for disk ionization (Kastner et al. 2005). Further support comes from
fluorescent 6.4 keV Kα emission from “cold” iron at the disk surface during strong flares
(Imanishi et al. 2001). Fluorescence may reach extremely high levels in protostars even
outside any obvious flaring (Skinner et al. 2007).

The [Ne ii] 12.81μm line, frequently detected in Spitzer spectra (Pascucci et al. 2007),
may be another diagnostic for X-ray/EUV disk irradiation (Glassgold et al. 2007). A sta-
tistically significant correlation with the stellar X-ray luminosity is, however, dominated
by scatter (Figure 1a); obviously, a number of further parameters (e.g., disk properties)
are relevant. For example, the presence of jets leads to a large increase in [Ne ii] luminosity
(Fig. 1b) as also shown in spatially resolved observations (van Boekel et al. 2009).

Glauser et al. (2009) found dust crystallinity to anti-correlate with the central star’s
X-ray luminosity. Although X-rays carry insufficient momentum to induce lattice dis-
placements, energetic (several keV) particles in the stellar wind are held responsible for
amorphizing circumstellar dust.

2. What high-energy sources?
Apart from “traditional” magnetic coronae, additional high-energy sources have been

identified. While accretion “suppresses” coronal X-rays by a factor of ≈ 2 (Telleschi et al.
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Figure 1. Left (a): [Ne ii] luminosity vs. X-ray luminosity for CTTS; jet sources are shown
by diamonds, disks without jets by circles (filled: detections; open: upper limits). Right (b):
Kaplan-Meier estimator for the [Ne ii] luminosity of CTTS disks without jets, CTTS jet sources,
and transition disks. From Güdel et al. (2009).

2007), it adds a “soft excess” at cool (coronal) temperatures (Güdel & Telleschi 2007),
perhaps due to an interaction between accretion streams and the corona. High densities
inferred from X-ray line triplets (Kastner et al. 2002) have successfully been modeled in
terms of shocks at the footpoints of accretion streams (Günther et al. 2007). CTTS jets
also emit X-rays close to the star (Güdel et al. 2007b). Their “lamp-post” arrangement
may provide ideal illumination of disk surfaces, avoiding absorption by accretion streams.

Large flares are of interest as they produce hard X-rays and may eject more energetic
particles. Disks may thus be ionized more efficiently to deeper levels (Ilgner & Nelson
2006). However, as the energetics of X-ray emission appear to be dominated by the
large population of small flares (Audard et al. 2000), hard X-rays should be continuously
present, adding as yet unrecognized ionization power to the circumstellar environment.
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