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We study relaxations of proper two-colourings, such that the order of the induced

monochromatic components in one (or both) of the colour classes is bounded by a

constant. A colouring of a graph G is called (C1, C2)-relaxed if every monochromatic

component induced by vertices of the first (second) colour is of order at most C1 (C2,

resp.). We prove that the decision problem ‘Is there a (1, C)-relaxed colouring of a given

graph G of maximum degree 3?’ exhibits a hardness jump in the component order C . In

other words, there exists an integer f(3) such that the decision problem is NP-hard for every

2 � C < f(3), while every graph of maximum degree 3 is (1, f(3))-relaxed colourable. We

also show f(3) � 22 by way of a quasilinear time algorithm, which finds a (1, 22)-relaxed

colouring of any graph of maximum degree 3. Both the bound on f(3) and the running

time greatly improve earlier results. We also study the symmetric version, that is, when

C1 = C2, of the relaxed colouring problem and make the first steps towards establishing a

similar hardness jump.

1. Introduction

A function from the vertex set of a graph to a k-element set is called a k-colouring. The

values of the function are referred to as colours . A colouring is called proper if the value of

the function differs on any pair of adjacent vertices. Proper colouring and the chromatic

number of graphs (the smallest number of colours which allow a proper colouring)

are among the most important concepts of graph theory. Numerous problems of pure

mathematics and theoretical computer science require the study of proper colourings

and even more real-life problems require the calculation or at least an estimation of the

chromatic number. Nevertheless, there is the discouraging fact that the calculation of the

chromatic number of a graph or the task of finding an optimal proper colouring are both

intractable problems, even fast approximation is probably not possible. This is one of our

motivations for studying relaxations of proper colouring, because in some theoretical or

† Research partially supported by SNF Grant 200021-108099/1.
‡ An extended abstract appeared in the Proceedings of ESA 2006 .

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0963548309009663
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 14:32:26, subject to the Cambridge Core terms of use, available

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/85214578?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0963548309009663
https:/www.cambridge.org/core


54 R. Berke and T. Szabó

practical situations a small deviation from proper is still acceptable, while the problem

could become tractable.

In this paper we study various relaxations of proper colouring, which allow the presence

of some small level of conflicts in the colour assignment. Namely, we will allow vertices

of one or more colour classes to participate in one conflict or, more generally, let each

conflicting connected component have at most C vertices, where C is a fixed integer, not

depending on the order of the graph. Most of our results deal with the case of relaxed

two-colourings.

To formalize our problem precisely we say that a two-colouring of a graph is (C1, C2)-

relaxed if every monochromatic component induced by the vertices of the first colour is

of order at most C1, while every monochromatic component induced by the vertices of

the second colour is of order at most C2. Note that (1, 1)-relaxed colouring corresponds

to proper two-colouring.

In the present paper we deal with the two most natural cases of relaxed two-colourings.

We say symmetric relaxed colouring when C1 = C2 and asymmetric relaxed colouring when

C1 = 1. Symmetric relaxed colourings were first studied by Alon, Ding, Oporowski and

Vertigan [2] and implicitly, even earlier, by Thomassen [18], who resolved the problem

for the line graph of 3-regular graphs initiated by Akiyama and Chvátal [1]. Asymmetric

relaxed colourings were introduced in [5].

There are several other types of colouring concepts related to our relaxation of proper

colouring. In improper colourings , introduced independently by Andrews and Jacobson [3],

Harary and Jones [10, 11], and Cowen [7], the maximum conflicting degree is bounded.

Linial and Saks [17] studied low-diameter graph decompositions , where the quality of the

colouring is measured by the diameter of the monochromatic components. The concept

of fragmentability of graphs was introduced by Edwards and Farr [9] and studied recently

by Haxell, Pikhurko and Thomason [13] for bounded degree graphs; here one aims

to break up the graph into small components by removing as small a fraction of the

vertices as possible. It seems that the term relaxed chromatic number (sometimes also

called generalized chromatic number) was coined by Weaver and West [20], who use the

word ‘relaxation’ in a much more general sense than we do.

1.1. The problems

We study relaxed colourings from two points of view, extremal graph theory and

complexity theory, and find that these coincide for asymmetric relaxed colourings. We also

take the first steps towards a similar connection in the symmetric case. To demonstrate

our problems, in the next few paragraphs we restrict our attention to asymmetric relaxed

colourings; the corresponding questions are asked and partially answered for symmetric

relaxed colourings, but there our knowledge is much less satisfactory.

On the one hand, there is the purely graph-theoretic question:

For a given maximum degree Δ, what is the smallest component order f(Δ) ∈ N ∪ {∞} such that

every graph of maximum degree Δ is (1, f(Δ))-relaxed colourable?

On the other hand, for fixed Δ and C one can study the computational complexity

question:

What is the complexity of the decision problem: Given a graph of maximum degree Δ, is there a

(1, C)-relaxed colouring?
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Deciding Relaxed Two-Colourability: A Hardness Jump 55

Obviously, for the critical component order f(Δ) which answers the extremal graph theory

question, the answer is trivial for the complexity question: every instance is a YES-instance.

Note also that for C = 1 the complexity question is polynomial time solvable, as it is

equivalent to testing whether a graph is bipartite.

In this paper we investigate the complexity question in the range between 2 and the

critical component order f(Δ). We establish the monotonicity of the hardness of the

problem in the interval C � 2 and prove a very sharp ‘hardness jump’. By this we mean

that the problem is NP-hard for every component order 2 � C < f(Δ), while, of course,

the problem becomes trivial (i.e., all instances are YES-instances) for component order

f(Δ). It may be worthwhile to note that at the moment we do not see any a priori reason

why the hardness of the decision problem should even be monotone in the component

order C , i.e., why the hardness of the problem for component order C + 1 should imply

the hardness for component order C . In fact the problem is obviously polynomial time

decidable for C = 1, while for C = 2 we show NP-completeness.

The other main contribution of the paper concerns the extremal graph theory question

and obtains significant improvements over previously known bounds and algorithms.

This result becomes particularly important in the light of our NP-hardness results, as

the exact determination of the place of the jump from NP-hard to trivial comes within

reach.

To formalize our theorems we need further definitions. Let us denote by (Δ, C)-

AsymRelCol the decision problem whether a given graph G of maximum degree at

most Δ allows a (1, C)-relaxed colouring. Analogously, let us denote by (Δ, C)-SymRelCol

the decision problem of whether a given graph G of maximum degree at most Δ allows

a (C,C)-relaxed colouring. Note here that both (Δ, 1)-AsymRelCol and (Δ, 1)-SymRelCol

simply test whether a graph of maximum degree Δ is bipartite.

1.2. The asymmetric problem

For Δ = 2, (2, 2)-AsymRelCol is already trivial. For Δ = 3, it was shown in [5] that every

cubic graph admits a (1, 189)-relaxed colouring, making (3, 189)-AsymRelCol trivial. In

the proof, the vertex set of the graph was partitioned into a triangle-free and a triangle-full

part (every vertex is contained in a triangle), then the parts were coloured separately,

and finally the two colourings were assembled amid some technical difficulties. Here we

present a completely different approach, which avoids the separation. While we still deal

with our share of technical difficulties, we greatly improve on the previous bound on the

component order and the running time of the algorithm involved.

A variant of the new method is first presented for ‘triangle-full’ graphs of maximum

degree 3. One facet of our technique is much simpler to present in this scenario and gives

an improved and optimal result.

Theorem 1.1. Let G be a graph of maximum degree at most 3, in which every vertex is

contained in a triangle. Then G has a (1, 6)-relaxed colouring.

We prove the theorem in Section 2. An example in [5] shows that the component order

6 is best possible. We note that the existence of a 6-relaxed colouring for triangle-free

graphs was already proved in [5].
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56 R. Berke and T. Szabó

The method is then enhanced to work for all graphs of maximum degree 3 in Section 3.

It also implies a quasilinear time algorithm (as opposed to the Θ(n7) algorithm implicitly

contained in [5]).

Theorem 1.2. Any graph G with maximum degree at most 3 is (1, 22)-relaxed colourable,

i.e.,

f(3) � 22.

Moreover, there is an O(n log4 n) algorithm which finds such a 22-relaxed colouring.

A lower bound of 6 on f(3) was established in [5].

In our next theorem we show that (3, C)-AsymRelCol exhibits the promised hardness

jump.

Theorem 1.3. For the integer f(3) we have that:

(i) (3, C)-AsymRelCol is NP-complete for every 2 � C < f(3),

(ii) any graph G of maximum degree at most 3 is (1, f(3))-relaxed colourable.

In [5] it was shown that for any Δ � 4 and positive C , (Δ, C)-AsymRelCol never

becomes ‘trivial’, i.e., for every finite C there is a NO-instance, so f(4) = ∞. We show

here, however, that the monotonicity of the hardness of (4, C)-AsymRelCol still exists for

C � 2.

Theorem 1.4. (4, C)-AsymRelCol is NP-complete for every 2 � C < f(4) = ∞.

Obviously, this implies that (Δ, C)-AsymRelCol is NP-complete for every Δ > 4 and 2 �
C < f(Δ) = ∞. The proofs of Theorem 1.3 and Theorem 1.4 can be found in Section 4.2.

Remarks. (1) Let f(Δ, n) be the smallest integer f such that every n-vertex graph of

maximum degree Δ is (1, f)-relaxed colourable. Then f(Δ) = sup f(Δ, n). While f(3) is

finite, our graph Gk in Figure 9 provides a simple example for f(4) being non-finite in

a strong sense: in any asymmetric relaxed colouring of Gk there is a monochromatic

component whose order is linear in the number of vertices. This is in sharp contrast to

the examples of [2, 5], where the monochromatic component order is only logarithmic

in the number of vertices. It would be interesting to determine the exact asymptotics of

the function f(4, n); we only know of the trivial upper bound f(4, n) � 3
4
n and the lower

bound f(4, n) � 2
3
n because of Gk .

(2) A similar hardness jump phenomenon occurs for the k-SAT problem with limited

occurrences of each variable. Let k, s be positive integers. A Boolean formula in conjunctive

normal form is called a (k, s)-formula if every clause contains exactly k distinct variables

and every variable occurs in at most s clauses. Tovey showed that every (3, 3)-formula

is satisfiable, while the satisfiability problem restricted to (3, 4)-formulas is NP-complete.

Kratochvı́l, Savický and Tuza [15] generalized this by establishing the existence of a
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function f(k), such that every (k, f(k))-formula is satisfiable, while the satisfiability problem

restricted to (k, f(k) + 1)-CNF formulas is NP-complete. Observe that the monotonicity

of the hardness of the satisfiability problem for (k, s)-formulas is given by definition.

1.3. The symmetric problem

Investigations about relaxed vertex colourings were originally initiated for the symmetric

case by Alon, Ding, Oporowski and Vertigan [2]. They showed that any graph of maximum

degree 4 has a two-colouring such that each monochromatic component is of order at

most 57. This was improved by Haxell, Szabó and Tardos [12], who showed that a

two-colouring is possible even with monochromatic component order 6, and such a (6, 6)-

relaxed colouring can be constructed in polynomial time (the algorithm of [2] is not

obviously polynomial). In [12] it is also proved that the family of graphs of maximum

degree 5 is (17617, 17617)-relaxed colourable. Alon, Ding, Oporowski and Vertigan [2]

showed that a similar statement cannot be true for the family of graphs of maximum

degree 6, as for every constant C there exists a 6-regular graph GC such that in any

two-colouring of V (GC) there is a monochromatic component of order larger than C .

For the problem (Δ, C)-SymRelCol we make progress in the direction of establishing a

sudden jump in hardness. By taking a max-cut one can easily see that (3, C)-SymRelCol is

already trivial for C = 2, so the first interesting maximum degree is Δ = 4. From the result

of [12] mentioned earlier it follows that (4, 6)-SymRelCol is trivial. Cowen, Goddard and

Jesurum [8] showed that (4, 2)-SymRelCol is NP-complete even when the input graphs are

restricted to being planar. We extend this result by showing that (4, 3)-SymRelCol, and

also (6, C)-SymRelCol, is NP-complete for C � 2. We do not know about the hardness of

the problem (4, C)-SymRelCol for C = 4 and C = 5. Again, we do not know any direct

reason for the monotonicity of the problem. At the moment it is in principle possible that

(4, 4)-SymRelCol is in P while (4, 5)-SymRelCol is again NP-complete.

Theorem 1.5. The problems (4, 2)-SymRelCol, (4, 3)-SymRelCol and (6, C)-SymRelCol, for

C � 2, are NP-complete.

Even though the rough outline of the proof follows that of Theorem 1.3, several

sensitive modifications to the definition of the key concepts are necessary. The proof here

is omitted: we refer the reader to the first author’s PhD thesis [4].

1.4. Notation and terminology

The order of a graph G is defined to be the number of vertices of G. Similarly, the order

of a connected component C of G is the number of vertices contained in C . The subgraph

of a graph G induced by a vertex set U ⊆ V (G) is denoted by G[U]. Vertices and edges

in G[U] are referred to as U-vertices and U-edges, respectively. Neighbours of a vertex

v ∈ V (G) in the induced subgraph G[U] are called U-neighbours of v and connected

components in an induced subgraph G[U] are called U-components.

To simplify our notation we often say C-relaxed colouring instead of (1, C)-relaxed

colouring. In our investigation of C-relaxed colourings we will encounter two colour classes

I and B, where I denotes an independent set and B denotes the colour class that induces
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components of order at most C . We say that the colour classes B and I are opposites of

each other. In one of the main auxiliary lemmas, we encounter a third colour class X. We

will also use the term opposite in relation to X and say that B and X are opposite.

For a colour class R (which is a subset of the vertices of G), we often say that we colour

a vertex v with colour R when in fact we place v into R.

2. 6-relaxed colouring of triangle-full graphs

Proof of Theorem 1.1. Let G be a graph of maximum degree 3 such that every vertex of

G is contained in a triangle. We will subsequently call such graphs ‘triangle-full’.

First we show that without loss of generality we can assume that G is diamond-free

(a diamond is a graph on four vertices containing two triangles sharing an edge). We

proceed by induction on the number of vertices in G. If G contains a diamond D, then

by induction we give a 6-relaxed colouring to G− D. (Note that after the deletion of a

diamond the graph is still triangle-full, since Δ(G) � 3.) Then we extend this colouring to

a 6-relaxed colouring of G. First, for any vertex v whose degree is 2 in D (there are two

of these), we colour v with the colour opposite to that received by its unique neighbour

in G− D (if it exists). Then we extend this colouring to the whole D by colouring all

uncoloured vertices with B. In this way the B-component containing a vertex of D is

contained in D, and thus has at most four vertices.

Hence, from now on we can assume that every vertex is contained in exactly one

triangle. Let M be the set of edges of G not contained in triangles of G. Obviously, M

forms a matching. Further, G−M consists of disjoint triangles covering all vertices of G.

The algorithm PA TF(G) (a pseudocode for PA TF can be found in Algorithm 1) constructs

a 6-relaxed colouring (I, B) of G by colouring the vertices triangle after triangle. It colours

the currently processed vertex v with I if it can, i.e., if v has no neighbour that is already

coloured with I . The main point of the algorithm is how to select the next vertex to colour

when all vertices in the current triangle are coloured. In particular we make sure that the

first vertex we colour from each triangle gets a colour opposite to its partner in M.

Let us first introduce some notation used in Algorithm 1. For a vertex v and an oriented

triangle C in G−M containing v, we let v− denote the predecessor of v in C , let v+ be

its successor in C , and let v∗ be its unique neighbour in M (if it exists). We call v∗ the

partner of v.

We immediately see that I forms an independent set. Indeed, only in line 2 do we colour

a vertex with I , where no neighbour of it is already coloured I .

Suppose that there is a B-component C larger than 6.

First observe that if a triangle T of G is completely contained in C then, according

to line 1 in PA TF(G), the partner of each vertex in T must be contained in I . Thus C

consists of only the vertices from T , a contradiction.

Hence we assume that C does not contain any triangle from G completely. Such a

component C intersects with at least four triangles T1, T2, T3, T4 in G. Suppose, without

loss of generality, that Ti is incident to Ti+1, for i ∈ {1, 2, 3}, and that T2 gets coloured

before T3 during the execution of PA TF(G). We denote by vi,j the vertex contained in

Ti ∩ C incident to triangle Tj .
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Algorithm 1: PA TF(G)

Input: Graph G; simple, Δ(G) � 3, triangle-full and diamond-free.

Output: Vertex partition (I, B); I independent set, no component in G[B] larger than

6.

I ← ∅, B ← ∅
give an arbitrary cyclic orientation to each triangle in G

choose arbitrary vertex v in G

while not all vertices of G are coloured do

while not all vertices of the triangle containing v are coloured do

if v− ∈ I or v∗ ∈ I or v+ ∈ I then Add(v, B)1

else Add(v, I)2

v ← v+

if not all vertices of G are coloured then

v ← v− // now v is the last vertex we coloured

if v∗ is uncoloured then v ← v∗3

else if v−∗ is uncoloured then v ← v−∗4

else v ← w, where w is arbitrary uncoloured vertex with w∗ coloured5

return (I, B)

Which vertex of T2 is coloured first? It can be neither v2,1 nor v2,3, since the first vertex

of any triangle gets a colour opposite to its partner’s. (In lines 3, 4, 5 we select the first

vertex of the next triangle, such that its partner is coloured. This is true for the first

coloured vertex of every triangle except the very first one. Then lines 1, 2 make sure that

the first vertex receives a colour different from its partner. This is even true for the very

first vertex, since it is coloured I in line 2 and its partner will receive colour B in line 1.)

So either v2,1 or v2,3 is the last vertex we colour in T2. After all vertices of T2 have

been coloured, PA TF(G) chooses either v1,2 or v3,2 to be coloured next, according to line 3

and line 4 (note that v3,2 is not yet coloured according to our assumption). This is a

contradiction since, again, the first vertex in any triangle has a colour opposite to its

partner.

Remark. Our proof is constructive and yields a C-relaxed colouring of triangle-full

graphs. It is not hard to see that the running time of PA TF(G) is linear in the number of

vertices of G.

3. Trivial (3, C)-AsymRelCol; bounding f(3)

All graphs we consider in this section have maximum degree at most three.

Proof of Theorem 1.2. We prove the statement of Theorem 1.2 by induction on the

number of vertices in G. A generalized diamond D is a subgraph of G induced by four

vertices of G, such that dV (G)−V (D)(v) � 1 for all v ∈ V (D) and the vertices of D with degree

1 into V (G)− V (D) form an independent set in G.
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The core of the proof is the case when G is generalized diamond-free. Otherwise let D be

a generalized diamond in G. By the induction hypothesis, G− V (D) has an I/B-colouring

such that the I-vertices form an independent set and the B-vertices induce monochromatic

components of order at most 22. We extend this colouring to an I/B-colouring of G. We

colour the vertices of D with B unless the vertex has a neighbour in G− V (D), in which

case we use the colour opposite to the colour of this neighbour. This is always possible

since such vertices of D form an independent set in G. Hence all the B-components of

G− V (D) remain the same, while the vertices in D will be part of a B-component of order

at most four.

It is now left to prove Theorem 1.2 when G is generalized diamond-free. One of the

main ingredients of the proof is the following lemma.

Lemma 3.1. Let G be a generalized diamond-free graph of maximum degree 3 on n vertices.

Further, let vfix ∈ V (G) and c ∈ {I, B}. There exists a vertex partition (I, X, B) of G such

that:

(i) I ∪X induces a graph where each I-vertex has degree 0 and each X-vertex has degree 1,

(ii) no triangle contains two vertices from X,

(iii) every B-component is of order at most 6, and

(iv) if d(vfix) = 2 then either vfix is contained in c, or c = I and vfix is contained in X.

Moreover, this vertex partition can be found in time O(n log4 n).

First let us see how Lemma 3.1 implies Theorem 1.2. We note that property (iv) is only

needed for the inductive proof of Lemma 3.1.

Let I, X and B be such as promised by Lemma 3.1. We do a postprocessing in two

phases, during which we distribute the vertices of X between I and B: for each adjacent

pair vw of vertices in X we put one of them into B and the other into I . When this

happens we say that we have distributed the X-edge vw. We specify how we distribute an

X-edge vw by the operation Distribute(v, c), where c ∈ {I, B}. Distribute(v, c) puts v into

c while w is put into the opposite colour class. Note that if property (i) is valid at some

point then it is still valid after the distribution of any X-edge. During the first phase some

vertices contained in B will be moved to I , but once a vertex is in I , it stays there during

the rest of the postprocessing.

For the first phase let us say that a vertex v is ready for a change if v ∈ B and all the

neighbours of v are in B ∪X. Once we find a vertex v ready for a change we move v to I ,

and distribute each X-edge which contains a neighbour u of v by Distribute(u, B). We

iteratively make this change until we find no more vertices ready for a change, at which

point the first phase ends. Note that if a vertex was ready for a change and then moved

to I , it will not become ready for a change again, and thus the first phase terminates.

Property (ii) ensures that the rules of our change are well defined: it is not possible for an

X-neighbour of v to be instructed to be placed in B when it could also be the X-neighbour

of another X-neighbour of v which would instruct it to be in I . Property (i) remains

valid during the first phase, since besides X-edges being distributed (which preserves

property (i)), only such B-vertices are moved to I whose neighbours will all be in B.

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0963548309009663
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 14:32:26, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0963548309009663
https:/www.cambridge.org/core


Deciding Relaxed Two-Colourability: A Hardness Jump 61

Let us now look at how property (iii) changes during the first phase. Crucially, at the

end of the first phase every B-component is a path or a cycle, since any B-vertex with

three B-neighbours is ready for a change. As a result of one change no two B-components

are joined; possibly a vertex u from X which just changed its colour to B is now stuck to

an old B-component. If this happens both of the other neighbours of u are in I (and stay

there). Let C be a B-component after the first phase. We claim that all vertices adjacent

to C are in I except possibly two: one at each endpoint of C (if C forms a path). Indeed,

if an interior vertex of C had an X-neighbour, it would have been ready for a change.

By (iii) there is a path C ′ in C containing at most 6 vertices which used to be part of the

B-component before the first phase. So we can distinguish three cases in terms of how

many X-neighbours C has besides its I-neighbours.

Observation 1. After the first phase every B-component is one of the following:

(a) C is a path containing at most 6 vertices with one X-neighbour at each of its endpoints,

or

(b) C is a path containing at most 7 vertices with one X-neighbour at one of its endpoints,

or

(c) C is a path containing at most 8 vertices with no X-neighbours.

In the second phase we distribute between I and B those vertices which are still in

X. The vertices of colour I or B preserve their colour during this phase. Property (i)

ensures that the set I we obtain at the end of the second phase is an independent set. We

have to be very careful, though, that the connected components in G[B] do not grow too

much during the second phase. We guarantee this by finding a matching transversal in an

auxiliary graph H . The graph H is defined on the vertices of X, V (H) = X. There is an edge

between two vertices u and v of H if u and v are incident to the same component of G[B].

Claim 1. Δ(H) � 2.

Proof. Let us pick a vertex y from V (H) = X. We aim to show that each edge e incident

to y which is not an X-edge (there are at most two of these) is ‘responsible’ for at most

one neighbour of y in H . That is, the component of G[B] adjacent to y via such an edge

e is incident to at most one other vertex from X. Indeed, by Observation 1 above, each

B-component is a path, possibly adjacent to X-vertices through its endpoints, but not

more than to one at each.

The following lemma guarantees a transversal inducing a matching.

Lemma 3.2 ([12], Corollary 4.3). Let H be a graph with Δ(H) � 2 together with a vertex

partition P = {P1, . . . , Pm} into 2-element subsets. Then there is a transversal T ((T ∩ Pi) �=
∅, for all i ∈ {1, . . . , m}) with Δ(H[T ]) � 1.

We note that the proof of Lemma 3.2 in [12] involves a linear time algorithm which

constructs the transversal.
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We apply Lemma 3.2 for H with the partition defined by the edges of G[X] (i.e.,

P = E(G[X])) and find a matching transversal T .

The second phase of our postprocessing consists of moving all vertices of T into B and

moving X\T into I .

Since Δ(H[T ]) � 1 we connect at most three connected components Q1, Q2 and Q3 of

G[B] by moving an edge {u, v} of H into B, with u incident to Q1 and Q2 and v incident

to Q2 and Q3. Obviously, Q1 and Q3 are incident to at least one vertex of H (u and v,

respectively) and Q2 is incident to at least two vertices from H (u and v) before moving the

vertices of T . According to Observation 1, the largest B-component created in this way is

of order at most 7 + 1 + 6 + 1 + 7 = 22. Lemma 3.1(i) guarantees that I is independent,

so the defined colouring is 22-relaxed.

We note that both phases of this proof could be turned into an algorithm whose

running time is linear in the number of vertices of G.

Proof of Lemma 3.1. We use induction on the number of vertices of G. By induction

we can of course assume that G is connected. If G is not 2-connected then there is a

cut-vertex u in G. Let G0 ⊆ G be a component of G− u such that dV (G0)(u) = 1, and let

u′ be the unique neighbour of u in G0. Define G1 = G− G0. Then dV (G1)(u) � 2. Suppose

that vfix ∈ V (Gi) for i = 0 or 1. By induction, we can find a (Ii, Xi, Bi)-partition of Gi such

that vfix receives its prescribed colour. Depending on whether u ∈ V (Gi), either u or u′ has

a colour assigned to it by the partition (Ii, Xi, Bi); say, u is part of the partition. Then

we find a partition (I1−i, X1−i, B1−i) of G1−i by induction, such that the vertex u′ receives

the colour opposite to the colour of u. This implies that the partition of G defined by the

partition (I0 ∪ I1, X0 ∪X1, B0 ∪ B1) is as required by Lemma 3.1.

All these steps can be done quickly. Standard techniques involving a depth-first search

tree of G enable us to find a cut-vertex of G in linear time in the number of edges plus

the number of vertices of G (since we only consider graphs of maximum degree 3, this is

certainly also linear in the number of vertices of G).

The essence of the proof of Lemma 3.1 is the case when G is 2-connected. We start

proving this case by finding an appropriate matching in G.

Proposition 3.3. Every n-vertex, 2-edge-connected graph G of maximum degree at most 3

contains a matching M such that:

(i) Δ(G−M) � 2,

(ii) G−M is triangle-free.

Moreover, M can be found in time O(n log4 n).

Proof. Let us first assume that G contains an even number of vertices of degree exactly

two. We pair each vertex of degree 2 with another vertex of degree 2 and add one edge

between the vertices of each such pair. We denote the new graph by H . Obviously H is a

3-regular, 2-edge connected multigraph.

Secondly, suppose that G contains an odd number of vertices of degree 2. We pick one

vertex v with d(v) = 2 from G, remove v from G and connect its two neighbours via an
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edge ev . The new graph contains an even number of vertices of degree 2. Then we proceed

as above to obtain the graph H .

Assume first that H is triangle-free. By Petersen’s theorem, H contains a perfect matching

MH . Moreover, if the number of vertices of degree 2 was odd, i.e., if ev is defined, then

MH can be chosen such that ev �∈MH . In [6] it is shown that such a matching MH can be

found in time O(n log4 n). Let M consist of those edges of MH which are also edges of G.

Then the requirements of Proposition 3.3 are satisfied (if ev is defined, then the neighbours

of v have degree at most 2 in G−M, since ev /∈MH .)

Let us now consider the general case, when H might contain triangles. In order to

obtain a perfect matching M such that H −M is triangle-free, we iteratively contract all

triangles of H into a vertex, yielding a new triangle-free graph H ′. Then we apply the

above procedure to H ′ instead of H and get a perfect matching M ′ of H ′. We observe

that this perfect matching M ′ can easily be extended to a perfect matching MH of H

where each triangle of H contains exactly one edge of MH . Thus H −MH is triangle-free.

Also, even if ev is contained in a triangle T , we can ensure ev �∈MH by simply forcing the

unique edge incident to T , but not to ev , to not be contained in M ′.

The algorithm that partitions the vertices of G will be denoted by PA(G, vfix, c) (see

Algorithm 2 for the pseudocode) with vfix being the vertex of G that will be coloured c

according to Lemma 3.1(iv).

Let us first discuss informally the main ideas of our algorithm. PA(G, vfix, c) chooses a

matching M of G as in Proposition 3.3. This is in fact the bottleneck of our algorithm:

all other parts are done in linear time. The graph G−M consists of path and cycle

components. Algorithm PA(G, vfix, c) colours the vertices of G, one component of G−M

after another, by traversing each component in a predefined orientation.

PA(G, vfix, c) starts the colouring with the vertex vfix and colour c. We will sometimes

also refer to this vertex as the very first vertex.

For each component the algorithm chooses one of its two orientations. For the

component of vfix this is done according to a special rule. The orientation of other

components is arbitrary. Recall that v+ (v−) denotes the vertex following (preceding) v

according to the fixed orientation of its component. To simplify the description of our

algorithm we introduce the following conventions. For the source v of a path component,

we denote by v− the sink of the path. Similarly, for the sink u of a path component we

denote by u+ the source of the path. If a vertex v is saturated by M, then the vertex v∗

adjacent to v in M is called the partner of v.

As a default PA(G, vfix, c) tries to colour the vertices of a component of G−M with the

colours I and B alternating. Its original goal is to create a proper two-colouring in this

way. Of course, there are several reasons which will prevent PA(G, vfix, c) from doing so.

One main obstacle is when the partner (if it exists) of the currently processed vertex u

is already coloured, and it is done so with the same colour we would assign to u. If the

conflict is in colour I , then the algorithm resolves this by changing both u and its partner

to X. The algorithm generally decides not to care if the conflict is in B. Of course, there

is a complication with this rule when the partner is within the same triangle as u, since

Lemma 3.1 does not allow two X-vertices in the same triangle. This and other anomalies
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Algorithm 2: PA(G, vfix, c)

Input: 2-edge-connected, generalized diamond-free graph G with Δ(G) � 3;

vertex vfix ∈ V (G); colour class c ∈ {I, B}.
Output: Vertex partition (I, X, B); according to Lemma 3.1(i)–(iv).

I ← ∅, X ← ∅, B ← ∅
choose matching M according to Proposition 3.3

while not all vertices of G are coloured do

if I ∪X ∪ B = ∅ then
v ← vfix

Orient the component of v such that {v−−, v−, v} does not form a triangle and1

{v, v+} ∈ E(G)

if d(v) = 3 then Add(v, I)2

else Add(v, c) // rule ‘very first’3

else
v ← FirstVertex(G, v, I, X, B)

Orient the component of v arbitrarily

if v∗ ∈ I ∪X then Add(v, B) // rule ‘first’4

else Add(v, I)5

while not all vertices of the component containing v are coloured do
v ← v+

if v− ∈ I ∪X and {v−, v} ∈ E(G) then

Add(v, B) // rule ‘standard’6

else // that is, v− ∈ B or {v−, v} /∈ E(G)

if v+ is not coloured or v+ ∈ B or {v, v+} /∈ E(G) then

if v∗ ∈ B or v∗ is not coloured or v∗ does not exist then

Add(v, I)7

else // that is, v∗ ∈ I ∪X

if {v, v∗} in a triangle then Add(v, B) // rule ‘triangle’8

else if v∗ ∈ X then Distribute(v∗, B),Add(v, I) // rule ‘special’9

else Add({v, v∗}, X) // move partners into X10

else // colour the last vertex of a cycle if the first is in

I ∪X

if v∗ ∈ I ∪X or v∗ does not exist or {v, v∗} in a triangle then11

Add(v, B) // rule ‘last’12

else // that is, v∗ ∈ B or uncoloured, {v, v∗} not in a

triangle

if v+ ∈ X then Distribute(v+, B),Add(v, I) // rule ‘special’13

else Add({v, v+}, X) // move non-partners into X14

return (I, X, B)
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Algorithm 3: FirstVertex(G, v, I, X, B)

Input: G, I, X, and B as defined in algorithm PA(G, vfix, c), vertex v ∈ V (G) coloured

last.

Output: First vertex of an uncoloured component C to be coloured.

if v∗ is uncoloured then return v∗

else
u← v−

while u �= v and (u /∈ B or u∗ is coloured) do

u← u−1

if u �= v then return u∗2

else return w, where w is arbitrary uncoloured vertex with w∗ coloured.3

(such as the colouring of the last vertex of a cycle when the first and next-to-last vertex

have distinct colours) are handled by a well-designed set of exceptions in place. In fact

the design of such a consistent set of exceptions poses a major challenge.

Subsequently a vertex which is coloured first in a component of G−M is referred to

as a first vertex. Similarly, a last vertex is just a vertex coloured last in a component of

G−M.

After colouring the last vertex v of componentC , the algorithm FirstVertex(G, v, I, X, B)

chooses the partner v∗ of v unless v∗ is already coloured or v∗ does not exist. In that case

FirstVertex(G, v, I, X, B) looks for a vertex with colour B whose partner is uncoloured,

by stepping backwards along the order in which the vertices of C have been coloured,

and eventually starts to colour such a partner. If all of the B-coloured vertices of C

have an already coloured partner or no partner, then FirstVertex(G, v, I, X, B) selects

an arbitrary uncoloured vertex with an already coloured partner. The selection of first

vertices according to FirstVertex coupled with PA makes sure that every first vertex has

a colour opposite to its partner.

For some subset U of the vertices, the operation Add(U, c), as used in PA, first uncolours

those vertices of U which were coloured before and colours all vertices in U with c.

Add(v, c) will be written for Add({v}, c). If a vertex that has been referenced (for instance

v∗) does not exist, then Add(v∗, c) does not change anything. To simplify the description

of the algorithm, by saying, for example, ‘v∗ ∈ I ’, we mean ‘v∗ exists and v∗ ∈ I ’.

Analysis of PA(G, vfix, c). In the following we make a couple of observations about first

vertices. The proof of (ii) of Observation 2 depends on Corollary 3.4, whose proof only

depends on part (i) of Observation 2.

Observation 2. Let v be a first vertex (but not the very first vertex ).

(i) The partner of v exists and v∗ is coloured before v. In particular, v and v∗ are contained

in distinct components of G−M.

(ii) v and v∗ receive opposite colours.
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Proof. (i) A new first vertex is chosen by FirstVertex when each component of

G−M has either all or none of its vertices coloured. If there are still uncoloured vertices

in G, then there must be one which has a coloured partner (since G is connected) and

FirstVertex will select such a first vertex. The last claim then follows since a first vertex

by definition is coloured first within its component, so its partner cannot be in it.

(ii) When FirstVertex selects the next first vertex v, then we know that v∗ exists and is

coloured. Then line 4 or 5 of PA will colour v to the opposite colour, either I or B. If

this colour changes later during the execution of PA then, according to parts (i) and (ii)

of Corollary 3.4, this change must be from I to X, which does not affect the validity of

(ii). By part (iii) of Corollary 3.4, an X-vertex can change its colour to B only if it is the

very first vertex vfix.

Observation 3. If algorithm PA recolours a previously coloured vertex, then one of the

following three cases holds.

(i) A colour I is changed to X either in line 10 or 14. In line 10 we move partners to X,

in line 14 we move the last and first vertex of a component into X.

(ii) In line 9 the previously uncoloured vertex v∗fix receives colour I . Vertex vfix changes its

colour from X to B and v−fix changes its colour from X to I .

(iii) In line 13 the previously uncoloured vertex v−fix receives colour I . Vertex vfix changes its

colour from X to B and v∗fix changes its colour from X to I .

Proof. It is easy to check that PA always assigns colours to the currently processed

vertex v, except in those lines stated in the observation.

Note that there are only two lines, line 10 and 14, when vertices are placed into X.

Part (i) is then immediate.

Let v be the currently processed vertex which is eventually coloured I in line 9. Its

partner, v∗, was coloured with X at a point when v was not yet coloured. Hence v∗ was

not coloured with X in line 10, where partners together are coloured with X, but it had

to be coloured in line 14 where the first and last vertex of a component is coloured with

X. Thus v∗ is either a first or a last vertex. If v∗ were a last vertex, then, since its partner,

v, is then uncoloured, FirstVertex would select v as the next first vertex and PA would

colour v in line 4 and not in line 9. So v∗ must be a first vertex. Unless v∗ is the very first

vertex, according to Observation 2(i), its partner, v, should have been coloured already,

which it is not, a contradiction. Hence v∗ is the very first vertex and part (ii) follows.

For part (iii), suppose that v is the currently processed vertex which is eventually

coloured I in line 13. We know that v+ is a first vertex, which has colour X right before

v is processed. v+ had to receive its colour X in line 10 together with its partner. This

is a contradiction unless v+ is the very first vertex, since, according to FirstVertex and

lines 4 or 5, a first vertex gets coloured right after its partner with the opposite colour.

Hence v+ is the very first vertex and part (iii) follows.

Let us collect some direct implications of Observation 3.
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Corollary 3.4.

(i) A B-vertex is never recoloured.

(ii) An I-vertex can only change its colour to X. If so it had an uncoloured neighbour.

(iii) An X-vertex can be recoloured with B only if it is the very first vertex vfix and d(vfix) = 3.

(iv) An X-vertex can be recoloured with I only if its X-neighbour is vfix and d(vfix) = 3.

After these preparations we are ready to start the actual proof of Lemma 3.1.

Property (i). The first property of Lemma 3.1 is certainly true at the initialization of PA;

we must check that the algorithm maintains it. A vertex v can be added to I in lines 3,

5, 7, 9, or 13. In each of these cases it is easy to check that all the neighbours of v are

in B or uncoloured. For lines 9 and 13 note that first we distribute an X-edge between

B and I such that the neighbour of v in this X-edge gets colour B. (That is, we call

Distribute(v∗, B) for the X-edge {v∗, v∗−} in line 9 and Distribute(v+, B) for the X-edge

{v+, v+∗} in line 13.) Distributing an X-edge does not create any conflict with property (i),

provided the property was true up to that point. Then we put v into I knowing that all

its neighbours are in B or uncoloured.

Vertices are put into X in lines 10 and 14: always an uncoloured vertex v, together with

one of its neighbours z. It is easy to check that in both of these lines all neighbours of v

except z are in B or uncoloured. To maintain property (i) it is enough to verify that before

processing v, z was in I . In line 10 we know that z is the partner of v and is coloured I

or X; in fact line 9 excludes that z ∈ X. In line 14 we know that z is equal to v+ and is

coloured I or X, and line 13 excludes that z ∈ X.

In conclusion, property (i) is valid throughout the algorithm.

Property (ii). Why is property (ii) valid? The ‘triangle rule’ on line 8 ensures that the

vertices we move to X in line 10 are not part of the same triangle. In line 14 we move the

last and first vertices v and v+, respectively, of a component of G−M into X. We must

check that neither {v, v+, v++} nor {v−, v, v+} induces a triangle in G. If {v, v+, v++} was a

triangle then, since no component of G−M is a triangle, v++ has to be the partner of v.

Then line 11 ensures that v∗ = v++ and v are not in the same triangle. Suppose now that

{v−, v, v+} induces a triangle. Again, since no component of G−M is a triangle, v+ has

to be the partner of v−. Unless v+ is the very first vertex, v− cannot be the partner of v+,

since, according to Observation 2(i), v+ and its partner has to be in a different component

of G−M. Finally, if v+ is the very first vertex, then according to the orientation of v+’s

component (see line 1) {v−, v, v+} does not form a triangle. Hence property (ii) is valid.

Property (iii). To derive the bound on the order of the B-components we list the six

reasons a vertex u is coloured B. In the following we emphasize certain properties, which

follow immediately from PA and Corollary 3.4. We will implicitly refer to these properties

throughout the remainder of this section.

• ‘very first’-B: given in line 3; u is the very first vertex vfix, u
+ ∈ I ∪X.

• ‘first’-B: given in line 4; u is the first vertex coloured in its cycle, u+, u∗ ∈ I ∪X.

• ‘triangle’-B: given in line 8; u and u∗ are in the same triangle and u∗ is already coloured

with an I (by the end u∗ might change its colour to X).
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• ‘last’-B: given in line 12; u is the last vertex coloured in its cycle, whose colouring

started with I or X, u+ ∈ I ∪X.

• ‘special’-B: given in lines 9 and 13; u is the very first vertex vfix. u
−, u∗ ∈ I , u+ ∈ B,

u++ ∈ I ∪X.

• ‘standard’-B: given in line 6; u− ∈ I ∪X unless u− is a ‘special’-B and u+ ∈ I ∪X.

Every B-coloured vertex has a exactly one of these six reasons why it is coloured B.

Note that a B-coloured last vertex is not necessarily a ‘last’-B, it could be a ‘standard’- or

‘triangle’-B. Also, a B-coloured very first vertex is not necessarily a ‘very first’-B, but can

also be a ‘special’-B.

We call a B-component of a component C of G−M a segment. Let C̃ be the

component C together with the edges of G of the form {v, v++} for v ∈ V (G) (we

call such edges extended edges). Note that every triangle contains an extended edge. We

call a B-component of C̃ an extended segment.

Proposition 3.5. Any extended segment contains at most 4 vertices.

Proof. First let us show the following facts.

Claim 2.

(i) Suppose u−, u, and u+ are all coloured B for some u ∈ V (G). Then u is a ‘triangle’-B.

In particular, its partner is in I ∪X.

(ii) Let v1, v2, v3, v4, v5 be five distinct, consecutive vertices along some component C in G−M

which are coloured B,B, I/X, B, B, in this order. Then v2 cannot be adjacent to v4.

Proof. (i) For a vertex v which is a ‘standard’-B, ‘first’-B, ‘very first’-B, ‘last’-B, or

‘special’-B, either v− or v+ is in I ∪X.

(ii) Let us suppose that v2 is adjacent to v4 and the orientation of the cycle passes through

these vertices from left to right (possibly starting/ending among them).

The vertex v2 is not a ‘triangle’-B since v∗2 = v4 is not in I ∪X. If v2 is a ‘standard’-B,

then v1 has to be a ‘special’-B, since v1 /∈ I ∪X. In any case, the first vertex coloured in

C is either v1, v2 or v3. This implies that v5 is neither a ‘first’-B nor a ‘very first’-B nor

a ‘special’-B. If v5 were a ‘last’-B, then v+
5 ∈ I ∪X. Also, v+

5 is the first vertex of C , so

v+
5 = v1, which has colour B, a contradiction. If v5 were a ‘standard’-B, then v4 should be

in I ∪X or should be a ‘special’-B, neither of which is the case. Hence v5 is a ‘triangle’-B.

Its partner cannot be v3, since then {v2, v3, v4, v5} would induce a generalized diamond. So

its partner is v7 (the other vertex distance two away from v5 along C) which then must

have already been coloured when we arrive at v5. Hence the first vertex coloured in C had

to be either v6 or v7. Since v7, as the partner of a ‘triangle’-B, is in I ∪X, v7 �= v1, v2, v4.

Also, v7 �= v3 since our assumption about the vis being distinct. This contradicts the fact

that the first vertex of C is among v1, v2, and v3.

Part (i) immediately implies that a segment of length 5 does not exist.
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Let S be an extended segment and classify the cases according to a longest segment S ′

it contains.

If S ′ is of order one then obviously S is of order at most two.

If S ′ is of order two, then by part (ii) of Claim 2 S cannot contain more segments

of order two, only possibly two more segment of order one. Hence its order is at most

1 + 2 + 1 = 4.

If S ′ is of order three, then again by part (ii) it cannot be joined to a segment of order

at least two. Moreover, it cannot be joined to segments of order one both ways, because,

by part (i), at least one way it is closed by a triangle (no generalized diamonds!).

If S ′ is of order four, then by part (i) both endpoints participate in a triangle and they

cannot extend the segment further, because G contains no generalized diamonds.

A vertex v of an extended segment S is called a potential connector if its partner v∗ exists,

{v, v∗} is not an extended edge, and v∗ either has colour B or is uncoloured at the time

when the colouring of the component of G−M containing S is concluded. Observe that

two extended segments can be connected only via their respective potential connectors.

Proposition 3.6.

(i) If v is a potential connector of extended segment S which does not contain a ‘special’-B,

then v− /∈ S .

Every extended segment contains at most one potential connector. In particular, every

extended segment is adjacent to at most one other extended segment in G.

(ii) No extended segment of order at least three is adjacent to another extended segment of

order at least three.

Proof. Let v be a potential connector of extended segment S , |S | � 2. We claim that v

is a ‘standard’-B.

If v was a ‘first’-B, ‘triangle’-B, or ‘special’-B, then v∗ is in I ∪X immediately after we

coloured v with B, so v is not a potential connector.

If v was a ‘last’-B, then it is coloured in line 12. Since v∗ exists and {v, v∗} is not part of

a triangle, we have that v∗ ∈ I ∪X at the time of the colouring. Hence v is not a potential

connector.

If v = vfix was a ‘very first’-B, then v+ ∈ I ∪X. Since {v, v+} ∈ E(G) (see the orientation

rule in line 1), v∗fix exists, and d(vfix) = 2 (see line 2), we have that {v−, v} is not an edge of

G. Since {v, v∗} is not an extended edge, S consists only of a single vertex.

Let us now show part (i) of Proposition 3.6. Let S be an extended segment not

containing a ‘special’-B with a potential connector v. Since v is a ‘standard’-B and v− is

not a ‘special’-B, v− ∈ I ∪X and, in particular, is not in S .

Suppose now that an arbitrary extended segment S contains two potential connectors

u and w. In particular, u∗, w∗ /∈ S . Then either u− or w− has to be in S (otherwise u and w

could not be in the same extended segment). Assume that, say, u− ∈ B. In accordance with

the above, u is a ‘standard’-B. Hence u− must be a ‘special’-B and u+ ∈ I ∪X. Moreover,

u−∗ and u−− are both contained in I ∪X. Thus S = {u, u−} and u− is not a potential

connector, a contradiction.
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Let us now proceed with the proof of part (ii). Suppose there are two distinct extended

segments S and S ′, each of order at least 3, contained in the same B-component C of G.

If S contained a ‘special’-B vertex v (which is the very first vertex) then v+ is the only

neighbour of v which is in B. Also, since v++ ∈ I ∪X and |S | � 3, the partner of v+ has

to be v+++ and have colour B. It is easy to see that v++++ ∈ I ∪X, so C is equal to

S = {v, v+, v+++}.
Hence we can assume that neither S nor S ′ contains a ‘special’-B vertex. Suppose

further that PA colours S prior to S ′. According to (i), C does not contain any other

vertex besides the vertices of S and S ′. Let us denote the potential connectors of S and

S ′ by w and w′, respectively. Hence w∗ = w′, w′∗ = w and {w,w′} ∈ E(G).

We will derive a contradiction by showing that w′ ∈ I ∪X.

Claim 3. Let S be an extended segment of order at least three, which does not contain a

‘special’-B vertex. Then S contains a last vertex vl .

We postpone the proof of Claim 3, and continue with the proof of (ii).

After having coloured the last vertex vl ∈ S of a component of G−M containing the

extended segment S , FirstVertex(G, vl , I, X, B) searches for a vertex u with an uncoloured

partner to continue the colouring with u∗. The potential connector w has an uncoloured

partner, w′, and we claim that FirstVertex(G, vl , I, X, B) will reach w and will output

w∗ = w′ as the new first vertex. If v∗l is uncoloured then vl is the unique potential

connector of S , vl = w. Otherwise FirstVertex(G, vl , I, X, B) starts stepping backwards

on C looking for a vertex of colour B with an uncoloured partner (see line 1 of

FirstVertex). We claim that the first such vertex is w. By Proposition 3.6(i) we have that

w− �∈ S , and {w,w−−} /∈ E(G), since w is a potential connector, so w−− /∈ S . Hence there

is a vlw-path vl = p1 · · · pm = w in S such that pi+1 = p−i or p−−i for every i = 1, . . . , m− 1.

FirstVertex(G, vl , I, X, B) will consider all vertices of C in a backward direction from vl
to w. Vertices pi with i < m are not eligible, since they have a coloured partner. Other

vertices between vl and w are outside S and are thus contained in I ∪X. Eventually

FirstVertex(G, vl , I, X, B) reaches vertex w. According to our assumption w′ ∈ S ′ has

not yet been coloured, thus FirstVertex(G, vl , I, X, B) chooses w′ to be coloured next.

Then w′ is coloured I according to line 5 of PA, a contradiction.

We have thus concluded the proof of Proposition 3.6.

Proof of Claim 3. Suppose S with |S | � 3 contains neither a ‘special’-B nor vl . Then S

certainly does not contain a ‘last’-B vertex.

If S contained a ‘very first’-B vertex v, then v− = vl /∈ S and v+ ∈ I ∪X. Since |S | � 3,

v∗ ∈ S and at least one of v∗+ and v∗− is in S . First assume that v∗ = v++. It is easy

to check that v∗+ ∈ I ∪X, which is a contradiction since v∗− = v+ ∈ I ∪X. Now assume

that v∗ = v−−. Obviously, v−− is not a ‘very first’-B, nor a ‘first’-B, nor a ‘special’-B, nor a

‘last’-B. Also, v−− is not a ‘triangle’-B since its partner, v, is not in I ∪X. Therefore v−−

has to be a ‘standard’-B. Then v−−− is in I ∪X since it is certainly not a ‘special’-B (it is

not the very first vertex). This is then a contradiction to |S | � 3, since by our assumption

v−−+ = v− ∈ I ∪X. We can thus conclude that S does not contain a ‘very first’-B.
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S does not contain a ‘first’-B vertex v either, otherwise S = {v}. Indeed, v− = vl and

v+ ∈ I ∪X and, according to Observation 2(i), v∗ is contained in a different component

of G−M.

From now on we assume that every vertex of S is either a ‘triangle’-B or a ‘standard’-B.

Suppose S contains a ‘triangle’-B vertex u, such that u∗ = u++. Then u++ ∈ I ∪X and u+

has to be in B because properties (i) and (ii) of Lemma 3.1 hold. It follows that u+ ∈ S ,

but u+ can neither be a ‘standard’-B, since its predecessor is not in I ∪X, nor can it be

a ‘triangle’-B, because {u, u+, u++, u+∗} would form a generalized diamond. We conclude

that S does not contain a ‘triangle’-B vertex u, such that u∗ = u++. Suppose now that S

contains a ‘triangle’-B vertex v, such that v∗ = v−−. Then v∗ ∈ I ∪X. Vertex v−∗ is not in

S , otherwise {v, v−, v−−, v−∗} would be a generalized diamond. Since |S | � 3, vertex v+ has

to be in B. It cannot be a ‘standard’-B because its predecessor is not in I ∪X. Vertex v+

also cannot be a ‘triangle’-B, since we have already seen that its partner cannot be v+++,

and if its partner were v− then {v−−, v−, v, v+} would form a generalized diamond.

Thus the vertices in S are all ‘standard’-B vertices, each forming a (not extended)

segment of order 1. Each such segment can connect to at most one other such segment

via an extended edge. Thus |S | � 2, a contradiction.

Propositions 3.5 and 3.6 immediately imply part (iii) of Lemma 3.1.

Property (iv). We can assume that d(vfix) = 2. The vertex vfix is contained in c after line 3.

If c = B, then according to Corollary 3.4(i), vfix is not recoloured at all. If c = I , then

according to Corollary 3.4(ii) and (iii), vfix can be recoloured with X, but not with B.

4. Hardness results

4.1. 0/1-colourings

In this subsection we take the first step, which is common to all our hardness proofs.

Our plan is to reduce our problems to 3-SAT. Given a 3-SAT formula F , we construct (in

polynomial time) a graph GF together with a constraint function c = cF , such that (GF, c)

has a so-called 0/1-colouring if and only if the formula F is satisfiable.

Let G be a graph and c : V (G)→ N ∪ {∞} be a constraint function. Then a mapping χ

from V (G) to {0, 1} is called a 0/1-colouring of (G, c) if the vertices with χ-value 1 induce

an independent set and the order of each connected component C induced by vertices of

χ-value 0 is not larger than the constraint of any of its vertices, that is, c(v) � |C| for all

v ∈ C .

We will assemble GF from various building blocks, pictured in Figures 1 and 2. In the

following, if the constraint of a vertex is not specified then it is taken to be ∞.

The not-gadget NG is just a path vv̄ of length one, where v has constraint 1.

The copy gadget CG(i) consists of a path P : v1, v2, . . . , vk with k = 2i− 1 and every

vertex v2j−1, j ∈ {1, . . . , i− 1} is identified with an endpoint of a copy P (j) of a path of

length two. The vertex v1 is called the root; other vertices of degree one are called the

leaves of the gadget. Thus CG(i) contains exactly i leaves. Every vertex of degree two of

CG(i) is given constraint 1. For more insight see Figure 1. Let us collect some simple facts

about these gadgets.
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Figure 1. Basic building blocks of the graph GF .

Figure 2. The clause gadget G∗D for clause D = (li1 ∨ li2 ∨ li3 ).

Proposition 4.1.

(i) The not-gadget NG is 0/1-colourable. Moreover, in any 0/1-colouring of the not-gadget,

the vertex v̄ is coloured with a different colour from that of vertex v.

(ii) The copy gadget CG(i) is 0/1-colourable. Moreover, in any 0/1-colouring of CG(i), all i

leaves have identical colours to the root of the gadget.

Proof. For each gadget, a 0/1-colouring is indicated in Figure 1 (‘white’ corresponds to

colour 0 and ‘black’ corresponds to colour 1). All the statements are easily verified.

For every clause D = (li1 ∨ li2 ∨ li3 ) in F we also construct a gadget. The clause gadget

G∗D as shown in Figure 2 contains vertices aD, bD, cD, dD and a vertex li,D corresponding

to each literal li appearing in the clause D. The constraints of li1 ,D and li2 ,D are 2 and the

constraints of li3 ,D and bD are 1.

Proposition 4.2. A 0/1-colouring χ of the vertices li1 ,D, li2 ,D, li3 ,D of the clause gadget G∗D is

extendable to a 0/1-colouring of G∗D if and only if at least one of li1 ,D, li2 ,D, li3 ,D received the

colour 1.

Proof. Let us first suppose that χ(lij ,D) = 0, for all j ∈ {1, 2, 3} and try to extend χ to a

0/1-colouring of G∗D . Then aD must be coloured 1, since li1 ,D and li2 ,D have constraint 2.

Since 1-vertices form an independent set, χ(bD) = 0. The constraint of bD implies that

χ(cD) = 1, which then implies that χ(dD) = 0. Hence li3 ,D is contained in a 0-component of

order at least 2, which contradicts the fact that its constraint is 1. We conclude that an

extension to a 0/1-colouring of G∗D is not possible.

Secondly, we show that an extension exists if some lij ,D is coloured 1 in χ.
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Figure 3. The extended clause gadget GD for the clause D = (xi1 ∨ x̄i2 ∨ xi3 ).

First suppose that χ(li1 ,D) = χ(li2 ,D) = 0 and χ(li3 ,D) = 1. Then χ(aD) = χ(cD) = 1, χ(bD) =

χ(dD) = 0 is a 0/1-colouring of G∗D .

Now let (χ(li1 ,D), χ(li2 ,D)) �= (0, 0). Then χ(aD) = 0, χ(bD) = 1, χ(cD) = 0 and either χ(dD) =

1 if χ(li3 ,D) = 0 or χ(dD) = 0 if χ(li3 ,D) = 1 again results in a 0/1-colouring of G∗D .

Now we are ready to define the graph GF together with its constraint function cF . First,

for each clause D we construct the extended clause gadget GD by taking the clause gadget

G∗D and identify each vertex li,D corresponding to a negated variable x̄i in the clause D

with the leaf xi,D of a not-gadget. We call this the extended clause gadget of the clause D.

See Figure 3 for an example.

Proposition 4.3. An assignment α satisfies the clause D if and only if there is a 0/1-colouring

of the extended clause gadget GD such that the vertices corresponding to the variables receive

the colours the assignment α gives them.

Proof. It is easy to verify, based on the properties of the not-gadget and the properties

of the clause gadget discussed in the previous two propositions.

The graph GF is put together from these extended clause gadgets of the clauses of F

with the help of one copy gadget for each variable of F . Formally, GF is constructed

as follows. We take the disjoint union of one extended clause gadget for each clause in

F . Then we add one copy gadget Cx for each variable x. If the variable x occurs in ix
clauses then the leaves of the copy gadget Cx

∼= CG(ix) are identified with the vertices

corresponding to the same variable x in the extended clause gadgets.

Obviously, the graph GF can be constructed in polynomial time in the number of

clauses and variables of F .

The main theorem of the section is now a simple consequence of the above.

Theorem 4.4.

(i) GF is 0/1-colourable if and only if F is satisfiable.

(ii) Δ(GF ) � 3 and every vertex v of GF with c(v) < ∞ has degree at most 2.
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Proof. Let α be a satisfying assignment of F . Then we start defining a 0/1-colouring

of GF by assigning colour α(x) to the root of the copy gadget Cx corresponding to the

variable x. This can be extended to an 0/1-colouring of the copy gadgets by part (ii) of

Proposition 4.1, where the leaves receive the same colour as their respective roots. All

these leaves are identified with a vertex of an extended clause gadget. Since α satisfies all

the clauses of F , these partial colourings of the extended clause gadgets can be extended

to a 0/1-colouring of the whole gadget (see Proposition 4.3) and thus the whole graph

GF is 0/1-coloured.

Now let χ be a 0/1-colouring of GF . We claim that the colours given to the roots of the

copy gadgets corresponding to the variables give a satisfying assignment of F . By part (ii)

of Proposition 4.1 all the leaves are the same colour as their roots in the copy gadget. By

Proposition 4.3 every extended copy gadget has a satisfying assignment, so we are done.

Part (ii) is straightforward.

4.2. Hard (3, C)-AsymRelCol

We will use the core graph GF defined above to construct a graph RelColGraph(F) in

polynomial time, which is C-relaxed colourable if and only if the formula F is satisfiable.

For a C-relaxed colouring we denote the colour class forming an independent set by I

and the colour class spanning components of order at most C by B.

Definition. Let C � 2 and Δ � 3 be integers. A graph G is called (Δ, C)-forcing with

forced vertex f ∈ V (G) if:

(i) Δ(G) � Δ and f has degree at most Δ− 1,

(ii) G is C-relaxed colourable, and

(iii) f is contained in I for every C-relaxed two-colouring of G.

Lemma 4.5. For any integers Δ � 3 and C � 2 the decision problem (Δ, C)-AsymRelCol is

NP-complete provided a (Δ, C)-forcing graph exists.

Proof. We will show that there is a polynomial time algorithm which, given a 3-CNF

formula F , produces a graph RelColGraph(F) of maximum degree at most Δ such that F

is satisfiable if and only RelColGraph(F) has a C-relaxed colouring.

The base gadget BGl contains l disjoint copies H1, . . . , Hl of the (Δ, C)-forcing graph

H , the forced vertex fi of copy Hi is joined to a new vertex ti for i ∈ [l], and the vertices

t1, t2, . . . , tl form a path. The vertex t1 (of degree two) is called the sink of the base

gadget.

Proposition 4.6. The base gadget BGl is C-relaxed colourable for every l � C . Moreover,

in any C-relaxed colouring of BGl , l � C , the sink is contained in a B-component of order l.

Proof. A C-relaxed colouring of the base gadget is indicated in Figure 4 with ‘black’

corresponding to colour class B and with ‘white’ corresponding to colour class I . In any

C-relaxed colouring χ of the base gadget BGl , χ(ti) = B, since fi is forced to be contained

in I . Thus the vertices ti for i ∈ {1, . . . , l} form a B-component of order exactly l.
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Figure 4. The base gadget BGl .

Figure 5. Splitting e = {u, v} into e1 = {u, f} and e2 = {f, v}.

Now RelColGraph(F) is obtained from GF by connecting each vertex with constraint

1 to the sink of a base gadget BGC−1, and connecting each vertex with constraint 2 to

the sink of a base gadget BGC−2. Note that the obtained graph has maximum degree Δ,

according to part (ii) of Theorem 4.4. Note also that GF is 0/1-colourable if and only

if RelColGraph(F) has a C-relaxed colouring. A C-relaxed colouring of RelColGraph(F)

restricted to V (GF ) is a 0/1-colouring if we exchange the colour I to 1 and the colour

B to 0. Conversely a 0/1-colouring of GF can be extended to a C-relaxed colouring of

RelColGraph(F) by identifying 1 with I , and 0 with B, and extending this colouring to

the base gadgets appropriately (such a colouring exists by Proposition 4.6).

4.2.1. (3, C)-forcing graphs. Let GC denote the family of graphs of maximum degree at

most three that are not C-relaxed two-colourable.

Lemma 4.7. For all C � 2, if GC �= ∅ then there is a (3, C)-forcing graph.

Proof. Let us assume first that C � 6. By a lemma of [5] we can assume that any

member of GC contains a triangle.

Lemma 4.8 ([5]). Any triangle-free graph of maximum degree at most 3 has a 6-relaxed

colouring.

Let us fix a graph G ∈ GC which is minimal with respect to deletion of edges. Let T

be a triangle in G (guaranteed by Lemma 4.8) with V (T ) = {t1, t2, u} and let e = {u, v} be

the unique edge incident to u not contained in T . We split e into e1, e2 with e1 = {u, f}
and e2 = {f, v}, and denote this new graph by H (see Figure 5). We claim that H is a

(3, C)-forcing graph with forced vertex f. H is C-relaxed colourable since the minimality

of G ensures that G− e has a C-relaxed colouring, while the non-C-relaxed-colourability
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Figure 6. (3, C)-forcing graph for C ∈ {2, 3}.

of G ensures that the colours of u and v are the same on any C-relaxed colouring of

G− e. So any C-relaxed colouring χ of G− e can be extended to a C-relaxed colouring

of H by colouring f with the opposite of the colour of u and v. Moreover, any such

extension is unique. If χ(u) = χ(v) = I , then obviously χ(f) = B. If χ(u) = χ(v) = B = χ(f)

and χ is a C-relaxed colouring of H , then χ restricted to V (G) is a C-relaxed colouring of

G, a contradiction.

Thus, in any C-relaxed two-colouring χH of H , (χH (u), χH (f), χH (v)) is either (I, B, I) or

(B, I, B).

We denote by v1, v2 the neighbours of t1 and t2, respectively, not contained in T

(possibly v1 = v2). Suppose the vertices (u, f, v) of H can be coloured with (I, B, I). But

then χH (t1) = χH (t2) = B.

Case (i). If χH (v1) = χH (v2) = I then we define a C-relaxed two-colouring χG for G as

follows: χG(x) = χH (x) for all x ∈ V (G)\{u} and χG(u) = B.

Case (ii). Without loss of generality χH (v1) = B. We define a C-relaxed two-colouring

χG for G as follows: χG(x) = χH (x) for all x ∈ V (G)\{t1, u}, χG(t1) = I , and χG(u) = B.

Indeed, the B-component containing t2 did not increase, since χG(t1) = χG(v) = I and in

H χH (t1) = B.

In both cases G would be C-relaxed two-colourable, a contradiction. Thus, in any

C-relaxed two-colouring of H the vertices (u, f, v) are coloured (B, I, B). The vertex f is

contained in I and is of degree 2, hence H is a (3, C)-forcing graph with forced vertex f.

For 2 � C � 5 we explicitly construct (3, C)-forcing graphs. The graph G in Figure 6 is

(3, C)-forcing for C ∈ {2, 3}. First we observe that G is indeed 2-relaxed two-colourable:

just take I = {f, t′2, t′′3} and B = V (G)\I . It is also not hard to check that there is no

3-relaxed two-colouring where vertex f is contained in B. Suppose there is a 3-relaxed

two-colouring of G in which f is contained in B. If t′1, t
′′
1 are contained in I , then no other

vertex is contained in I and we have a B-component of order four. On the other hand,

if t′1, t
′′
1 are both contained in B then we have a B-component of order at least five. So

without loss of generality t′1 is contained in I and t′′1 is contained in B. The B-components

on both triangles are connected, thus we have a B-component of order five again.

Next we construct a graph H which is (3, C)-forcing for C ∈ {4, 5}. First let us show

that, for the graph H∗ in Figure 7, (i) there is a 4-relaxed two-colouring, and (ii) there is

no 5-relaxed colouring where u is contained in I .

(i) The vertex partition defined by I = {t1,2, t2,4, t3,1, t4,5, t5,3} and B = V (H∗)\I is a 4-

relaxed two-colouring of H∗,
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Figure 7. Graph H∗.

Figure 8. (3, C)-forcing graph for C ∈ {4, 5}.

Note that in this colouring u = t1,1 is contained in a B-component of order two.

(ii) The key observation is that in any 5-relaxed colouring of H∗ with u ∈ I , for a triangle

Ti with V (Ti) = {ti,j , ti,k, ti,l}, if ti,j is contained in I then at least one of tk,i, tl,i is

contained in I . Suppose not: then the at least six B-vertices of the three triangles

Ti, Tk, and Tl are contained in the same B-component.

Thus, if t1,1 is contained in I in a 5-relaxed colouring of H∗, then, without loss of

generality t3,1 is contained in I as well. This then implies that one of t4,3 and t5,3, say

t5,3, is in I . Hence t1,2, t5,2 ∈ B and t3,4, t5,4 ∈ B. These, together with the key observation,

imply that t2,4 ∈ B and t4,2 ∈ B, respectively. Finally, all neighbours of triangle T4 are in

B, which together with the key observation imply that all vertices of T4 are in B, so the

B-component of T4 has order at least six.

The graph H is pictured in Figure 8. The subgraphs Hi, i ∈ {1, . . . , 4}, are copies of the

graph H∗, with ui corresponding to vertex u of H∗.

The colouring of part (i) can easily be extended to a 4-relaxed colouring of H .

As we have seen, in any 5-relaxed colouring of H all ui ∈ B. Thus, as in the key

observation above, v and w are contained in B. Hence, if f were in B, then its B-

component would be of order at least seven, a contradiction. Thus, in any 5-relaxed

colouring of H the vertex f is contained in I , so H is (3, C)-forcing for C ∈ {4, 5}.

Note that (3, C)-AsymRelCol is obviously trivial for all C with GC = ∅, so Theorem 1.3

follows immediately from Lemma 4.7 and Lemma 4.5.

4.2.2. (4, C)-forcing graphs.

Lemma 4.9. For all Δ � 4 and all C � 2, there is a (Δ, C)-forcing graph.
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Figure 9. Gk with one B-component of order 2k.

Figure 10. Hardness of (Δ, C)-AsymRelCol.

Proof. Suppose first that C = 2k − 2. Let us look at the graph Gk in Figure 9. This

graph is not (2k − 1)-relaxed two-colourable, since in any triangle vi,1, vi,2, vi,3 at most one

vertex is contained in the independent set I . The two other vertices are contained in B,

and since there are three edges connecting this triangle to a neighbouring triangle the

components in Gk[B] of all triangles of Gk are connected and form one big component in

Gk[B]. Removing the edge e = {v1,1, v1,2} makes Gk (2k − 2)-relaxed two-colourable, and

in any such colouring χ, χ(v1,1) = χ(v1,2) = I . Thus Gk − e is (4, 2k − 2)-forcing, with forced

vertex v1,1 (or v1,2).

Similarly, Gk with an additional vertex v adjacent to vk,1, vk,2, vk,3 (denote this graph by

H) is not (2k)-relaxed two-colourable, hence H − e is (v, 2k − 1)-forcing again with forcing

vertex v1,1 or v1,2.

Combining Lemmas 4.9 and 4.5 concludes the proof of Theorem 1.4.

5. Summary and open problems

It would be interesting to determine exactly the critical monochromatic component order

f(3) at which the problem (3, C)-AsymRelCol becomes trivial. In Figure 10 we summarize

the results for the hardness of deciding (Δ, C)-AsymRelCol. We divide the results into

three classes, depending on whether (Δ, C)-AsymRelCol is trivial (T), polynomial time

decidable (P) or NP-complete (N).

We conjecture that there is a sudden jump in the hardness of the problem (4, C)-

SymRelCol. Such a result would be particularly interesting, since here the determination
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Figure 11. Hardness of (Δ, C)-SymRelCol.

of the critical component order is even more within reach (between 4 and 6). As a first

step one could try to prove the monotonicity of the problem.

Conjecture 1. Prove that there exists an integer g(4) such that:

• for every C, 2 � C < g(4), it is NP-hard to decide whether a given graph G of maximum

degree 4 has a (C,C)-relaxed colouring, and

• every graph of maximum degree 4 is (g(4), g(4))-relaxed colourable.

A similar problem is wide open for graphs with maximum degree 5: Does (5, C)-

SymRelCol exhibit monotone behaviour for C � 2? Is there a ‘jump in hardness’? Again

we use a table to summarize the hardness results for deciding (Δ, C)-SymRelCol: see

Figure 11.

For colourings with more than two colours we know much less. Even graph-theoretic

questions concerning interesting maximum degrees are open. The following seems a

challenging problem.

Open problem 1. Determine asymptotically the largest Δk for which there exists a con-

stant Ck , such that every graph of maximum degree Δk can be k-coloured such that every

monochromatic component is of order at most Ck .

The current bounds are 3 < Δk/k � 4 (see [12]).

The next two problems discuss the simplest special cases for three colours.

Open problem 2. Is there a constant C such that every graph with maximum degree 9 can

be three-coloured such that every monochromatic component is of order at most C?
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The answer is ‘yes’ for graphs with maximum degree 8 and ‘no’ for graphs of maximum

degree 10 (see [12]).

Open problem 3. Is there a constant C such that every graph of maximum degree 5 can

be red/blue/green-coloured such that the set of red vertices and the set of blue vertices are

both independent while every green monochromatic component is of order at most C?

The answer is ‘yes’ for graphs with maximum degree 4 and ‘no’ for graphs of maximum

degree 6 (see [5]).

The following problem came up in conversations with Nati Linial and Jirka Matoušek.

Let g(Δ, n) be the smallest integer g such that every n-vertex graph of maximum degree Δ

is (g, g)-relaxed colourable. Motivated by the fact that g(n, 5) = O(1) [12] and their result

[16] showing that g(n, 7) = Ω(n), we would be very curious to know the order of g(n, 6).

By a theorem of Hochberg, McDiarmid and Saks [14], any two-colouring of the graph Tn

(which has maximum degree 6) contains a monochromatic component of order Ω(
√
n).
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