doi: 10.1017/S1368980007360965

Public Health Nutrition: 10(12A), 1584-1595

The impact of iodised salt or iodine supplements on iodine status during pregnancy, lactation and infancy

Michael B Zimmermann*

Laboratory for Human Nutrition, Swiss Federal Institute of Technology Zürich, ETH Zentrum, Schmelzbergstrasse 7, LFV E19, CH-8092 Zürich, Switzerland

Abstract

Objectives: Monitoring of iodine status during pregnancy, lactation and infancy is difficult as there are no established reference criteria for urinary iodine concentration (UI) for these groups; so it is uncertain whether iodized salt programs meet the needs of these life stages.

Design and Subjects: The method used in this paper was: 1) to estimate the median UI concentration that reflects adequate iodine intake during these life stages; and 2) to use these estimates in a review of the literature to assess whether salt iodisation can control iodine deficiency in pregnant and lactating women, and their infants.

Results: For pregnancy, recommended mean daily iodine intakes of 220-250 μg were estimated to correspond to a median UI concentration of about 150 μg l⁻¹, and larger surveys from the iodine sufficient countries have reported a median UI in pregnant women \geq 140 μg l⁻¹. Iodine supplementation in pregnant women who are mild-to-moderately iodine deficient is beneficial, but there is no clear affect on maternal or newborn thyroid hormone levels. In countries where the iodine intake is sufficient, most mothers have median breast milk iodine concentration (BMIC) greater than the concentration (100-120 μg l⁻¹) required to meet an infant's needs. The median UI concentration during infancy that indicates optimal iodine nutrition is estimated to be \geq 100 μg l⁻¹. In iodine-sufficient countries, the median UI concentration in infants ranges from 90-170 μg l⁻¹, suggesting adequate iodine intake in infancy.

Conclusions: These findings suggest pregnant and lactating women and their infants in countries with successful sustained iodised salt programs have adequate iodine status.

Keywords Iodine Pregnancy Lactation Urinary iodine Breast milk iodine

Introduction

Iodine deficiency (ID) causes a broad range of adverse effects on health resulting from the inadequate production of thyroid hormone that are collectively termed ID disorders (IDD). An ID during pregnancy increases the risk of spontaneous abortion, low birth weight and infant mortality¹⁻⁵ as well as raising the risk of neuromotor, behavioural and cognitive impairment in the offspring $^{6-8}$. Even a mild-to-moderate ID during pregnancy can cause transient hypothyroidism, can increase the thyroid volume in mothers and their infants, and may impair cognition⁹⁻¹³. During infancy, an adequate amount of iodine is required for normal mental development^{12,13}; a meta-analysis estimated that ID in a population lowered mean IQ scores by 13.5 points¹⁴. It is for these reasons that IDD control programmes should focus on pregnancy, lactation and infancy, the stages in life when iodine requirements are at their greatest.

However, the assessment of iodine status during these life stages is challenging. The main indicator in a

population of a response to salt iodisation is the median urinary iodine (UI) concentration¹⁵, but there are no established reference values for the median UI concentration during pregnancy, lactation or infancy. A median concentration of iodine in the range of $100-199 \mu g l^{-1}$ in the urine of school-aged children and in non-pregnant, non-lactating adults indicates an adequate iodine intake and optimal iodine nutrition¹⁵. This range has not been validated to reflect an adequate iodine status in pregnant and lactating women or in infants and, as discussed below, if applied to these target groups is likely to underestimate the true degree of ID. Most large systematic surveys of ID have been done in school-aged children or in the general adult population, and have only rarely included pregnant or lactating women, or infants. Many of the studies on pregnant women and infants have comprised only small numbers, and sampling has rarely been representative, making it difficult to draw firm conclusions. Despite this, there is some concern over whether iodised salt programmes meet the needs of these life stages. Therefore, the general objectives of this paper are to:

Iodine nutrition in pregnancy, lactation and infancy

- 1. Review the current recommended iodine intake in pregnancy, lactation and infancy.
- 2. Estimate the median UI concentration that reflects an adequate iodine intake during these life stages.
- Use the estimates of an adequate UI concentration to assess whether current approaches to salt iodisation and iodine supplementation can control ID in pregnant and lactating women, and in their infants.

Methods used to estimate the requirement for iodine

There are three main ways of estimating how much iodine is required to meet daily needs.

Iodine turnover

The daily uptake and turnover of radioactive iodine can be used to estimate the requirement for iodine, provided that the subjects being tested have an adequate iodine status and are euthyroid $^{16-18}$.

Iodine balance

Several studies have estimated iodine requirements from balance experiments^{19–23}, but they have serious limitations. This is mainly because many ingested substances contain unrecognised iodine, so that a strict control of iodine intake is difficult to achieve. Because of the need to consider the iodine content of the thyroid gland, in addition to iodine intake and excretion, even during prolonged balance studies, an equilibrium may not clearly be established¹⁹.

Urinary iodine concentration and thyroid size

Since >90% of dietary iodine eventually appears in the urine 23,24 , the concentration of iodine in urine is an excellent indicator of recent iodine intake. An increase in thyroid size is the earliest clinical sign of impaired iodine nutrition and reflects an adaptation to the threat of hypothyroidism.

Definitions of recommendations for iodine intake

The United States Institute of Medicine (IOM) has proposed several categories of reference intake²⁵. The recommended dietary allowance (RDA) is the average daily iodine intake sufficient to meet the iodine requirement of about 97% of healthy individuals in a particular life stage. It is intended to be used as a goal for the daily intake of iodine by individuals.

The RDA is based on the estimated average requirement (EAR) which is the daily iodine intake, defined by specific criteria, that meets the requirement of half of the healthy individuals in a particular life stage. It assumes a normal distribution of intake. The RDA is derived from the EAR after taking into consideration the estimated variability in individual requirements. The EAR is not meant to be used

to define the intake of individuals, but can be used for groups.

The adequate intake (AI) can be given if there is not enough scientific evidence to calculate an EAR. For example, the AI of iodine during infancy is based on observed mean iodine intakes by healthy, full-term, breast-fed infants in areas where iodine intake is known to be sufficient. The AI is expected to meet or exceed the amount of iodine needed in almost all individuals in the specified population group, and can be used as a goal for individual intake.

According to the WHO, UNICEF and the ICCIDD, the recommended iodine intake is the amount estimated to cover the needs of nearly all healthy individuals in the specified life stage¹⁵.

Iodine requirements

Non-pregnant women

Studies of iodine turnover, radioiodine uptake by the thyroid and balance studies of euthyroid adults have suggested that the average daily requirement for iodine is $91-96 \,\mu g$ per day^{16,17,20}. There is no evidence to suggest that the average iodine requirement of adults varies with age²⁵. Thus, the IOM have set the EAR of iodine by women ≥ 14 years at 95 μg per day²⁵. The RDA, which is defined as the EAR plus twice the coefficient of variation of intake of the population and then rounded to the nearest 50 μg , is $150 \,\mu g$ day⁻¹ for females ≥ 14 years²⁵. This amount agrees with the WHO, UNICEF and the ICCIDD recommended daily iodine intake for non-pregnant women of $150 \,\mu g$ per day¹⁵. These amounts are summarised in Table 1.

Pregnant women

The iodine requirement during pregnancy increases for three reasons: (1) an increase in the production of thyroxine (T₄) by the mother to maintain her euthyroid state and transfer thyroid hormone to the foetus; (2) the transfer of iodine to the foetus, particularly in late gestation and (3) an increase in renal iodine clearance (RIC) by the mother^{26,27}. The amount of iodine accumulated by the infant at the time of delivery has been used to estimate the daily foetal iodine uptake. The average iodine content of the thyroid gland of a newborn is $50-100\,\mu\mathrm{g}$, with >95% daily iodine turnover^{28,29}. Balance studies have found that the average iodine retention of full-term infants is $6.7 \,\mu\mathrm{g\,kg}^{-1}$ per day³⁰, so the mean retention of iodine by a healthy foetus with a weight of 3 kg would be about $22 \mu g \, day^{-1}$. An estimated daily iodine uptake by the thyroid gland of about 75 μ g day⁻¹ by the foetus and an EAR of 95 μ g day⁻¹ for non-pregnant women would yield an EAR of $170 \,\mu\mathrm{g}\,\mathrm{day}^{-1}$ during pregnancy. The balance studies of Delange et al. suggest an EAR of $22 + 95 = 117 \,\mu g$ per day³⁰. Dworkin *et al.* found that five pregnant women were in iodine balance when

Table 1 The intake of iodine by women of child-bearing age, pregnant and lactating women, and
infants recommended by the WHO, UNICEF and the ICCIDD 15 and by the United States Institute of
Medicine ²⁵ .

Authority	Life stage	Basis of amount	$\mu \mathrm{g}\mathrm{day}^{-1}$
WHO, UNICEF, ICCIDD	Children 0–59 months Women >12 years Pregnant and lactating women		90 150 200
United States Institute of Medicine	Infants 0–6 months Infants 7–12 months Women ≥ 14 years Women ≥ 14 years Pregnancy Pregnancy Lactation Lactation	AI AI EAR RDA EAR RDA EAR RDA	110 130 95 150 160 220 209 290

AI, adequate intake; EAR, estimated average requirement; RDA, recommended daily allowance.

consuming about $160 \,\mu\mathrm{g}\,\mathrm{day}^{-1}$, with no significant differences pre- and post-partum¹⁹. Several authors have measured the thyroid volume during pregnancy and correlated it with the UI concentration and the effects of iodine supplements. In the studies of Romano *et al.*³¹ and Pedersen *et al.*⁹, total daily iodine intakes of about 200 and $250-280 \,\mu\mathrm{g}$, respectively, during pregnancy prevented an increase in thyroid volume, while in the study of Glinoer¹⁰, a total daily iodine intake of about $150 \,\mu\mathrm{g}$ was insufficient to prevent an increase in thyroid size. On the basis of these data, the IOM set the EAR at $160 \,\mu\mathrm{g}\,\mathrm{day}^{-1}$ for pregnancy in women ≥ 14 years, and set the RDA, estimated to be 140% of the EAR rounded to the nearest $10 \,\mu\mathrm{g}$, at $220 \,\mu\mathrm{g}$ per day²⁵. The WHO, UNICEF and the ICCIDD recommend a daily iodine intake of $200 \,\mu\mathrm{g}\,\mathrm{day}^{-1}$ for pregnant women, a value 10% lower than the RDA¹⁵ (see Table 1).

Lactating women

If a lactating woman produces an average of 0.78 and 0.601 of milk per day during the first and second 6 months of infancy, respectively²⁵, and if the mean breast milk iodine concentration (BMIC) is $146 \,\mu \mathrm{g} \,\mathrm{l}^{-1}$ in iodine-sufficient women in the USA, the average daily loss of iodine in breast milk has been estimated to be about $114 \,\mu \mathrm{g}$ per day²⁵. When this amount is added to the EAR of non-pregnant women of 95 $\,\mu \mathrm{g} \,\mathrm{day}^{-1}$, the EAR for lactating women ≥ 14 years is estimated by the IOM to be 209 $\,\mu \mathrm{g}$ per day²⁵. The RDA is thus 140% of the EAR rounded to the nearest $10 \,\mu \mathrm{g}$, which is 290 $\,\mu \mathrm{g} \,\mathrm{day}^{-1}$ of iodine. The WHO, UNICEF and the ICCIDD recommend a daily iodine intake of $200 \,\mu \mathrm{g} \,\mathrm{day}^{-1}$ by lactating women¹⁵, which is similar to the EAR but 30% lower than the RDA (see Table 1).

Infancy (0–12 months)

Since no functional criteria are available that reflect iodine intake in infants, recommended intakes are based on the mean iodine intake of healthy full-term infants fed on human milk. The IOM based their recommendation on the median BMIC of women in the United States of America (USA) in the early 1980s, which was $146 \mu g \text{ per l}^{25}$. Since

the iodine intake of the population of the USA was relatively high at this time 32 , this BMIC is at the upper end of the range of $78-167~\mu g\,l^{-1}$ reported for women in iodine-sufficient countries (see later discussion). Based on estimates of the mean daily volume of breast milk, the mean amount of iodine secreted in human milk is estimated to be about $115~\mu g$ per day 25 . Balance studies of full-term infants given $20~\mu g\,kg^{-1}$ day $^{-1}$ of iodine found that the total amount excreted was $12.7~\mu g\,kg^{-1}$ day $^{-1}$ and the amount retained was $7.3~\mu g\,kg^{-1}$ per day 30 . If the reference body weight of an infant aged 6 months is $7~kg^{25}$, the daily amount of iodine excreted by an infant in positive balance is $90~\mu g$. Considering these data, the recommended AI of iodine for infants aged 0-6 and 6-12 months has been set at $110~and~130~\mu g\,day^{-1}$, respectively, by the IOM 25 . The WHO, UNICEF and the ICCIDD recommend a daily iodine intake of $90~\mu g\,day^{-1}$ for infants 15 , which is 20-30% lower than the RDA (see Table 1).

Iodine intakes in pregnancy and the effects of iodine supplementation

Pregnancy

The WHO, UNICEF and the ICCIDD recommend using the median UI concentration to assess the iodine nutrition of populations¹⁵. The daily iodine intake can be extrapolated from the UI if it is assumed that girls aged 7–15 years produce 0.9 ml urine h⁻¹ per kg³³, and adult women produce about 1.51 per day³⁴. If it is assumed that the mean bioavailability of iodine is 92%, the recommended daily iodine intakes during pregnancy of 200^{15} and $220 \,\mu g^{25}$ would correspond to a UI concentration of $120-135 \,\mu g \, l^{-1}$ in pregnancy. As pregnancy may occur in adolescence, particularly in developing countries, a 15-year-old girl weighing some 50 kg with a daily iodine intake of 200 or $220 \,\mu g$ would have a UI concentration of $170-190 \,\mu g \, l^{-1}$.

However, during pregnancy, it may be less valid to estimate the iodine intake from the UI concentration due to an increase in the glomerular filtration rate³⁵ and,

possibly, an increase in RIC³⁶. If the RIC increases during pregnancy, the daily iodine intake extrapolated from the UI concentration in pregnancy would be lower than that in non-pregnancy. However, the evidence for an increase in RIC and a consequent decrease in the plasma inorganic iodide (PII) concentration during pregnancy is equivocal. The study of Aboul-Khair et al. suggested an increase in RIC using an indirect method³⁶, while Liberman et al. directly measured the PII concentration and reported no significant difference in PII or UI concentration both preand post-partum in 16 women living in a population with a high iodine intake³⁷. The iodine balance study of Dworkin et al. also found no differences in the UI concentration both pre- and post-partum¹⁹. Owing to the lack of clear data, it is uncertain whether pregnancy per se significantly increases the UI concentration. Therefore, in this review, the above extrapolations from UI concentration to daily iodine intake proposed by the IOM²⁵ were considered valid, and the recommended daily intakes of 200–220 μ g of iodine^{15,25} were considered to correspond to a median UI concentration of $125-135 \mu g l^{-1}$ in adult pregnant women, although a higher median of about 170- $180 \,\mu\mathrm{g}\,\mathrm{l}^{-1}$ may be more appropriate if pregnancy occurs in early adolescence. Although more data are clearly needed, a median UI concentration in pregnant women \geq 140 μ g l⁻¹ has been used in this review as an indicator of adequate iodine intake.

Table 2 compares the UI concentration of pregnant women with the general population in countries with iodine intakes ranging from excessive to deficient. Most studies analysed spot urine samples and few had an adequate power to classify iodine status based on a median UI concentration from such samples³⁸. Few studies have compared the UI concentration of pregnant women with a control group of non-pregnant women. As shown in Table 2, the UI concentration in pregnant women and in the general population generally appear to be similar. However, this may be due to a preponderance of studies in areas where there is low or marginal iodine sufficiency, as several studies in iodine-sufficient countries have found a significantly higher median UI concentration in pregnant women³⁹⁻⁴³. All of the large studies in iodine-sufficient countries have reported a median UI concentration in pregnant women of $\geq 140 \,\mu \text{g l}^{-1}$. This includes countries where all salt is iodised (Switzerland and Iran), and countries where dietary iodine comes from either iodised salt or from other food sources (USA, UK, Sri Lanka and Sweden). If a median UI concentration $\geq 140 \,\mu \text{g} \,\text{l}^{-1}$ in pregnant women is taken to represent a mean iodine intake $\geq 200 \,\mu\mathrm{g}\,\mathrm{day}^{-1}$, then it appears that the iodine status of pregnant women is adequate in countries where the general population is adequately covered either wholly or partially by iodised salt programmes.

Studies of thyroid size in pregnant women support these data. As shown in Table 3, in countries affected by mild or moderate ID (Ireland, Germany, Belgium, Italy and Denmark), the thyroid volume increases 15–31% during pregnancy, while in iodine-sufficient countries (Finland, USA and The Netherlands), there is little or no increase in thyroid volume during pregnancy⁴⁴. This suggests that iodine status is adequate in pregnant women in iodine-sufficient countries with two important caveats. First, the question remains unanswered of whether RIC changes enough during pregnancy to confound the usual estimation of iodine intake based on the median UI concentration. Second, iodine-containing supplements taken during the prenatal period may have led to an increased median UI concentration in pregnant women living in countries with an iodised salt programme⁴⁵.

Iodine supplements during pregnancy and their impact on iodine status

In Europe, 13–50% of women receive iodine-containing supplements during pregnancy⁴⁵. In a study of 511 pregnant Swiss women in 1999, although 70% received a prenatal supplement, only 13% received a supplement containing iodine; the median UI concentration in the women taking iodine-containing supplements was 194 vs. $130 \,\mu \text{g} \,\text{l}^{-1}$ in non-supplemented women⁴². After a 33% increase in the concentration of iodine in salt, a study of 276 pregnant Swiss women in 2004 reported a median UI concentration of $254 \,\mu \text{g} \,\text{l}^{-1}$; there was no significant difference in the median UI concentration of women taking iodine-containing supplements compared with those who were not⁴³.

In a recent study of 109 pregnant German women, the median UI concentration was $181 \,\mu g \, g^{-1}$ creatinine (cr.); 58% were taking iodine-containing supplements and had a significantly higher UI concentration (204 $\mu g \, g^{-1}$ cr.) than women who were not (148 $\mu g \, g^{-1}$ cr.)⁴⁶.

In earlier studies of women in Denmark⁴⁷ and Germany⁴⁸, the median UI concentration was significantly higher in pregnant women supplemented with iodine than women not supplemented: 58 vs. 35 μ g day⁻¹ in Denmark and 85 vs. 59 μ g day⁻¹ in Germany.

In Hungary, about 50% of pregnant women receive a supplement containing iodine. In those women taking supplements containing $\geq 150 \, \mu g$ iodine per day, the median UI concentration was $115-130 \, \mu g \, g^{-1}$ cr., compared with $57-68 \, \mu g \, g^{-1}$ cr. in women who were not supplemented⁴⁹.

In a cross-sectional study in Denmark, the use of iodine supplements of $150 \, \mu g \, day^{-1}$ and thyroid function were assessed in 144 pregnant women and their newborns⁵⁰. At full term, the median UI concentration of supplemented mothers was $60 \, \mu g \, l^{-1}$ compared with $35 \, \mu g \, l^{-1}$ in unsupplemented mothers. In the supplement group, the concentration of thyroglobulin (Tg) in both maternal and cord blood was significantly lower,

Table 2 Urinary iodine concentration^{1–3} of pregnant women in longitudinal (L) and cross-sectional (C) studies and, if available, in the general population or in non-pregnant controls. The urinary iodine concentration in the post-partum period is shown if a longitudinal study continued after delivery.

Reference	Iodine status Country	n	L or C	Trimester of pregnancy or time post-partum (PP)	Urinary iodine concentration	General population or controls
	lodine excess					
37	Chile	19	L	1	594 ¹	
		19	L	2	469 ¹	
		19	L	3	786 ¹	
		19	L	3 months PP	459 ¹	
	lodine sufficient					
67	Iran	403	С	1,2,3	$186 - 338^2$	193-312 ²
40	Sri Lanka	_	С	1	181 ²	147 ²
			CCC	2	136 ²	
			С	3	154 ²	
68	Sweden	51	L	1	180 ¹	
		51	L	2	170 ¹	
		51	L	3	145 ¹	_
42	Switzerland	511	С	2, 3	138 ²	115 ²
69	Switzerland	153	С	1,2,3	205 ³	91 ³
43	Switzerland	281	С	1,2,3	254 ²	129 ²
40	UK	_	00000	1	125 ²	73 ²
			С	2	170 ²	
			С	3	147 ²	
70	USA	290	Č	1,2,3	148 ¹	130 ¹
11,41	Singapore	253	С	3	124 ²	98 ²
		230	L	1	107 ²	
				2	116 ²	
				3	124 ²	
				6 weeks PP	105 ²	
				3 months PP	104 ²	
	lodine deficient		_		2	1
71	Belgium	334	C	1,2	50 ²	50-75 ¹
		334	С	2,3	45 ²	
		136	С	1	56 ²	
		133	С	2	50 ²	
•	Demonstr	49	C	3	50 ² 51 ²	E01
9	Denmark	26	L	2	51 ⁻ 40 ²	50 ¹
		26	L	3	30 ²	
		26	L	1 week PP	50 ²	
		26	L	26 weeks PP	50 58 ²	
70	Гианаа	26	L	52 weeks PP	58 50 ²	ro 001
72	France	306	L	1	50 ⁻ 54 ²	50-80 ¹
20.40	Ireland	224	L	3	135 ²	70 ²
39,40	ITEIATIU	38 38	L L	1 2	125 ²	70
		38	L	3	123 122 ²	
52	Italy	67	C	3 1,2	74 ³	
53 31	Italy Italy	18	C	3	50 ¹	
54,73		10	L	1,2,3	33 ¹	46 ¹
54,75 51	Italy Germany	70	L	1,2,3	55 ³	40
Ji	Gennally	70 70	L	11 days PP	50 ³	
46	Germany	109	C	1,2,3	181 ³	
49	Hungary	119	C	1,2,3	57 ³	
49 74	New Zealand	35	L	1,2,3 and 3,6,12 months PP	24-52 ¹	24-47 ¹
75	Nepal	1021	C/L	1,2,3	96 ¹	<u>-</u>
. •	. 10pui	1028	C/L	13 weeks PP	61 ¹	
76	Sudan	47	L	3	38 ²	76 ²
	Judan	47	Ĺ	3 months PP	51 ²	70
			Ĺ	6 months PP	30 ²	
		47 47	Ĺ	9 months PP	63 ²	

 $^{^{1}\}mu g \, day^{-1}; \, ^{2}\mu g \, I^{-1}; \, ^{3}\mu g \, g^{-1}$ creatinine.

and the free T_4 concentration was significantly higher, than in unsupplemented women 44 . Although the maternal TSH concentration was lower in the supplement group, the cord TSH concentration was 27%

higher in the supplement group⁵⁰, suggesting that in iodine-deficient areas, the foetal thyroid gland may be particularly sensitive to the inhibitory effect of iodine.

lodine status Trimester (T) of pregnancy Reference or time post-partum (PP) Change in thyroid size Country n **lodine sufficient** 78 7-21 No or small increase during pregnancy Finland 1.2.3 T 79 No increase during pregnancy Netherlands 10 Before pregnancy, 1,2,3 T USA 80 16 3 T and 6 months PF 13% decrease after parturition **lodine deficient** 1,2,3 T and 6 months PP 71 33-172 Belgium 18% increase during pregnancy 60 30% increase during pregnancy 10 Belgium 1.3 T 81 2,3 T and 3,6,12 months PP 20 20% increase during pregnancy Denmark 24-26 9 Denmark 2,3 T and 3,6 months PP 31% increase during pregnancy 82 Ireland 14-95 1,2,3 T and 6,12 months PP 15% increase during pregnancy Italy 18 16% increase during pregnancy

Table 3 Changes in thyroid size measured by ultrasound during pregnancy in iodine-sufficient and -deficient countries.

Table 4 shows results from six randomised, controlled trials of iodine supplementation involving 450 pregnant European women with mild-to-moderate ID.

Romano *et al.*³¹ gave 120–180 μ g iodine as iodised salt daily or gave a placebo control beginning in the first trimester to healthy pregnant women (n=35, median UI concentrations in the two groups 31 or 37 μ g l⁻¹). In the group treated with iodine, the median UI concentration increased threefold and thyroid volume did not change³¹. In the controls, there was no change in the UI concentration, and had a 16% increase in thyroid volume³¹. Treatment had no effect on the maternal TSH concentration.

Pedersen *et al.*⁹ randomised 54 pregnant women to receive either $200 \, \mu g$ iodine per day as a solution of potassium iodide or no supplement from 17 weeks of pregnancy to full term. The median UI concentration increased from 55 to $90-110 \, \mu g \, l^{-1}$ in the treated group. The thyroid volume of women increased 16% in the treated group compared with 30% in the controls⁹. The concentration of Tg and TSH in women, and the concentration of cord Tg, were significantly lower in the treated group than in the controls⁹. No significant differences were found between groups in terms of the concentration of T_4 , T_3 and T_4 in maternal or cord blood⁹.

Table 4 Randomised, controlled trials of iodine supplementation during pregnancy in mild-to-moderate iodine-deficient countries of Europe and the urinary iodine concentration before and after treatment.

		Urinary iod	Urinary iodine concentration		
Reference	lodine dose $(\mu g day^{-1})$	Before treatment	After treatment		
53	50	65 ¹	128 ¹		
10	100	36 ²	$80-90^2$		
31	120-180	37 ³	100 ³		
52	150	50 ²	105 ²		
9	200	55 ²	90-110 ²		
53	200	91 ¹	230 ¹		
51	230	53 ¹	104 ¹		

 $^{^{1}\}mu \mathrm{g}\,\mathrm{g}^{-1}\,\mathrm{cr.};\,^{2}\mu \mathrm{g}\,\mathrm{I}^{-1};\,^{3}\mu \mathrm{g}\,\mathrm{day}^{-1}.$

In a double-blind, placebo-controlled trial, Glinoer et al.10 supplemented 120 pregnant women who had a median UI concentration of $36 \mu g l^{-1}$ and biochemical criteria of excess thyroid stimulation, with 100 µg iodine per day or gave a placebo control from around 14 weeks of pregnancy to full term. The treatment had no significant effect on the concentration of maternal or cord T3, fT4 and the T₃/T₄ ratio¹⁰. The treated women had a significantly higher UI concentration, a smaller thyroid volume and a lower concentration of TSH and Tg when compared with controls¹⁰. The newborn children of the treated group also had significantly higher UI concentration, a smaller thyroid volume and a lower Tg concentrations when compared with controls¹⁰. There was a 14% increase in the cord serum TSH concentration in the treated group, but it was not statistically significant.

Liesenkötter *et al.*⁵¹ reported a quasi-randomised, controlled trial of 230 μ g iodine per day given from the eleventh week of pregnancy to full term in 108 pregnant women with a median UI concentration of $53 \mu g g^{-1}$ cr. and a goitre rate of 42.5%. The median UI concentration increased to $104 \mu g g^{-1}$ cr. in the treated group, and the median thyroid volume was significantly lower in the newborns of the treated women compared with controls (0.7 vs. 1.5 ml, respectively)⁵¹. Treatment had no significant effect on the concentration of maternal TSH, T₃, T₄, Tg or on the thyroid volume, and had no effect on the concentration of TSH in the newborn⁵¹.

In a placebo-controlled, double-blind trial, Nohr *et al.*⁵² gave to 66 pregnant women who had antibodies to antithyroid peroxidase (TPO-Ab) a multi-nutrient supplement containing 150 μ g iodine per day or a placebo control from the eleventh week of pregnancy to full term. The median UI concentration was significantly higher in the treated women at full term than in the controls, but there were no differences in the concentration of maternal TSH, fT₄ or Tg between groups⁵². There was no difference in the prevalence of anti-thyroglobulin antibodies (Tg-Ab) or TPO-Ab, and no differences between groups in the prevalence or severity of post-partum thyroid dysfunction (PPTD), defined as an abnormal TSH concentration in the

post-partum period. However, 12/20 (60%) treated women developed PPTD compared with 11/24 (46%) controls, and failure to detect a significant difference in the prevalence of PPTD may have been due to a type II error.

In a prospective, randomised, open-label trial, Antonangeli *et al.*⁵³ supplemented 67 pregnant women who had a median UI concentration of $74 \,\mu g \, g^{-1}$ cr. with 50 or 200 $\,\mu g$ iodine per day from 18–26 weeks of pregnancy to 29–33 weeks. The median UI concentration was significantly higher in group given 200 $\,\mu g$ iodine per day than in the group given 50 $\,\mu g$ iodine per day (230 vs. $128 \,\mu g \, g^{-1}$ cr.).⁵³ However, there were no differences between groups in the concentration of maternal fT₄, fT₃, TSH and Tg or in thyroid volume, and no differences in the prevalence of TPO-Ab, Tg-Ab or PPTD.

In summary, in all of these trials, iodine supplements significantly increased the maternal UI concentration. The doses of iodine varied between 50 and $230 \,\mu\mathrm{g}\,\mathrm{day}^{-1}$, and the data indicate no clear dose– response relationship for the concentration of UI, TSH, Tg, thyroid hormones or in terms of thyroid volume. Iodine supplements during pregnancy generally appear to be safe; there was no increase in the trials the prevalence of thyroid autoimmunity in mothers, or in the prevalence or severity of PPTD. However, the sample sizes were small and more data, particularly from TPO-Ab + women, would be valuable. In three of the five trials that measured the thyroid volume of mothers, supplementation was associated with a significantly reduced thyroid size. The studies also suggest that an increase in newborn thyroid volume and the concentration of Tg can be prevented or minimised by iodine supplementation. Although less consistent, the data also suggest that the concentration of maternal TSH is generally lower (within the normal reference range) with supplementation. Supplementation has little or no impact on the concentration of total or free thyroid hormones in mothers and newborn children. There are no clinical data on the effect of supplementation on birth weight or prematurity, and no data on long-term outcomes, such as maternal goitre, thyroid autoimmunity or child development.

Iodine intakes during lactation and urinary iodine and breast milk iodine concentrations

Since the mammary gland is able to concentrate iodine, the iodine supply to the newborn *via* the breast milk may be maintained even in the face of a maternal ID^{54,55}. This may help explain why, in areas where there is an ID, BMIC is often greater than expected based on the UI concentration of lactating mothers^{55,56}. The BMIC is strongly influenced by the mothers' iodine intake⁵⁸.

In the USA, Gushurst *et al.*⁵⁷ found that the median BMIC in women who consumed uniodised salt was $113 \,\mu g \, l^{-1}$, while the median concentrations in women who consumed low or high amounts of iodised salt were 143 or $270 \,\mu g \, l^{-1}$, respectively.

Several studies have compared the BMIC before and after supplementation with iodised oil or potassium iodide, or with untreated controls.

Pretell *et al.*⁵⁹ injected women with 950 mg iodine as iodised oil. The median BMIC at 18-36 months postpartum was $70 \mu g l^{-1}$ compared with $2 \mu g l^{-1}$ in mothers not receiving treatment.

In Algeria, Chaouki and Benmiloud⁶⁰ gave 240 mg iodine as oral iodised oil either 1–3 months before pregnancy or in the first or third trimester. At delivery and 6 month post-partum, the mean BMIC ranged from 520 to $559 \,\mu \mathrm{g} \, \mathrm{l}^{-1}$ and from 307 to $346 \,\mu \mathrm{g} \, \mathrm{l}^{-1}$, compared with 307 and $260 \,\mu \mathrm{g} \, \mathrm{l}^{-1}$ in untreated women.

In 147 Danish mothers, the median BMIC on the fifth day post-partum was significantly higher $(57 \,\mu g \, l^{-1})$ in those receiving supplementation with $150 \,\mu g \, day^{-1}$ of oral iodine, compared with women who were not supplemented $(34 \,\mu g \, l^{-1})^{61}$.

In Germany, 60 mothers who received $200 \,\mu\text{g}\,\text{day}^{-1}$ of oral iodine had a significantly higher mean iodine concentration in breast milk $(76 \,\mu\text{g}\,\text{l}^{-1})$ than untreated controls $(55 \,\mu\text{g}\,\text{l}^{-1})^{62}$.

Although increasing the iodine intake of iodinesufficient women can further increase BMIC⁵⁷, an iodine intake by an infant that is greater than requirements will simply be excreted in the urine. Thus, iodine requirements during lactation should be based on infant balance studies rather than on the measured but variable amount of iodine excreted in breast milk by women in iodine-sufficient countries. Based on the balance studies of Delange et al.30, the full-term infant's requirement for iodine is about $90 \,\mu\mathrm{g}\,\mathrm{day}^{-1}$, and this is the intake recommended by the WHO, UNICEF and the ICCIDD¹⁵. Based on a mean breast milk volume of 0.781 day⁻¹ in the first 6 months of infancy²⁵, and assuming that 95% of the iodine in breast milk is absorbed, a BMIC of $\geq 120 \,\mu \text{g} \,\text{l}^{-1}$ should cover the infant's iodine requirement of 90 μ g day⁻¹ until weaning foods are begun. Most infants begin weaning by the second half of the first year of life, and some of the iodine requirement during that period will be met from weaning foods. Semba and Delange⁵⁸ proposed that a potential indicator of iodine status in a population could be the proportion of lactating women whose BMIC is $\geq 100 \,\mu \text{g l}^{-1}$.

Table 5 shows the BMICs of women living in areas where people are iodine sufficient or have mild-to-severe ID. Among the iodine-sufficient countries, the BMICs of women in Switzerland and Sweden are less than the concentration required to meet an infant's needs $(100-120 \,\mu\text{g}\,\text{l}^{-1})$, while they are at, or above,

Iodine nutrition in pregnancy, lactation and infancy

Table 5 The mean or median breast milk iodine concentration of women in iodine-sufficient and -deficient countries.

lodine sufficient	Occupation	1
Reference	Country	$\mu \mathrm{gI}^{-1}$
83	Finland	25-53
84	Japan	661
85	Japan .	33-385
86	New Zealand	98-247
87	The Netherlands	10
88	Saudi Arabia	136-198
89	Saudi Arabia	149-204
90	South Korea	892
91	Sweden	93
92	Sweden	56
93	Switzerland	78
57	USA	60
94	USA	113-270
95	USA	142
lodine deficient		
96	Australia	50
97	Belgium	54
91	Belgium	95
98	Ethiopia	5-16
99	France	74
100	France	70
101	France	82
102	Germany	7
103	Germany	55
91	Germany	25
104	Germany	93
105	Germany	18-25
106	Germany	30-34
92	Guatemala	60
92	Hungary	64
107	Italy	150
108	Italy	59
54	Italy	33-43
109	Morocco	27-40
110	Niger	40
92	Nigeria	62
92	Philippines	57
111	Reunion	18-54
112	Slovakia	81-89
113	Spain	100
114	Spain	109
115	Spain	77-100
116	Thailand	45-68
117	Turkey	109
56	Turkey	73
92	Zaire	15

this concentration in the Netherlands, the USA and Japan.

Although the requirement for iodine of a mother is large at $200-290 \,\mu g \, day^{-1}$, after accounting for iodine losses in breast milk, the median UI concentration of lactating women that indicates adequate iodine nutrition should be similar to that of non-pregnant, non-lactating women, i.e. $100-199 \,\mu g \, per \, l^{15}$. Table 6 shows the UI concentrations reported from studies of lactating women in iodine-sufficient and -deficient countries. There are few data, the numbers of women in most studies are small, and breast-feeding status was often not clearly documented. The studies generally report a median UI concentration in lactating women that is similar to the general population, but almost all reports are from

Table 6 Urinary iodine concentration¹⁻³ in lactating women and in the general population or in non-lactating controls in countries of different iodine status.

Reference	lodine status Country	n	Time post-partum	Urinary iodine	General population or controls
	lodine excess	;			
37	Chile	19	3 months	459 ¹	
	lodine sufficie	ent			
41	Singapore	230	6 weeks	105 ²	98 ²
	•		3 months	104 ²	
	lodine deficie	nt			
9	Denmark	26	1 week	30 ²	50 ¹
		26	26 weeks	50 ²	
		26	52 weeks	58 ²	
39	Ireland	108	6 weeks	70 ²	70 ²
51	Germany	70	11 days	50 ³	
74	New Zealand	35	3,6,12 months	$24 - 52^{1}$	$24-47^{1}$
75	Nepal	1028	13 weeks	61 ¹	
76	Sudan	47	3-9 months	$30-63^2$	76 ²
56	Turkey	70	5 days	30 ²	

 $^{^{1}\}mu g \, day^{-1}$; $^{2}\mu g \, I^{-1}$; $^{3}\mu g \, g^{-1}$ creatinine.

iodine-deficient countries, and show median UI concentrations $\leq 100 \,\mu\mathrm{g}\,\mathrm{l}^{-1}$.

Iodine intakes during infancy

During infancy, the mean volume of breast milk consumed is about $0.781\,\mathrm{day}^{-1}$ over the first 0-6 months²⁵ and some 60-65% of ingested water is excreted by the kidney⁶³. Although there is a large day-to-day variation, the volume of urine daily in early infancy is estimated to be $30-55\,\mathrm{ml\,kg}^{-1}$ body weight⁶³⁻⁶⁵ and the reference body weight for a child aged 0-6 months is $7\,\mathrm{kg}$ and for a child aged 6-12 months is $9\,\mathrm{kg}^{25}$. Based on these data, the volume of urine is estimated to be $0.4-0.51\,\mathrm{day}^{-1}$ in early infancy. Therefore, considering the requirement for iodine of $90\,\mu\mathrm{g}$ per day¹⁵, the median UI concentration indicating optimal iodine nutrition in infancy is estimated to be in the range of $\geq 180-220\,\mu\mathrm{g}$ per 1^{26} .

Delange *et al.*⁶⁶ supplemented healthy infants and children aged 6 months to 3 years in Belgium who had a median UI concentration at baseline of $101 \,\mu g \, l^{-1}$, with an dose of $90 \,\mu g \, day^{-1}$ of iodine. After about 30 days of supplementation, the geometric mean UI concentration was beginning to plateau at $220-240 \,\mu g \, l^{-1}$.

Table 7 shows the median UI in full-term newborns in countries with iodine sufficiency and varying degrees of ID. In general, among the iodine-sufficient countries, the median UI concentration varies from 96 to $167 \, \mu g \, l^{-1}$, well below the estimated median UI concentration of $\geq 180-220 \, \mu g \, l^{-1}$ that indicates an adequate iodine intake. More data are clearly needed, but the evidence available suggests that the iodine intake of many infants, even in countries designated as iodine sufficient, may be suboptimal.

Table 7 The median urinary iodine concentration of full-term infants in iodine-sufficient and -deficient countries (1 = Mean).

Reference	Iodine status Country	n	μ g I $^{-1}$
			~ 9 .
	lodine sufficient		
119	Canada	81	148
119	The Netherlands	64	162
87	The Netherlands	36	150 ¹
119	Sweden	39	112
105	Sweden	61	96
118	USA	50	921
	lodine deficient		
118	Belgium	103	35
119	Belgium	196	48
120	Belgium	90	86
121	Czech Republic	50	79
119	France	82	58
119	France	37	29
105	Germany	461	12-29
119	Germany	87	28
122	Germany	177	31
122	Germany	213	44
123	Germany	22	50
124	Germany	32	95 ¹
119	Germany	81	15
119	Germany	39	13
119	Germany	39	11
125	Hungary	209	35-75
126	Ireland	_	100 ¹
119	Italy	114	47
119	Italy	14	71
127	Italy	195	56
128	Italy	9	67
56	Turkey	70	24

References

- 1 Pharoah POD, Buttfield IH, Hetzel BS. Neurological damage to the fetus with severe iodine deficiency during pregnancy. *Lancet* 1971; i: 308-10.
- 2 Pharoah POD. The clinical pattern of endemic cretinism in *Papua New Guinea. Journal of Experimental Medicine and Biology* 1972; **30:** 71–82.
- 3 Chaouki ML, Benmiloud M. Prevention of iodine deficiency disorders by oral administration of lipiodol during pregnancy. *European Journal of Endocrinology* 1994; 130: 547–51.
- 4 Cobra C, Muhilal, Rusmil K, Rustama D, Djatnika, Suwardi SS, Permaesih D, Muherdiyantiningsih M, Martuti S, Semba RD. Infant survival is improved by oral iodine supplementation. *Journal of Nutrition* 1997; 127: 574–8
- 5 Dillon JC, Milliez J. Reproductive failure in women living in iodine deficient areas of West Africa. *British Journal of Obstetrics and Gynaecology* 2000; **107:** 631–6.
- 6 Fierro-Benitez R, Cazar R, Stanbury JB, Rodriguez P, Garces F, Fierro-Renoy F, Estrella E. Effects on school children of prophylaxis of mothers with iodized oil in an area of iodine deficiency. *Journal of Endocrinological Investigation* 1988; 11: 327–35.
- 7 Pharoah POD, Connolly KJ. A controlled trial of iodinated oil for the prevention of endemic cretinism: a long-term follow-up. *International Journal of Epidemiology* 1987; 16: 68–73.
- 8 Azizi F, Kalani H, Kimiagar M, Ghazi A, Sarshar A, Nafarabadi M, Rahbar N, Noohi S, Mohajer M, Yassai M. Physical, neuromotor and intellectual impairment in non-cretinous schoolchildren with iodine deficiency.

International Journal of Vitamin and Nutrition Research 1995; **65:** 199–205.

- 9 Pedersen KM, Laurberg P, Iversen E, Knudsen PR, Gregersen HE, Rasmussen OS, Larsen KR, Eriksen GM, Johannesen PL. Amelioration of some pregnancy-associated variations in thyroid function by iodine supplementation. *Journal of Clinical Endocrinology and Metabolism* 1993; 77: 1078–83.
- 10 Glinoer D, De Nayer P, Delange F, Lemone M, Toppet V, Spehl M, Grun JP, Kinthaert J, Lejeune B. A randomized trial for the treatment of mild iodine deficiency during pregnancy: maternal and neonatal effects. *Journal of Clinical Endocrinology and Metabolism* 1995; 80: 258–69.
- 11 Kung AWC, Lao TT, Low LCK, Pang RWC, Robinson JD. Iodine insufficiency and neonatal hyperthyrotropinemia in Hong Kong. *Clinical Endocrinology* 1997; **46**: 315–9.
- 12 Delange F, Bourdoux P, Chanoine JP, Ermans AM. Physiopathology of iodine nutrition during pregnancy, lactation, and early postnatal life. In: Berger H, ed. *Vitamins and Minerals in Pregnancy and Lactation*. Nestlé Nutrition Workshop Series, Vol. 16. New York: Raven Press. 1988.
- 13 Glinoer D, Delange F. The potential repercussions of maternal, fetal and neonatal hypothyroxinemia on the progeny. *Thyroid* 2000; **10:** 871–87.
- 14 Bleichrodt N, Born MP. A metaanalysis of research on iodine and its relationship to cognitive development. In: Stanbury JB, ed. *The Damaged Brain of Iodine Deficiency*. New York: Cognizant Communication, 1994; 195–200.
- 15 WHO, UNICEF, and ICCIDD. Assessment of the Iodine Deficiency Disorders and Monitoring their Elimination. WHO/NHD/01.1 World Health Organization, Geneva, 2001.
- 16 Fisher DA, Oddie TH. Thyroidal radioiodine clearance and thyroid iodine accumulation: Contrast between random daily variation and population data. *Journal of Clinical Endocrinology and Metabolism* 1969; 29: 111–5.
- 17 Fisher DA, Oddie TH. Thyroid iodine content and turnover in euthyroid subjects: validity of estimation of thyroid iodine accumulation from short term clearance studies. *Journal of Clinical Endocrinology and Metabolism* 1969; 29: 721–7.
- 18 Oddie TH, Fisher DA, Long JM. Factors affecting the estimation of iodine entering the normal thyroid gland using short-term clearance studies. *Journal of Clinical Endocrinology and Metabolism* 1964; **24:** 924–33.
- 19 Dworkin HJ, Jacquez JA, Beierwaltes WH. Relationship of iodine ingestion to iodine excretion in pregnancy. *Journal* of Clinical Endocrinology and Metabolism 1966; 26: 1329–42.
- 20 Harrison MT. Iodine balance in man. *Postgraduate Medical Journal* 1968; **44:** 69–71.
- 21 Harrison MT, Harden R, Alexander WD, Wayne E. Iodine balance studies in patients with normal and abnormal thyroid function. *Journal of Clinical Endocrinology* 1965; 25: 1077–84.
- Malamos B, Koutras DA, Marketos SG, Rigopoulos GA, Yataganas XA, Binopoulos D, Sfontouris J, Pharmakiotis AD, Vought RL, London WT. Endemic goiter in Greece: an iodine balance study in the field. *Journal of Clinical Endocrinology and Metabolism* 1967; 27: 1372–80.
- 23 Vought RL, London WT. Iodine intake, excretion and thyroidal accumulation in healthy subjects. *Journal of Clinical Endocrinology and Metabolism* 1967; 27: 913–9.
- 24 Nath SK, Moinier B, Thuillier F, Rongier M, Desjeux JF. Urinary excretion of iodide and fluoride from supplemented food grade salt. *International Journal of Vitamin and Nutrition Research* 1992; 62: 66–72.
- 25 Institute of Medicine, Academy of Sciences, USA. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic,

- Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium and Zinc. Washington DC: National Academy Press, 2001.
- 26 Delange F. Optimal iodine nutrition during pregnancy, lactation and the neonatal period. *International Journal of Endocrinology and Metabolism* 2004; 2: 1–12.
- 27 Glinoer D. The regulation of thyroid function in pregnancy: pathways of endocrine adaptation from physiology to pathology. *Endocrine Reviews* 1997; 18: 404–33.
- Delange F. Iodine nutrition and congenital hypothyroidism. In: Delange F, Fisher DA, Glinoer D, eds. Research in Congential Hypothyroidism. New York: Plenum Press, 1989.
- 29 Delange F, Ermans AM. Iodine deficiency. In: Braverman LE, Utiger RD, eds. Werner and Ingbar's the Thyroid: A Fundamental and Clinical Text. 6 ed. Philadelphia: JD Lippincott, 1991.
- 30 Delange F, Bourdoux P, Vo Thi LD, Ermans AM, Senterre J. Negative iodine balance in preterm infants. *Annals of Endocrinology* 1984; 45: 77.
- 31 Romano R, Jannini EA, Pepe M, Grimaldi A, Olivieri M, Spennati P, Cappa F, D'Armiento M. The effects of iodoprophylaxis on thyroid size during pregnancy. *American Journal of Obsterics and Gynecology* 1991; 164: 482–5.
- 32 WHO Secretariat on behalf of the participants to the Consultation. Prevention and control of iodine deficiency in pregnant and lactating women and in children less than 2-years-old: conclusions and recommendations of the Technical Consultation. *Public Health Nutrition* 2007; 10(3A).
- 33 Hollowell JG, Staehling NW, Hannon WH, Flanders DW, Gunter EW, Maberly GF, Braverman LE, Pino S, Miller DT, Garbe P. Iodine nutrition in the United States. Trends and public health implications: iodine excretion data from National Health and Nutrition Examination Surveys I and III (1971–1974 and 1988–1994). Journal of Clinical Endocrinology and Metabolism 1998; 83: 3401–8.
- 34 National Research Councl. Subcommittee on the Tenth Edition of the RDAs. Recommended Dietary Allowances. 10th ed. Washington, D.C., National Academy Press, 1989.
- 35 Mattsson S, Lindstrom S. Diuresis and voiding pattern in healthy schoolchildren. *British Journal of Urology* 1995; 76: 783–9.
- 36 Larsson G, Victor A. Micturition patterns in a healthy female population, studied with a frequency/volume chart. Scandinavian Journal of Urology and Nephrology 1988; 114: 53–7.
- 37 Dafnis E, Sabatini S. The effect of pregnancy on renal function: physiology and pathophysiology. *American Journal of Medical Science* 1992; 303: 184–205.
- 38 Aboul-Khair SA, Crooks J, Turnbull AC, Hytten FE. The physiological changes in thyroid function during pregnancy. *Clinical Science* 1964; 27: 195–207.
- 39 Liberman CS, Pino SC, Fang SL, Braverman LE, Emerson CH. Circulating iodide concentrations during and after pregnancy. *Journal of Clinical Endocrinology and Metabolism* 1998; 83: 3545–9.
- 40 Bourdoux P. Evaluation of the iodine intake: Problems of the iodine/creatinine ratio—comparison with iodine excretion and daily fluctuations of iodine concentration. *Experimental Clinical Endocrinology and Diabetes* 1998; **106:** S17–S20.
- 41 Smyth PPA, Hetherton AMT, Smith DF, Radcliff M, O'Herlihy C. Maternal iodine status and thyroid volume during pregnancy: correlation with neonatal iodine intake. *Journal of Clinical Endocrinology and Metabolism* 1997; 82: 2840–3.
- 42 Smyth PPA. Variation in iodine handling during normal pregnancy. *Thyroid* 1999; **9:** 637–42.
- 43 Kung AWC, Lao TT, Chau MT, Tam SCF, Low LCK. Goitrogenesis during pregnancy and neonatal hypothyr-

- oxinaemia in a borderline iodine sufficient area. *Clinical Endocrinology* 2000; **53:** 725–31.
- 44 Hess SY, Zimmermann MB, Torresani T, Bürgi H, Hurrell RF. Monitoring the adequacy of salt iodization in Switzerland: a national study of school children and pregnant women. European Journal of Clinical Nutrition 2001; 55: 162–6.
- 45 Zimmermann MB, Aeberli I, Bürgi H. A national study of the iodine nutrition of school children and pregnant women in Switzerland. *American Journal of Clinical Nutrition* 2005; 82: 388–92.
- 46 Berghout A, Wiersinga W. Thyroid size and thyroid function during pregnancy: an analysis. *European Journal of Endocrinology* 1998; **138**: 536–42.
- 47 Zimmermann MB, Delange F. Iodine supplementation of pregnant women in Europe: a review and recommendations. European Journal of Clinical Nutrition 2004; 58: 979–84.
- 48 Buhling KJ, Schaff J, Bertram H, Hansen R, Muller C, Wascher C, Heinze T, Dudenhausen JW. Supply of iodine during pregnancy—an inventory in Berlin, Germany. Zeitschrift Geburtshilfe und Neonatologie 2003; 207: 12–16.
- 49 Nohr SB, Laurberg P, Borlum KG, Pedersen KM, Johannesen PL, Damm P, Fuglsang E, Johansen A. Iodine deficiency in pregnancy in Denmark: regional variations and frequency of individual iodine supplementation. *Acta Obsterica et Gynecologica Scandinavica* 1993; 72: 350–3.
- 50 German Ministry of Health. Iodine Monitoring 1996. In: Vol. 110, Series of the German Ministry of Health. Nomos, Baden-Baden, 1998 (in German).
- Mezosi E, Molnar I, Jakab A, Balogh E, Karanyi Z, Pakozdy Z, Nagy P, Gyory F, Szabo J, Bajnok L, Leovey A, Kakuk G, Nagy EV. Prevalence of iodine deficiency and goitre during pregnancy in East Hungary. *European Journal of Endocrinology* 2000; **143:** 479–83.
- 52 Nohr SB, Laurberg P. Opposite variations in maternal and neonatal thyroid function induced by iodine supplementation during pregnancy. *Journal of Clinical Endocrinology and Metabolism* 2000; **85:** 623–7.
- 53 Liesenkötter KP, Göpel W, Bogner U, Stach B, Grüters A. Earliest prevention of endemic goiter by iodine supplementation during pregnancy. European Journal of Endocrinology 1996; 134: 443–8.
- 54 Nohr SB, Jorgensen A, Pedersen KM, Laurberg P. Postpartum thyroid dysfunction in pregnant thyroid peroxidase antibody-positive women living in an area with mild to moderate iodine deficiency: is iodine supplementation safe? *Journal of Clinical Endocrinology and Metabolism* 2000; **85:** 3191–8.
- Antonangeli L, Maccherini D, Cavaliere R, Di Giulio C, Reinhardt B, Pinchera A, Aghini-Lombardi F. Comparison of two different doses of iodide in the prevention of gestational goiter in marginal iodine deficiency: a longitudinal study. *European Journal of Endocrinology* 2002; **147**: 29–34.
- Vermiglio F, Lo Presti VP, Finocchiaro MD, Battiato S, Grasso L, Ardita FV, Mancuso A, Trimarchi F. Enhanced iodine concentration capacity by the mammary gland in iodine deficient lactating women of an endemic goiter region in Sicily. *Journal of Endocrinological Investigation* 1992; 15: 137–42.
- 57 Dorea JG. Iodine nutrition and breast feeding. *Journal of Trace Elements in Medicine and Biology* 2002; **16:** 207–20.
- Kurtoglu S, Akcakus M, Kocaoglu C, Gunes T, Budak N, Emre Atabek M, Karakucuk I, Delange F. Iodine status remains critical in mother and infant in Central Anatolia (Kayseri) of Turkey. *European Journal of Nutrition* 2004; 43: 297–303.
- 59 Gushurst CA, Mueller JA, Green JA, Sedor F. Breast milk iodine: reassessment in the 1980s. *Pediatrics* 1984; 73: 354–7.

60 Semba RD, Delange F. Iodine in human milk: perspectives for human health. *Nutrition Reviews* 2001; **59:** 269–78.

- 61 Pretell EA, Moncloa F, Salinas R, Kawano A, Guerra-Garcia R, Gutierrez L, Beteta L, Pretell J, Wan M. Prophylaxis and treatment of endemic goiter in Peru with iodized oil. *Journal of Clinical Endocrinology and Metabolism* 1969; 29: 1586–95.
- 62 Chaouki ML, Benmiloud M. Prevention of iodine deficiency disorders by oral administration of Lipiodol during pregnancy. *European Journal of Endocrinology* 1994; 130: 547–51.
- 63 Nohr SB, Laurberg P, Bortum KG, Pedersen KM, Johannesen PL, Damm P, Fuglsang E, Johansen A. Iodine status in neonates in Denmark: regional variations and dependency on maternal iodine supplementation. *Acta Paediatrica* 1994; **83:** 578–82.
- 64 Seibold-Weiger K, Wollmann H, Rendl J, Ranke M, Speer C. Iodine concentration in the breast milk of mothers of premature infants. Zeitschrift Geburtshilfe und Neonatologie 1999; 203: 81–5.
- 65 Greenbaum LA. Pathophysiology of body fluids and fluid therapy. Maintenance and replacement therapy. In: Behrman RE, Kliegman RM, Jensen HB, eds. *Nelson Textbook* of *Pediatrics*. 17th ed. Philadelphia: Saunders, 2004; 242–5.
- 66 Thüroff JW, Schulte-Wissermann H. Pediatric Urology: Clinical Practice. Stuttgart: Thieme, 2000.
- 67 Travis LB. Disorders of water, electrolytes, and acid-base physiology. In: Rudolph AM, Hoffman JIE, Rudolph CD, eds. *Rudolph's Pediatrics*. 20th ed. Stamford, Connecticut: Appleton & Lange, 1996; 1319–21.
- 68 Fomon S. Iodine. In: Fomon S, ed. *Nutrition of Normal Infants*. St.Louis, Mosby-Year Book, 1993.
- 69 Delange F, Wolff P, Gnat D, Dramaix M, Pilchen M, Vertongen F. Iodine deficiency during infancy and early childhood in Belgium: does it pose a risk to brain development? European Journal of Pediatrics 2001; 160: 251–4.
- 70 Azizi F, Shaikholesmani R, Hedayati M, Mirmiran P, Malekafzali H, Kimiagar M. Sustainable control of iodine deficiency in Iran. *Journal of Endocrinological Investigation* 2002; 25: 409–13.
- 71 Elnagar B, Eltom A, Wide L, Gebre-Medhin M, Karlsson FA. Iodine status, thyroid function and pregnancy: study of Swedish and Sudanese women. *European Journal of Nutrition* 1998; **52**: 351–5.
- 72 Brander L, Als C, Buess H, Haldimann F, Harder M, Hanggi W, Herrmann U, Lauber K, Niederer U, Zurcher T, Burgi U, Gerber H. Urinary iodine concentration during pregnancy in an area of unstable dietary iodine intake in Switzerland. *Journal of Endocrinological Investigation* 2003; 26: 389–96.
- 73 Soldin OP, Soldin SJ, Pezzullu JC. Urinary iodine percentile ranges in the United States. *Clinica Chimica Acta* 2003; 328: 185–90.
- 74 Glinoer D, de Nayer P, Bourdoux P, Lemone M, Robyn C, Van Steirteghem A, et al. Regulation of maternal thyroid during pregnancy. Journal of Clinical Endocrinology and Metabolism 1990; 71: 276–87.
- 75 Caron P, Hoff M, Bazzi S, Dufor A, Faure G, Ghandour I, Lauzu P, Lucas Y, Maraval D, Mignot F, Ressigeac P, Vertongen F, Grange V. Urinary iodine excretion during normal pregnancy in healthy women living in the Southwest of France: correlation with maternal thyroid parameters. *Thyroid* 1997; 7: 749–54.
- 76 Vermiglio F, Lo Presti VP, Castagna MG, Violi MA, Moleti M, Finocchiaro MD, Mattina F, Artemisia A, Trimarchi F. Increased risk of maternal thyroid failure with pregnancy progression in an iodine deficient area with major iodine deficiency disorders. *Thyroid* 1999; 9: 19–24.
- 77 Thomson CD, Packer MA, Butler JA, Duffield AJ, O'Donaghue KL, Whanger PD. Urinary selenium and

- iodine during pregnancy and lactation. *Journal of Trace Elements in Medicine and Biology* 2001; **14:** 210–7.
- 78 Schulze KJ, West KP Jr, Gautschi LA, Dreyfuss ML, LeClerq SC, Dahal BR, Wu LS, Khatry SK. Seasonality in urinary and household salt iodine content among pregnant and lactating women of the plains of Nepal. *European Journal of Clinical Nutrition* 2003; 57: 969–76.
- 79 Eltom A, Eltom M, Elnagar B, Elbagir M, Gebre-Medhin M. Changes in iodine metabolism during late pregnancy and lactation: a longitudinal study among Sudanese women. European Journal of Clinical Nutrition 2000; 54: 429–33
- 80 Mocan MZ, Erem C, Telatar M, Mocan H. Urinary iodine levels in pregnant women with and without goiter in the Eastern Black Sea of Turkey. *Trace Elements and Electrolytes* 1995; **12:** 195–7.
- 81 Brander A, Kivisaari L. Ultrasonography of the thyroid during pregnancy. *Journal of Clinical Ultrasound* 1989; 17: 403-6.
- 82 Berghout A, Endert E, Ross A, Hogerzeil HV, Smits NJ, Wiersinga WM. Thyroid function and thyroid size in normal pregnant women living in an iodine replete area. *Clinical Endocrinology (Oxford)* 1994; **41:** 375–9.
- 83 Nelson M, Wickus GG, Caplan RH, Beguin EA. Thyroid gland size in pregnancy. An ultrasound and clinical study. *Journal of Reproductive Medicine* 1987; 32: 888–90.
- 84 Rasmussen NG, Hornnes PJ, Hegedus L. Ultrasonographically determined thyroid size in pregnancy and post partum: the goitrogenic effect of pregnancy. *American Journal of Obstetrics and Gynecology* 1989; **160:** 1216–20.
- 85 Smyth PPA, Hetherton AM, Ryan R, O'Herlihy C. Alterations in iodine status and thyroid volume during pregnancy. In: Beckers C, Reinwein D, eds. *The Thyroid and Pregnancy*. Stuttgart: Schattauer, 1991; 55–8.
- 86 Lahesmaa P, Vilkki P. The iodine content of human milk in Finland. *Acta Paediatrica* 1960; **49:** 371.
- 87 Yamamoto Y, Yonekubo A, Iida K, Takahashi S, Tsuchyia F. The composition of Japanese human milk. I. Micronutrient and mineral composition. Shonihoken-Kemkyu 1981; 40: 468
- 88 Chiba M, Ichikawa R. Secretion rate of dietary iodine into human milk. *Journal of Radiation Research* 1968; **9:** 12–17.
- 89 Johnson LA, Ford HC, Doran J, Richardson VF. A survey of the iodide concentration of human milk. *New Zealand Medical Journal* 1990; 103: 393–4.
- 90 Bakker B, Vulsma T, de Randamie J, Achterhuis AM, Wiedij B, Oosting H, Glas C, de Vijlder JJ. A negative iodine balance is found in healthy neonates compared with neonates with thyroid agenesis. *Journal of Endocrinology* 1999: 161: 115–20.
- 91 Trabzuni DM, Ibrahim HS, Ewaidah EH. An assessment of iodine status of Saudi lactating mothers and its relation to iodine intake in Riyadh City. *Ecology of Food and Nutrition* 1998; **37:** 297–307.
- 92 Younes B, Almeshad A, Alhakeem A, Alzamil F, Alsaleh S, Alattas O. Iodine level in breast milk of nursing mothers living in Riyadh City. *Medical Science Research* 1994; **22:** 675–6.
- 93 Moon S, Kim J. Iodine content of human milk and dietary iodine intake of Korean lactating mothers. *International Journal of Food Science and Nutrition* 1999; **50:** 165–71.
- 94 DeLange F. Iodine deficiency. In: Braverman LE, Utiger RD, eds. *The Thyroid*. New York: Lippincott Williams & Wilkins, 2000; 295–316.
- 95 Parr RM, DeMayer EM, Iyengar VG, Byrne AR, Kirkbright GF, Schoch G, Niistro L, Pineda O, Vis HL, Hofvander Y, Omolulu A. Minor and trace elements in human milk from Guatemala, Hungary, Nigeria, Phillipines, Sweden and Zaire. Results from a WHO/IAEA Joint Project. *Biological Trace Element Research* 1991; 29: 51–75.

- 96 Hoang-Truong T, Gerber H, Haenel AF, Burgi H. Iodine supply at various periods in life and ultrasonographic thyroid volume in school children in a region of Switzerland. Schweizerische Medizinische Wochenschrift 1997: 127: 715–21.
- 97 Man EB, Benotti J. Butanol-extractable iodine in human and bovine colostrum and milk. *Clinical Chemistry* 1969; **15:** 1141–6.
- 98 Bruhn JC, Franke AA. Iodine in human milk. *Journal of Dairy Science* 1983; **66:** 1396–8.
- 99 Jansson L, Ivarsson S, Larsson I, Ekman R. Triiodothyronine and thyroxine in human milk. *Acta Paediatrica Scandina*vica 1983; 72: 703–5.
- 100 Beckers C, Augustijnen M-TH, Jaeken J, Devlieger H, Vanderschueren-Lodewyckx M, De Nayer PH, Eggermont E. Iodine intake of breast-fed versus bottle-fed healthy newborns and prematures. *Annales d'Endocrinologie* 1987; 48: 166–71.
- 101 Cherinet A, Kelbessa U. Determinants of iodine deficiency in school children in different regions of Ethiopia. East African Medical Journal 2000; 77: 133–7.
- 102 Aquaron R. Iodine content of human breast milk and cow milk in France. IV Journeés Scientifiques Internationates du GERM, Paris, Editions INSERM,1989.
- 103 Texier F, Roque d'Orbcastel O, Etling N. Stable iodine level in human milk after pulmonary angiography. *Presse Medicale* 1983; 12: 769.
- 104 Etling N, Gehin-Fouque F. Iodinated compounds and thyroxine binding to albumin in human breast milk. Pediatrics Research 1984; 18: 901–3.
- Bauch K. Alimentary iodine deficiency in East Germany and its reflection in thyroid parameters following the initiation of struma prevention. *Deutsche Zeitschrift fur Verdauungs- und Stoffwechselkrankheiten* 1987; 47: 341–6.
- Bohles H, Aschenbrenner M, Roth M, von Loewenich V, Ball F, Usadel KH. Development of thyroid gland volume during the first 3 months of life in breast-fed versus iodinesupplemented and iodine-free formula-fed infants. *Clinical Investigation* 1993; 71: 13–20.
- Heidemann PH, Stubbe P, Thal H, Hellstrom R, Skanke N, Larsson A. Influence of iodine prophylaxis on thyroid function and iodine excretion in newborn infants and their mothers: comparison between Sweden and Germany. Acta Endocrinologica 1986; 3(Suppl. 274): 47–8.
- 108 Heidemann PH, Stubbe P, von Reuss K, Schurnbrand P, Larson A, von Petrykowski W. Iodine excretion and dietary iodine supply in newborn infants in iodine-deficient regions of West Germany. Deutsche Medizinische Wochenschrift 1984; 109: 773–8.
- 109 Wiechen A, Kock M. Routine determination of low iodine concentration in milk. Fresenius Zeitschrift Analytische Chemie 1984; 319: 569–72.
- 110 Chierici R, Saccomandi D, Vigi V. Dietary supplements for the lactating mother: influence on the trace element content of milk. Acta Paediatrica Supplement 1999; 88: 7–13.
- 111 Etling N, Padovani E, Fouque F, Tato L. First month variations in total iodine content of human breast milks. *Early Human Development* 1986; **13:** 81–5.
- Aquaron R, Zarrouck K, el Jarari M, Ababou R, Talibi A, Ardissone JP. Endemic goiter in Morocco (Skoura-Toundoute areas in the high Atlas). *Journal of Endocrinological Investigation* 1993; 16: 9–14.
- 113 Aquaron R, Aquaron C, Daouda H, Madi N, Roux F, Bisset JP. Study of two goitrous endemic areas in Niger: Belley-Koira and Tiguey-Tallawal. *Annals of Endocrinology* 1990; **51:** 231–40.
- 114 Jaffiol C, Manderscheid JC, Rouard L, Dhondt JL, Arguillere S, Bourdoux P. Iodine deficiency in the Cirque of Salazie (Reunion Island). Analysis of nutritional factors

- and evaluation of its consequences. *Bulletin de l'Academie Nationale de Medecine* 1997; **181:** 1795–810.
- Tajtakova M, Capova J, Bires J, Sebokova E, Petrovicova J. Thyroid volume, urinary and milk iodine in mothers after delivery and their newborns in iodine-replete country. *Endocrine Regulations* 1999; 33: 9–15.
- Ares S, Quero J, Duran S, Presas MJ, Herruzo R, Morreale de Escobar G. Iodine content of infant formulas and iodine intake of premature babies: high risk of iodine deficiency. Archives of Disease in Childhood Fetal and Neonatal Edition 1994; 71: F184–91.
- 117 Fernandez-Sanchez L, Szupnar J. Speciation analysis for iodine in milk by size-exclusion chromatography with inductively coupled plasma mass spectrometry (SECICPMS). *Journal of Analytical Atomic Spectrometry* 1999; **14:** 1697–702.
- 118 Mallol J, Morreate de Escobar G, Escobar del Rey F. Thyroid hormone and iodine intakes of bottle-fed versus breast-fed babies. *Endocrinologia* 1984; 35: 12–20.
- 119 Pongpaew P, Supawan V, Tungtrongchitr R, Phonrat B, Vudhivai N, Chantaranipapong Y, Kitjaroentham A, Jintaridhi P, Intarakhao C, Mahaweerawat U, Saowakhontha S, Schelp FP. Urinary iodine excretion as a predictor of the iodine content of breast milk. *Journal of the Medical Association of Thailand* 1999; 82: 284–9.
- 120 Gokmen IG, Dagli G. Determination of iodine concentration in human-milk, cows milk and infant formula and estimation of daily iodine intake of infants. *Analyst* 1995; 120: 2005–8.
- 121 Delange F, Dalhem A, Bourdoux P, Lagasse R, Glinoer D, Fisher DA, Walfish PG, Ermans AM. Increased risk of primary hypothyroidism in preterm infants. *Journal of Pediatrics* 1984; 105: 462–9.
- 122 Delange F, Heidemann P, Bourdoux P, Larsson A, Vigneri R, Klett M, Beckers C, Stubbe P. Regional variations of iodine nutrition and thyroid function during the neonatal period in Europe. *Biology of the Neonate* 1986; 49: 322–30.
- 123 Ciardelli R, Haumont D, Gnat D, Vertongen F, Delange F. The nutritional iodine supply of Belgian neonates is still insufficient. *European Journal of Pediatrics* 2002; **161**: 510–23
- 124 Hnikova O, Hromadkova M, Wiererova O, Bilek R. Followup study of iodine status in neonates and their mothers in 2 regions of the Czech Republic after a 3-year intervention. Casopis Lekaru Ceskych 1999; 138: 272–5.
- 125 Grüters A, Liesenkötter KP, Willgerodt H. Persistence of differences in iodine status in newborns after the reunification of Berlin. New England Journal of Medicine 1995; 333: 1429.
- 126 Roth C, Meller J, Bobrzik S, Thal H, Becker W, Kulenkampff D, Lakomek M, Zappel H. The iodine status of newborns. Deutsche Medizinische Wochenschrift 2001; 126: 321–5.
- 127 Klett M, Ohlig M, Manz F, Tröger J, Heinrich U. Effect of iodine supply on neonatal thyroid volume and TSH. Acta Paediatrica Supplement 1999; 432: 18–20.
- 128 Peter F, Muzsnai A, Bourdoux P. Changes of urinary iodine excretion of newborns over a period of twenty years. *Journal* of Endocrinological Investigation 2003; 26(S2): 39–42.
- 129 Barakat M, Carson D, Hetherton AM, Smyth P, Leslie H. Hypothyroidism secondary to topical iodine treatment in infants with spina bifida. Acta Paediatrica 1994; 83: 741–3.
- 130 Rapa A, Chiorboli E, Corbetta C, Sacco F, Bona G, Study AU. Urinary iodine excretion screening in newborns exposed to iodine-containing antiseptics. *Hormone Research* 1996; 46: 74.
- 131 Bona G, Chiorboli E, Rapa A, Weber G, Vigone MC, Chiumello G. Measurement of urinary iodine excretion to reveal iodine excess in neonatal transient hypothyroidism. *Journal of Pediatric Endocrinology and Metabolism* 1998; 11: 739–43.