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S U M M A R Y
We investigate the implications of lateral variations in the topography of global seismic discon-
tinuities, in the framework of high-resolution forward modelling and seismic imaging. We run
3-D wave-propagation simulations accurate at periods of 10 s and longer, with Earth models
including core–mantle boundary topography anomalies of ∼1000 km spatial wavelength and
up to 10 km height. We obtain very different waveform signatures for PcP (reflected) and
Pdiff (diffracted) phases, supporting the theoretical expectation that the latter are sensitive pri-
marily to large-scale structure, whereas the former only to small scale, where large and small
are relative to the frequency. PcP at 10 s seems to be well suited to map such a small-scale
perturbation, whereas Pdiff at the same frequency carries faint signatures that do not allow any
tomographic reconstruction. Only at higher frequency, the signature becomes stronger. We
present a new algorithm to compute sensitivity kernels relating seismic traveltimes (measured
by cross-correlation of observed and theoretical seismograms) to the topography of seismic
discontinuities at any depth in the Earth using full 3-D wave propagation. Calculation of
accurate finite-frequency sensitivity kernels is notoriously expensive, but we reduce computa-
tional costs drastically by limiting ourselves to spherically symmetric reference models, and
exploiting the axial symmetry of the resulting propagating wavefield that collapses to a 2-D
numerical domain. We compute and analyse a suite of kernels for upper and lower mantle
discontinuities that can be used for finite-frequency waveform inversion. The PcP and Pdiff

sensitivity footprints are in good agreement with the result obtained cross-correlating per-
turbed and unperturbed seismogram, validating our approach against full 3-D modelling to
invert for such structures.

Key words: Body waves; Computational seismology; Mantle discontinuities; Seismic
tomography; Topography; Wave propagation.

1 I N T RO D U C T I O N

Since the pioneering works of Oldham (1906), Gutenberg (1914)
and Lehmann (1936), among others, mapping the depth and laterally
varying topography of seismic discontinuities has been integral to
progress in understanding our planet’s structure and dynamics. Later
research has focused on upper-mantle discontinuities, which are
sampled by a relatively large quantity of high-quality seismic data.
The 220, 410, 520 and 660 km discontinuities have been studied in
detail since the 1960s and are partly features of PREM (Dziewonski
& Anderson 1981). The ‘660’ in particular characterizes the bottom
end of the transition zone, that is, the boundary separating upper-
and lower-mantle subject to important mineral phase transitions (Ita
& Stixrude 1992).

More recent studies attempted to map the actual topography of
the discontinuities mainly using SS and PP precursor differential
traveltime, see Deuss (2009) for a review. Discontinuity topography
is coupled with mantle structure via convective flow (Gu et al.
1998; Flanagan & Shearer 1999) so that the tomography maps

can serve as constraints for geodynamics models, including the
geometry of subducting slabs and presumed mantle plumes. Seismic
studies of discontinuity topography have thus far been based on the
ray-theory (infinite frequency) approximation; only Lawrence &
Shearer (2008) made use of finite-frequency traveltime kernels as
provided by Dahlen (2005). Waveform inversions have not yet been
attempted at the global scale.

The strongest discontinuity in the Earth’s interior is the
core–mantle boundary (CMB), separating the solid mantle from
the fluid outer core. Its topography is very likely related both to
the thermal/compositional/viscosity structure (and associated con-
vection) of the mantle (Forte et al. 1995; Soldati et al. 2012), and
to the properties of the outer core, where vigorous convection is
believed to generate the Earth’s magnetic dynamo (Jackson et al.
1993). A number of authors, starting with Morelli & Dziewonski
(1987), mapped CMB topography based on compressional-wave
traveltimes, whereas others (e.g. Ishii & Tromp 2001; Koelemeijer
et al. 2012) inverted observations of eigenfrequency splitting, focus-
ing on normal modes sensitive to the CMB. Most ray-theory authors
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Figure 1. Map of CMB topography obtained in Soldati et al. (2012). Note
the smooth lateral variation. The topography is measured in kilometre.

find a similar degree-2 pattern with peak-to-peak topography of a
few kilometres (see Fig. 1 for an example), but shorter-wavelength
structure is more difficult to constrain. Several studies (e.g. Boschi
& Dziewonski 1999; Vasco et al. 1999; Soldati et al. 2003) point
to a discrepancy in CMB structure as mapped by core-refracted
(various branches of the PKP phase) versus core-reflected seismic
waves, which casts some doubt on the validity of CMB maps derived
from those data. Soldati et al. (2012) show that the discrepancy can
be reduced if one requires the inverse-problem solution for CMB
topography to be coupled with seismic structure in the mantle ac-
cording to the theory of Forte et al. (1995).

With this study, we present a wave-based formulation of the
seismic inverse problem associated with discontinuity topography,
whose future applications to global seismic databases should help to
enhance the resolution of our CMB maps. As noted, for example, by
Dahlen (2004) and Montelli et al. (2004), ray and finite-frequency
inversions may give similar results when applied to P or PcP data,
but stronger differences are to be expected if the more complex,
core-refracted (PKP) or diffracted (Pdiff , Sdiff ) waves are taken into
account. Our formulation is based on first-order Born perturbation
theory (Nissen-Meyer et al. 2007a) coupled with the adjoint method
(Geller & Hara 1993; Tarantola 2005; Tromp et al. 2005; Peter et al.
2007). Boundary sensitivity kernels presented here can naturally be
applied in a joint volumetric discontinuity inversion.

Although algorithms for joint waveform inversion of both volu-
metric and discontinuity heterogeneity are still under development,
independent finite-frequency inversions for volumetric or disconti-
nuity structures have been attempted. Much attention was devoted
to volumetric inversions (Montelli et al. 2004; Fichtner et al. 2009;
Tape et al. 2009), while finite-frequency discontinuity topography
has been the subject of very few (Dahlen 2005; Takeuchi 2005;
Lawrence & Shearer 2008) studies. Discontinuity imaging is, in
fact, more difficult than volumetric tomography: although the latter
aims at constraining structures that presumably extend for hundreds
of kilometre in all directions, the topography of known mantle
discontinuities never exceeds a few kilometres radially and thus
requires very specific source-receiver layout.

A methodology for joint volumetric-discontinuity finite-
frequency inversions of seismic data is proposed by Mora (1989) in
the context of exploration seismology. The treatment that we shall
develop here is similar to that of Mora (1989); both allowing to en-
hance imaging resolution via the combination of different, reflected,
diffracted and transmitted seismic phases. Our method, however, is
designed to be applicable under very different underlying hypothe-
ses. Namely, compared to the typical wavelengths of exploration
seismology, at the global scale, the average depths of global dis-
continuities are known rather well and topography is expected to
be a weak perturbation to these radial discontinuities; volumetric

heterogeneity is not as strong in the deep Earth; the source-station
distribution is much less uniform, and cannot be controlled.

In this work, we apply the axi-symmetric methodology first de-
veloped by Nissen-Meyer et al. (2007a, 2008) to study the effects
of boundary topography on waveforms and to determine boundary
sensitivity kernels for a suite of different seismic phases. Important
issues that we study in detail are (i) the physics of global seismic
wave propagation in the presence of undulating interfaces (Sec-
tion 2), in particular at the CMB (Section 2.5), and (ii) our strategy
to reduce the otherwise immense computational costs (Sections 3.1
and 3.4) for these inverse problems. This is followed by a gallery
of traveltime boundary sensitivity kernels (Section 4), whereas an
appendix collects further details on the methodology.

2 T H E F O RWA R D P RO B L E M : E F F E C T S
O F B O U N DA RY P E RT U R B AT I O N O N
S E I S M O G R A M S

2.1 Global wave propagation: notation and analytic
background

In our convention, vectors are denoted as boldface lower-case letters
(u, v, . . .) and tensors as uppercase letters (T, E, . . .). Vectors and
tensors are real-valued functions ∈ R

3. For further reference about
vector conventions and operations used in this paper, refer to Dahlen
& Tromp (1998).

The physical quantities have the usual meaning of linear elas-
ticity problems formulated from a Lagrangian perspective. We de-
fine three-component vectors u(x, t) as the displacement at point
x at time t, measured in metres. The first and second derivatives
with respect to t are, respectively, velocity: u̇(x, t), ∂t u(x, t) mea-
sured in m/s and acceleration ü(x, t) or ∂2

t u(x, t) measured in m/s2.
Whenever possible, we render the dependence of various physical
quantities on x and t implicit.

The dimensionless strain tensor is defined as the symmetric part
of the displacement gradient E = 1

2

[∇u + (∇u)T
]
. Hooke’s rela-

tionship then gives the stress tensor: T = C : E measured in Pascal
upon the definition of C, the fourth-order tensor containing at most
21 independent elastic constants. The practical case studies are lim-
ited here to isotropy, but our formulation remains valid for general
anisotropic media.

At the global scale, the phenomenon of seismic wave propagation
is explained well by linear elasticity theory. The amplitude of seis-
mograms is affected significantly by attenuation; their phase only
marginally (Komatitsch & Tromp 2002b). The effects of Earth’s ro-
tation and gravitation and of the oceans are all negligible at the fre-
quency band (40–100 mHz) and geographic scale length (20◦–180◦)
that will be considered here (Dahlen & Tromp 1998; Komatitsch
& Tromp 2002b), whereas those of the Earth’s ellipticity can be
accounted for by simply applying a linear correction on the data as
shown by Dziewonski & Gilbert (1976).

Under these assumptions and after defining an Earth model m,
wave propagation in the whole volume of the Earth � is described
by the system:

∂2
t u(x, t) + ∇ · T(x, t, m) = f(x, t) in �, (1a)

T(x, t, m) = C(m) : E(x, t) in �, (1b)

n̂ · T = 0 on ∂�, (1c)

Interface Condition on � (1d)
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u(x, 0) = 0 ∂t u(x, t) = 0, (1e)

where n̂ is the normal vector and ∂� the surface of the Earth. Eq.
(1a) expresses conservation of momentum, with the forcing term
f(x, t) = Mṁ(t) a function of the focal mechanism (through the
moment tensor M) and of the source-time function ṁ(t) of the
earthquake. Eq. (1b) is known as the constitutive relationship that is
defined by the selected Earth’s reference model and in seismology is
often taken to coincide with Hooke’s law. The boundary conditions
(1c) require the outer surface of the Earth to be free of tractions.
Interface condition (1d) links regions with different physics or dis-
continuous properties. The solution of a differential equation like
(1) requires the initial conditions (1e). In our case, the Earth is con-
sidered to be at rest at t = 0, prior to occurrence of an indigenous
seismic event represented by the forcing term f(x, t).

When eq. (1) is used to model the propagation of realistic seismic
waves in the Earth, it is crucial to choose the source-time function
ṁ(t) appropriately. We assume ṁ(t) to be Gaussian; this is common
practice in seismology, signal processing and image processing,
and be written as: m(t) = exp (−γ (t + T0 − τ )2), where T0 is the
dominant period, τ the shift from t = 0 and γ the shape factor.

Improving the level of detail and elaborating models that are con-
sistent with geological, geodynamic and geomagnetic constraints
is the main goal of seismic tomography. Although most authors
currently agree on the long-wavelength (�1000 km) pattern of
mantle structure (e.g. Becker & Boschi 2002), no agreement has
been achieved on the nature of relatively small-scale tomographic
features interpreted as, for example, mantle plumes or subducting
slabs. Spherically symmetric models such as PREM (Dziewonski
& Anderson 1981) explain up to 90 per cent of traveltime observa-
tions. This is justified by the fact that very strong lateral variations
are expected only in a small portion of the total volume of the Earth:
the highly heterogeneous crust, and the area surrounding the CMB,
while the remaining volume is characterized by heterogeneity of
small amplitude (∼1 per cent for P and ∼2 per cent S velocity).

2.2 Boundary conditions

Regardless of the reference model considered, all global tomo-
graphic models share some similarities. Spherically symmetric ref-
erence models are defined as the union of spherical-shells domain
� = �1 ∪�2 ∪ . . . , interfaces � linking different domains, and free
surface ∂� that bounds the outer domain where external forces are
applied. Domains are all solid except for the outer core. Oceans are
directly modelled at local scale, while for global studies, they can
be treated as external forces (Komatitsch & Tromp 2002b). Conti-
nuity between domains is guaranteed by the transmission condition
defined at various interfaces. Depending on the nature of the two
domains, only certain quantities may be transmitted.

The jump of a quantity [u]+− across an interface is obtained taking
the difference of the value starting from the outer (+) to the inner
(−) boundary. The transmission conditions at interface (1d) then
read

[u]+− = 0 and [T]+− = 0 on �SS, (2a)

[u · n̂]+− = 0 and [T · n̂]+− = 0 on �SF, (2b)

where �SS and �SF denote the union of all solid–solid and
all solid–fluid interfaces, respectively. Eq. (2b) is also valid for
time derivatives of enclosed quantities. Material properties vary
smoothly within each layer. In the case of PREM, they are analyti-

cally defined as 1-D polynomial functions (Dziewonski & Anderson
1981).

The solid–solid condition is naturally embedded inside the elas-
todynamic system. When equations are solved via finite-element
methods, these conditions are fundamental part of the discretiza-
tion procedure (hence, the jump of the quantities across the interface
is entirely due to the discontinuity in the material property).

Solid–fluid boundaries, on the other hand, involve a change in
the physics of wave propagation, as no shear waves can exist in a
fluid medium. The elastodynamic system becomes a scalar problem
formulated in terms of a potential function. The two systems are
coupled together, for instance as in Nissen-Meyer et al. (2008).

2.3 Computational cost of global-scale wave-propagation
modelling

Although high-resolution 3-D models of the entire Earth’s mantle
(e.g. Bijwaard et al. 1998; Montelli et al. 2006; Li et al. 2008;
Obayashi et al. 2009; Ritsema et al. 2010; Simmons et al. 2010;
Della Mora et al. 2011) are available, their direct application is
bounded by computational resources, particularly if notoriously ex-
pensive waveform inversions were to be conducted. Fig. 2 shows
that computation time for a global 3-D simulation (SPECFEM3D
GLOBE of Komatitsch & Tromp 2002a) is roughly inversely pro-
portional to the cube of the shortest resolved period T0. The axi-
symmetric spectral element code by Nissen-Meyer et al. (2008),
hereafter named AXISEM, models exact 3-D wave propagation in
a spherically symmetric Earth by solving the equations of motion
numerically on a 2-D disc; the size of the mesh, and, consequently,
the computational costs are massively reduced, with runtime in-
versely proportional to the square of T0.

We infer that with the current typically available computational
infrastructure, it is convenient, if not necessary, to ground global
finite-frequency tomography (and the numerical computation of
sensitivity kernels) to spherically symmetric Earth models, partic-
ularly if full-waveform inversions are to be conducted. Sensitivity
kernels throughout this study are calculated by means of AXISEM
unless noted otherwise.

2.4 Ground-truth synthetic database via 3-D modelling

The adjoint technique is at the core of finite-frequency full wave-
form tomography for computational reasons, relies on first-order

Figure 2. Computation time of SPECFEM3D GLOBE (blue lines) and
AXISEM (green) as a function of the shortest resolved period, to model a
25-min long seismogram based on PREM. The time is meant cumulative
across all CPUs. Experimental results (solid lines) are compared with the the-
oretically expected scaling (dashed) of O(( 1

T0
)3) for SPECFEM3D GLOBE

(3-D integration of the equation of motion) and O(( 1
T0

)2) for AXISEM (2-D
integration). The number of CPU spans from 2 to 8 for AXISEM, while
from 256 to 1944 for SPECFEM3D.
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perturbation theory, that is, a linearization that might or might not
be valid depending on how far the starting model is from the true
one. Its accuracy and applicability depend on data type and fre-
quency, their error statistics, the chosen misfit function, the sparsity
of data coverage, the wavelength of the anomaly we wish to resolve,
the signal-to-noise ratio and inversion parameterization. Before ad-
dressing the inverse problem, forward simulations of core-sensitive
seismic phases are useful to evaluate the effects of the mentioned
parameters. We construct a synthetic database based on numerical
integration of the equation of motion via SPECFEM3D GLOBE
(Komatitsch & Tromp 2002a). Unlike AXISEM, SPECFEM3D
GLOBE accommodates 3-D velocity and/or topography hetero-
geneity; comparing the results of SPECFEM3D GLOBE with those
of first-order perturbation theory allows us to quantify the accuracy
of the latter for different wavelength-to-topography length scales
and seismic phases and determine settings which optimally high-
light topography.

Our experimental setup is illustrated in Fig. 3. To isolate the
effects of CMB topography, we assume a spherically symmetric
Earth model (PREM). For the sake of simplicity, we neglect the
effects of surface topography, crustal heterogeneity, ellipticity and
gravitation (relevant at T0 ≥ 100 s). We simulate explosive events
located around a single region of anomalous, smooth CMB topogra-
phy. Seismograms calculated with SPECFEM3D GLOBE are valid
down to 10 s period. After the simulation, we can filter the modelled
traces to isolate any desired frequency band, with no need to repeat
the same simulation for different frequencies.

We utilize different source-station distributions depending on the
phase that we wish to analyse. Fig. 4a shows a dense, relatively low-
aperture receiver network designed for the small-aperture phase
PcP: a 60◦ × 60◦ area around the centre of the anomalous CMB
area is covered by receivers every 1◦. The Pdiff phase is naturally
characterized by a broader range of possible epicentral distances,
and is accordingly analysed on the wider-aperture array (120◦ ×
120◦ with 2◦ spacing) of Fig. 4b. We also experiment with different
patterns of CMB topography: closely spaced depression and uplift
(Fig. 5b), defined by the colatitude derivative of a Gaussian func-
tion, or a broad (Gaussian) uplifted region (Fig. 5a). A section of
seismograms due to an event at the bottom-left for the rightmost
column of receivers depicted in the event-receiver layout in Fig. 4a
is portrayed in Fig. 6.

As anticipated by Fig. 2, these tests are computationally very ex-
pensive. To simulate a 25-min-long seismic record accurate down
to 10 s period, we need 200 Gbyte of system memory distributed
over 486 processors for a wall clock time of about 3 hr. The con-
struction of a (complete) database spanning several combinations
of simulation parameters required ∼5 × 105 CPU hours.

2.5 Probing the database for body-wave-CMB interaction

We measure the residual time δt = tprem − ttopo of a given
phase as the cross-correlated time difference between perturbed
ttopo and unperturbed seismogram tprem. The cross-correlation win-
dow is centred at the expected arrival time, calculated with TauP
(http://www.seis.sc.edu/software/TauP/), and its width is propor-
tional to the frequency content of the seismogram. Seismograms
are filtered with a Gaussian function with half-width/period cor-
responding to the target frequency. We investigate four different
frequency bands with periods: 30, 20, 15 and 10 s, filtering seis-
mograms before cross-correlation. We iteratively tune the cross-
correlation window’s width to optimize its bounds with respect to
the anomaly.

Figure 3. (Top) A section of the Earth showing one of our synthetic CMB
topography models: in this case, topography is Gaussian with a maximum
height of 11 km and a lateral extension of ∼800 km. The anomalous CMB
area is visible as a dark circle at the centre of the plot. A cross-section of the
global mesh taken at the CMB shows the stretching (10 times exaggerated)
of mesh elements to accommodate topography. A 100-km-deep explosive
event was located at 30◦ S and 10◦ E. (Bottom) reference (CMB with
constant radius) (blue line) and perturbed (red line) seismograms predicted
at a station aligned with source and CMB anomaly, 23◦ away from the
source. The largest misfit corresponds to the PcP arrival time. The perturbed
seismogram is obtained after amplifying topography to 70 km, to emphasize
its effects.

We note first of all, and show in Fig. 7, that, as predicted by
finite-frequency theory, the effect of a CMB topography anomaly
on a seismic measurement can be significant even if the associated
ray path does not sample the anomaly directly.

2.5.1 PcP synthetics

We show in Fig. 8 a set of cross-correlation-based PcP travel-
time anomalies for different source-anomaly-receiver geometries
and different CMB topography patterns. The plots define the pat-
tern of residuals as a function of receiver location, with a CMB
uplift resulting in earlier PcP arrivals, and a CMB depression in
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Figure 4. (a) The layout of receivers (red crosses), events (green stars) and
topography anomaly (yellow triangle) for low-aperture phases like PcP, ScS
and PcS. (b) Same as (a), but for long-epicentral-distance phases like Pdiff ,
PKP.

Figure 5. Patterns of synthetic topography models used in this study; the
lateral extent of both maps is ∼800 km.

Figure 6. Vertical component section of 61 stations for one of the source-
receiver configurations of Fig. 4. Main phase arrival time is also marked.
The y-axis shows epicentral distance, and x-axis time in seconds. Colours
depend on the magnitude of the displacement in metre.

delayed arrivals. The misfit also depends upon the relative position
of the source with respect to the topography anomaly, and phases
that bottom (in a ray-theoretical sense) between 20◦ and 30◦ away
from the source are more strongly affected by CMB topography.

To summarize the cumulative effect of CMB heterogeneity on
the entire synthetic database, we introduce the misfit functions

L1 =
N∑

i=1

|δti | and L∞ = max
N

|δti |, (3)

with N the total number of source-receiver pairs. The L∞ norm
reflects the maximum residual time present in the database, while
the L1 norm gives an idea of what portion of seismograms (i.e.
source-receiver couples) are affected by the anomaly. L∞ and L1

Figure 7. Ray paths for three different stations are plotted along with the
measured misfit. The effects of topography on SPECFEM3D GLOBE syn-
thetics are not only evident for rays bottoming at the centre of the anomaly,
but also for those grazing its sides, for which ray theory predicts no travel-
time anomaly.

misfits for two different realizations of the PcP synthetic database
are shown in Fig. 9. We also compute the ray-theoretical residual

δtray = −2
δd

r

√(
r

v(r )

)2

− p2 (4)

(e.g. Morelli & Dziewonski 1987) (where r is the unperturbed CMB
radius, δd its perturbation at the bounce point, v(r) the P-wave speed
and p the ray parameter), and show the corresponding L∞ norm in
Fig. 9. For the L1 norm, ray-theoretical values are not shown as they
are out of scale.

The L∞ norm in Fig. 9 indicates a maximum residual of ∼1 s,
lower than the 1.5 s residual predicted by eq. (4). Errors on these
values associated with our automated cross-correlation procedure
can vary roughly between 0.1 and 0.2 s. The discrepancy between
ray-theory predictions and numerical results grows with increasing
period, as is to be expected given that ray theory is strictly valid
only at the infinite-frequency limit. Synthetics do not converge to
the ray-theoretical value because they are calculated for a perfect
vertical reflection that is not visible from synthetics. Hence, the
actual upper bound is positioned slightly below.

It is also clear from Fig. 9 that the potential to resolve topography
(as well as volumetric) heterogeneity depends strongly on the fre-
quency of the analysed signal: filtering the synthetics around 30 s
would essentially obliterate the CMB-topography signature and we
should utilize data at ∼10 s or lower to be able to detect these
signatures, that is, keeping the lateral length-scale to wavelength
ratio ≥5. Decreasing the lateral extension of anomalous topography
does not affect strongly the L∞ misfit as the height does, indicating
that seismic waves are more sensitive to the amplitude of topog-
raphy rather than its shape. The L1 misfit shows a lower value as
expected with a reduced extension of the topography.

A similar experiment can be conducted upon the CMB topog-
raphy of Fig. 5b, with positive and negative peaks at ±6 km. The
resulting residual traveltime maps are shown in Fig. 8. The abrupt
change in the sign of the residual again reflects the high sensitivity
to the anomaly height.

C© 2012 The Authors, GJI, 191, 832–848
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Figure 8. PREM versus PREM + topo residual PcP traveltimes plotted at each receiver’s location. Two different (left versus right panels) source locations,
marked by a red star in the top panels, are simulated. The top four residual maps refer to the topography model of Fig. 5a. Seismograms are filtered around the
dominant period (10 or 20 s) specified to the right of each row. The bottom four panels refer to the topography model of Fig. 5b with analogous source position.

C© 2012 The Authors, GJI, 191, 832–848
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Figure 9. The L∞ (top) and L1 (bottom) cumulative misfits between PREM
synthetics and two sets of anomalous CMB PcP synthetics, as a function of
the dominant period of filtered signal, generated after imposing a Gaussian-
shaped topography anomaly with a maximum height of 11 km (continuous)
and 6 km (dashed), and a lateral extent of (red) 800 km and (blue) 500 km.
The green lines in the top panel show the frequency-independent prediction
of ray theory, for the ray path bouncing at the highest topographic peak (L∞
misfit).

Because of their reflected origin, PcP signals are very sensitive
to the height of the topography rather than its lateral extent. If, on
the one hand, we can get useful data from reflected phases, on the
other hand, we also need to be particularly careful about their spatial
coverage, since they might be very strongly affected by topography
heterogeneities of very small scale.

2.5.2 Pdiff synthetics

Fig. 10 shows that even at the relatively short period of 10 s, the
assumed CMB anomaly (Fig. 5a) has a very faint effect on travel-
times of Pdiff . Residuals remain small even if the lateral extent of
the topography anomaly is doubled. At longer periods (not shown
here for brevity), the signal is lost completely. These observations
are confirmed by direct inspection of individual seismograms.

3 T H E I N V E R S E P RO B L E M F O R
T O P O G R A P H Y

Full waveform inversion can make complete usage of the residuals
computed in the previous section, but expensive computation of the
Fréchet derivatives of data with respect to model parameters has
to be carried out (fortunately the adjoint methodology comes into
help, making this computation feasible).

3.1 Seismic sensitivity kernel foundations

A seismic anomaly δu is linked to model perturbations δv and δd,
respectively, volumetric and boundary, through sensitivity kernels
K̃v and K̃d :

δu(t) =
∫

�

δv K̃v(x, t) dx3 +
∫

�

δd K̃d (x, t) dx2. (5)

Here, we just focus on the boundary contribution.

Figure 10. Residual Pdiff traveltimes plotted at each receiver’s location,
similar to Fig. 8. Two different (left versus right panels) source locations,
marked by a red star in the top panels, are simulated. Residuals generated
by two Gaussian CMB topography models: (top) 800 km in lateral extent
and 11 km in maximum height, and (bottom) 1600 km lateral extent, same
height.

Boundary sensitivity kernels in the first-order Born approxima-
tion were first obtained analytically by Dahlen (2005), following
the scheme first developed for volumetric kernels by Dahlen et al.
(2000) and Hung et al. (2000). The numerical implementation of
terms K̃v and K̃d in eq. (5) is computationally prohibitive for full
3-D wave propagation at high resolution. Computational cost is re-
duced particularly if, as mentioned above, a 1-D reference model is
used leading to the integration of the equations of motion on a 2-D
disc, as in Nissen-Meyer et al. (2007b, 2008). We follow these stud-
ies and complement the corresponding software with an additional
module, which provides seismic sensitivity to boundary topography
for any of the interfaces included in the selected reference model
such as upper-mantle discontinuities and both core boundaries.

3.2 Waveform sensitivity to boundary perturbations

The calculation of boundary sensitivity requires the decomposition
of a vector in normal and tangential component: u = u n̂ + u� .

C© 2012 The Authors, GJI, 191, 832–848
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The surface gradient and divergence (Dahlen & Tromp 1998) are
accordingly defined:

surface gradient of u : ∇�u = ∇u − n̂(n̂ · ∇u), (6)

surface divergence of u : ∇� · u = tr(∇�u), (7)

where tr() is the tensor-trace operator. For notational brevity, we
denote with (∗) the convolution between two time-dependent quan-
tities (written in the time domain)

g(t) ∗ f (t) =
∫ t

0
g(t)h(t − τ ) dτ. (8)

The convolution between vector (tensor) quantities is a scalar, and
involves (double) contraction, that is,

g(t) ∗ h(t) =
∫ t

0
g(t) · h(t − τ ) dτ vectors, (9)

G(t) ∗ H(t) =
∫ t

0
G(t) : H(t − τ ) dτ tensors, (10)

The model parameter vector m is defined as the input of the for-
ward problem, and the unknown of the inverse problem. m can, in
principle, include all the elastic parameters of the medium of propa-
gation including shear and compressional velocity, their anisotropy,
density, as well as source mechanism and location. In the frame-
work of first-order perturbation theory, it is more convenient to
consider its variation δm. For brevity, we assume that we solve an
inverse problem for boundary perturbation alone: δm = [δd]. The
boundary perturbation δd must be small enough for the first-order
perturbation theory to be a valid approximation. Our formulation is
valid for any discontinuity defined by the reference model.

The boundary sensitivity kernel has a more complicated form
than the volumetric type (Nissen-Meyer et al. 2007a). The expres-
sion calculated for the frequency domain by Dahlen (2005) may
be computed for the time domain and, making use of (10) to avoid
clutter, we can write:

K̃d (x, t) =
[
ρ∂t u

→ ∗ ∂t u
← + T

→ ∗ E
← − t

→ ∗ ∇n̂u
← − t

← ∗ ∇n̂u
→

︸ ︷︷ ︸
general interface

(11)

−n̂ · t
→ ∗ ∇� · u

← − n̂ · t
← ∗ ∇� · u

→ − u
→ ∗ ∇�(n̂ · t

←
) − u

← ∗ ∇�(n̂ · t
→

)
]+

−︸ ︷︷ ︸
fluid/solid interface

,

(12)

where K̃d (x, t) is the time-dependent sensitivity of the waveform
with respect to the boundary topography and t the traction acting on
the interface. The solid–fluid term arises from interface conditions
(2b). We denote with a right-pointing arrow as in u

→
, the ‘forward

field’, that is, the regular propagating field from instant t = 0 to t =
T emanating from the earthquake location xs , while the backward
field, denoted by a left-pointing arrow, is a time-reversed field going
from negative time t = −T to t = 0, emanating from the receiver
position xr . Derived quantities such as E

← = 1
2 [∇u

← + (∇u
←

)T ] and

T
← = C : E

←
are calculated in the same way in both forward and

backward fields.
In the adjoint framework, the definition of misfit modifies the

expression for f
←

and hence the form of the backward field (Tromp
et al. 2005; Peter et al. 2007; Fichtner et al. 2009).

The forward field u
→

is now defined as the solution of eq. (1) for
a moment tensor source centred at xs ,

f
→

(x, t) = Mṁ(t)δ(x − xs), (13)

where Mṁ(t) has been defined in Section 2.1. The backward field
is instead the time reversed solution to (1) for an impulsive forcing
term

f
←

(x, t) = x̂rδ(x − xr )δ(T − t), (14)

that is, the Green’s function associated with (1) and the receiver
locations, xr . The vector x̂r points in the same direction of the
seismogram component used to measure δu. For instance, if only
vertical components are used to compute K̃d , then f

→
is a vertical

single force and the backward field the numerical solution to the
heterogeneous extension of Lamb’s problem (Lamb 1904). Note
that only one simulation is necessary for all distances and configu-
rations.

3.3 Traveltime sensitivity to boundary perturbations

The most general expression relating a seismic traveltime anomaly
observation to discontinuity topography in the first-order approxi-
mation is implicitly found from eq. (5) after dropping the volumetric
term,

δt =
∫

�

δd(x) Kd (x) dx2, (15)

where the sensitivity kernel Kd (x) is naturally not the same as
that of eq. (5). Note that (11) is independent from the measured
misfit. Only after having defined an appropriate misfit measure
(here L2 traveltime residual δt norm), the static kernel in (15) and
the instantaneous sensitivity in (11) can be linked together.

Static traveltime kernel and waveform sensitivity are coupled
through

Kd (x) = 1

Nr

∫ T

0
wr (t)v(xr , t)K̃d (x, t) dt, (16)

where the boxcar function wr(t) equals 1 inside the window where
the sought phase arrives and v(xr , t) is the velocity seismogram
due to (13) recorded at station r. This is derived in equivalence to
the cross-correlation traveltime perturbation as a function of δu in
Dahlen et al. (2000). A scaling factor

Nr =
∫ T

0
ωr (t)v2(xr , t) dt, (17)

is introduced to rescale the kernel so that it does not depend on the
source magnitude.

Finally, if the misfit function is computed with the L2 norm,
the optimization problem associated with traveltime tomography is
defined as follows for the combination of all traveltime observations:

find m such that min
1

2
|t(m) − tobs|2, (18)

where t(m) is solution of eq. (1). This expression allows eq. (15),
once the problem is discretized on an inversion grid, to be solved in
least-square sense as δti = Gijδdj, where the matrix Gij contains the
discrete sensitivity kernels through the integral (15).

3.4 Sensitivity kernel computational outline

Nissen-Meyer & Fournier (submitted) describe the work-flow to
compute volumetric sensitivity kernels using the AXISEM soft-
ware. Here, we extend their procedure to allow the computation
of discontinuity kernels Kd(x), introducing further numerical opti-
mization described in Appendix B. By collapsing the equation of
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motion onto a 2-D grid, AXISEM reduces the storage-space require-
ment so that it becomes possible to save the propagating wavefield
in time at any resolution scale. An analogous process for similar
resolution would not be feasible if a full 3-D solver was used.

The moment tensor calculation for eq. (1) in AXISEM is sub-
divided into four different simulations for as many independent
moment tensor components Mm. Separate contributions, owing to
the linearity of eq. (1), can be simply summed to recover the full
moment-tensor wavefield (Nissen-Meyer et al. 2007b). The same
property applies to kernels:

u =
∑

m

Mmum → K =
∑

m

Km (19)

(valid for both boundary and volumetric kernels).
Due to the high-order accuracy in space (fourth order) and by

honouring the CFL condition, space-and-time derivatives are com-
puted at runtime as well as the other quantities in (11). Aware of
the C0 feature of the wavefield at the CMB, we checked the con-
servation of the normal component of the traction, t · n̂ across the
solid–fluid boundary and the error of the second-order space deriva-
tives. Derivatives are stable up to a certain simulation time, after that
some discrepancies may rise. In general, P waves are always fine,
and S waves travelling very long might be affected. The displace-
ment gradient in the axi-symmetric domain is defined in eq. (A8).
Its knowledge, together with that of the surface gradient and diver-
gence (6), completely define the discontinuity kernel according to
expression (11).

From the semi-disc-shaped domain (Fig. 11), we store, as a 1-D
array, the values along the desired interface (a semi-circumference)
in time. The simplest approach is to generate the spherical-kernel
mesh, straight out of the spectral-element mesh. This latter proce-
dure has the advantage of preserving the ŝ and ẑ components of
AXISEM mesh points, acting only on the φ̂ component. Thus, no
interpolation for any field variable is needed. One disadvantage is

Figure 11. The kernel mesh (we removed a slice for clarity reasons) is
constructed starting from the interface layer of the spectral element mesh
(the gridded semi-disc). Here, for instance, the CMB layer is depicted. The
spacing between �φ is chosen to respect minimum point spacing. Magenta
semi-circumferences represent the interface on the AXISEM mesh.

the point-clustering at the poles. Our procedure as well as the ref-
erence frame involved are illustrated in Fig. 11 and can be outlined
as follows:

(i) The cylindrical coordinates of the point lying on the discon-
tinuity (highlighted in magenta in Fig. 11) are copied from the
AXISEM mesh of Fig. 11. By construction, they will all have φ̂

component equal to zero.
(ii) We select an appropriate �φ and, moving in counter-

clockwise direction, we loop over φ from 0 to 2π . The value of
�φ is such that the spatial resolution along the colatitude direction
is equal to the longitudinal one at the equator (dedicated box in
Fig. 11).

(iii) The grid-point coordinates are converted from cylindrical
coordinates (ŝ, φ̂, ẑ) to Cartesian (x̂, ŷ, ẑ) using eq. (A6).

For convenience, we define the kernel mesh with the z-axis point-
ing north, the same convention used in AXISEM. Both forward and
backward fields are north-pole-oriented when saved from AXISEM,
while they must be rotated when computing the kernel to their actual
source or receiver positions. This rotation of the grid-point coor-
dinates to the actual source location (φs, θ s) or receiver location
(φr, θ r) boils down to coordinates and quantities to be re-mapped
and will be described later. In our procedure, each grid point is
associated with three different coordinate values: one for the kernel
mesh, one for the forward field and one for backward. If we define
the position of the new coordinate system as x′ (either for source or
receiver), we may write: x′ = Rx, where R is defined for a given
source or receiver position, (φs, θ s) and (φr, θ r) in eq. (A6).

The cylindrical frame is defined starting from the Cartesian frame
through eq. (A7) such that a rotation of this latter produces the same
rotation on the first. The coordinate basis vectors ŝ and ẑ correspond
to the Cartesian x̂ and ẑ for φ = 0 and y = 0, respectively. To each
grid points corresponds a unique point onto the 2-D semi-disc as
shown in Fig. A1. Vice-versa, to each 2-D mesh point correspond
multiple kernel mesh-points along each azimuth.

The projection of the 3-D Cartesian point onto the 2-D semi-disc
is achieved through eq. (A7). Hence, we run a linear search over
the kernel mesh points to obtain the permutation array mapping the
north-pole-oriented reference frame to the new desired position.
The permutation always maps from the kernel mesh (3-D) to the
AXISEM boundary mesh (2-D). The points from the 3-D mesh are
projected onto the 2-D semi-disc. For each kernel grid-point (i-th),
we measure the Euclidean distance from the 2-D points and a linear
search to find the closer (j-th). The permutation array P for grid
points i is: P(i) = j.

The azimuthal pre-factors applied to the 2-D wavefield serve to
reconstruct the 3-D field and are computed using φ values. Fig. A2
depicts φ values for a given source-receiver pair (φs, θ s) and (φr,
θ r). Eq. (A1) in Appendix A shows how pre-factors are applied to
vector and tensor quantities depending on the moment tensor term
currently computed. When the 3-D wavefield has been calculated,
we can convert the field values to Cartesian coordinates. Again, the
procedure uses the corresponding φ value for forward and backward
fields. This is achieved applying a change of basis matrix B(φ) as
described in Appendix A. Wavefields now in Cartesian coordinates
are written for two different coordinates systems: one with the z-axis
pointing towards the source location and the other pointing towards
the receiver.

Before calculating (15), we unify forward and backward field
reference systems to the north-pole-oriented reference frame of the
kernel mesh applying the same rotation matrix R used to calculate
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Figure 12. Forward and backward fields on the CMB surface for different
moment in time. The fields are rotated to a Cartesian frame pointing north
with z-axis. The forward field is centred at the north pole, whereas backward
at 35◦N 0◦E.

rotated coordinates.

vectors: ucart = RT ucyl, tensors: Ecart = RT EcylR. (20)

The entries rij of R are defined in Appendix A. Note that this
rotation maps source-/receiver-rotated Cartesian frame to the north-
pole-rotated frame, while the mesh coordinate’s rotation previously
defined mapped north pole oriented to source/receiver rotated. This
difference boils down taking the transpose of the rotation matrix R.
For scalar quantities, no rotations are necessary as they are invariant.
The results of these procedures are the forward and backward fields
as if we were to use any other 3-D code and they are depicted for
different time step in Fig. 12. Finally, the sensitivity kernel due to
moment tensor Mm can be computed for any desired seismogram
window.

4 B O U N DA RY S E N S I T I V I T Y K E R N E L S

The software described in Appendix B provides boundary sensi-
tivity kernels according to the procedure described in Section 3.4.
We apply this to compute kernels at dominant periods of 10 and
25 s, using the source time function introduced in Section 2.1. For
the sake of simplicity, we limit ourselves to monopole (explosive)
sources, and accordingly only consider compressional waves. The
sampling rate of modelled seismograms and wavefields by AXISEM
is selected after a number of preliminary experiments. As noted by
Fichtner et al. (2009), different sampling rates must be compared
to identify the minimum rate threshold so that time aliasing of the
seismic signal and of the sensitivity pattern is prevented. We typi-
cally sample the signal 10 times per dominant period, but we verify
that this rate may be further reduced to limit the number of time
steps needed to calculate the convolution in eq. (11).

The time integration window in eq. (16) is chosen such that
the whole signal is enclosed inside, equivalent to Section 2.5 for
the cross-correlation. We tuned specifically the size for every case
to avoid the inclusion of other signals that may spoil the kernel-
phase signature. A negative (positive) sensitivity value means that
a positive topography anomaly will delay (accelerate) the arrival of
the phase on the seismogram, and vice-versa, a depression would
produce a positive (negative) arrival.

Most of our computations are carried out at the Swiss Center
for Scientific Computing (http://www.cscs.ch). The computational
cost for this not yet optimized algorithm (i.e. number of processors
and wall-clock time) depends on the shortest modelled period, and
on the depth range of the modelled discontinuity. It spans from
few minutes on four processors for the CMB kernels at 25 s to

∼1 hr on 24 processors for 10-s upper-mantle-discontinuity sen-
sitivity kernels. Upper-mantle discontinuities are generally more
expensive because of the different spatial sampling used to mesh
the upper versus the lower mantle when designing the spectral ele-
ment grid (Nissen-Meyer et al. 2008).

4.1 Transition-zone discontinuities

The seismic phases P410P, P520P and P660P (Fig. 13) associ-
ated with underside reflection of P waves at the ∼410, ∼520 and
∼660 km discontinuities, respectively, have been extensively used
to map their topography (e.g. Gu et al. 1998; Flanagan & Shearer
1999; Gu & Dziewonski 2002; Deuss 2009). We determine the
frequency-dependent sensitivity of these phases to discontinuity to-
pography using an explosive event at a depth of 100 km. Because
the source is isotropic, kernels are symmetric with respect to the
vertical plane defined by source-receiver-centre of the Earth. The
P660P sensitivity kernel in Fig. 14 is characteristically X-shaped
(Lawrence & Shearer 2008). Using differential traveltimes, the ef-
fects of structure elsewhere (crust and upper mantle for instance)
may be removed, focusing the sensitivity only on the boundary.
As demonstrated by Dahlen (2005), taking the differential travel-
time exactly relates to computing the differential sensitivity kernels
KPP − KP660P. Because of the small magnitude of the KPP on the
boundary, it amounts to KPP − KP660P � −KP660P as Fig. 15 wit-
nesses. The same results may be obtained using other underside
reflection precursors such as S660S, P410P or S410S. In particular,
secondary-wave precursor is well suited for transition-zone studies
because the impedance contrast for S waves is higher than for P
waves with a consequently stronger signature in the seismogram
providing better signal-to-noise ratio.

Our AXISEM-based kernels can be compared with those found
by Dahlen (2005) and Lawrence & Shearer (2008) using the ray-
theory finite-frequency approximation, and those found by Liu &
Tromp (2008) using the adjoint technique combined with a 3-D
spectral-element method. In spite of the difficulty of making direct
comparisons when many parameters may differ slightly(source-time

Figure 13. (Top) Cartoon showing the ray trajectories of the PP phase
and its precursor discussed in Section 4.1. (Bottom) Ray trajectories of the
core-reflected, core-refracted and core-diffracted phases of Section 4.2.
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Figure 14. The KP660P kernel for 140◦ epicentral distance and its associ-
ated vertical velocity component for dominant period of 10 s. Black dots
mark source (depth 100 km) and receiver locations. Values are all scaled in
10−4 s km−3. The kernel is projected on the ‘660’ surface.

Figure 15. The KP660P kernel for 95◦ epicentral distance on the left and the
KPP − KP660P on the right. The dominant period is 10 s. Black dots depict
the source (depth 100 km ) and receiver location. Values are all scaled in
10−4 s km−3. The kernels are projected on the ‘660’ surface.

function, dominant period, source-receiver locations, etc.), our re-
sults are generally consistent with earlier findings (Fig. 19).

4.2 CMB discontinuity

The PcP, Pdiff and various branches of PKP traveltimes (Fig. 13)
have been extensively used to infer properties of lower mantle and
CMB in many previous studies (Morelli & Dziewonski 1987; van
der Hilst et al. 1998; Vasco et al. 1999; Boschi & Dziewonski 2000;
Tanaka 2010; Soldati et al. 2012).

We calculate CMB sensitivity using an explosive event at a depth
of 650 km. We mainly consider P waves and we record the vertical
component of the seismograms. Again, since the source is isotropic,
kernels are symmetric with respect to the vertical source-receiver
plane. Results in Section 2.5 show the high sensitivity of PcP phases
to the magnitude of the topography in the range between 30◦ and
70◦ epicentral distance. The sensitivity kernels displayed in Fig. 16

Figure 16. The PcP boundary sensitivity kernel for 25 s (left) and 10 s
dominant periods (right) for an epicentral distance of 60◦. It is elongated in
the source-receiver direction, the area of non-negligible sensitivity extending
up to 2000 km around the predicted bounce point for the 25 s case and
roughly 1000 km for the 10 s case. The two dots indicate the location of
source (depth 650 km) and receiver. Values are scaled to 10−5 s km−3.

Figure 17. Pdiff sensitivity kernels associated with different epicentral dis-
tances, as specified, at 25 s dominant period. Note how the sensitivity im-
print becomes wider with growing epicentral distance. Values are scaled to
[10−5 s km−3]. The depth of the event was 650 km.

point in the same direction as the synthetic test of Section 2.5 ,
supporting that the bulk of the sensitivity is clustered in a relatively
small area that slowly enlarges as the frequency decreases. We
next present (Figs 17 and 18) finite-frequency sensitivity kernels
associated with Pdiff , for which (unlike, e.g. PcP) no asymptotic
solution is available. The large width of the area where sensitivity
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Figure 18. The Pdiff sensitivity kernel for 155◦ epicentral distance (the
maximum for Pdiff being 157◦), for (left) 25 s and (right) 10 s domi-
nant period. The vertical component of our modelled trace is very weak at
25 s period, but it becomes clearer as the frequency increases. The same
is true of this phase’s sensitivity to CMB topography. Values are scaled to
10−5 s km−3. The depth of the event was 650 km.

Figure 19. The figure shows the SKIKS kernel for an epicentral distance of
140◦ for 5 s dominant period. The entry point is located on the left side where
the sensitivity is larger. A smaller sensitivity characterizes the exit point (on
the right side). The pale signature on the background may be the effect of
other SKS branches arriving almost simultaneously for this distance–depth
range. Values are scaled to 10−4 s km−3. The depth of the event was
650 km.

is non-negligible confirms our finding that this phase is sensitive to
large-scale variations rather than small-scale (results found also in
Section 2.5) and that positive topography might result in a delayed
arrival time depending on its position relative to the source-receiver
plane. Fig. 17 shows this phase for a suite of epicentral distances
spanning its entire existence-range for 25 s dominant period. In
spite of the seismic signal being extremely small for 155◦, the Pdiff

sensitivity kernel can still be computed as shown in Fig. 18. Finally,
the sensitivity of the PKIKP phase, and of the ab branch of PKP to
CMB topography is illustrated in Fig. 20. Sensitivity is limited to the
vicinity of the associated ray-path entry and exit points into and from
the core. The pattern is similar, but the sign reversed with respect
to PcP sensitivity. Positive topography at and close to the entry/exit
points causes a delayed arrival. As a final demonstration of the
capability of our algorithm, we show in Fig. 21 the sensitivity kernel

Figure 20. PKIKP and PKPab for 160◦ epicentral distance and a dominant
period of 10 s. For the PKIKP, the plot is taken looking at a cross-section
throughout the CMB to ease the visualization of both entry and exit points
sensitivity. The black dotted line represents the theoretical ray path. The
explosions and triangle marks, respectively, indicate a epicentre and receiver
location. Values are scaled to 10−5 s km−3. The depth of the event was
650 km.

for SKIKS for a dominant period of 5 s. Because of the epicentral
distance chosen, other SKS branches arrive simultaneously. A Mrφ

dipole moment-tensor source was used as source and the azimuthal
pre-factors (A1) were applied to the wavefield.

Comparison with other techniques both for PcP and Pdiff , al-
though only qualitatively possible, may be done looking at the work
from Dahlen (2005) and Liu & Tromp (2008). We also computed
with SPECFEM3D GLOBE a Pdiff kernel for 25 s dominant pe-
riod (Fig. 19). The sensitivity pattern is similar to the one shown in
Fig. 17. Small differences are attributed to the different algorithm
used to solve eq. (1), the implementation of the adjoint source, the
numerical time sampling, the selection of the time window and the
meshing strategy.

4.3 Drawing connections: traveltime residual
reconstructed with sensitivity kernels

One way to validate AXISEM-computed kernels and to show their
applicability in tomography consists in reverse (Born) modelling
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Figure 21. The Pdiff sensitivity kernel at 155◦ calculated using the adjoint
method implementation of SPECFEM3D GLOBE. The depth of the event
was 650 km. Values are scaled to 10−5 s km−3. This results may be compared
with what obtained in Fig. 17.

the cross-correlated time residual using the kernels computed in
the previous section. The first-order relationship (eq. 15), δt =∫

�
δd(x) Kd (x) dx2, is calculated evaluating the integral over a finite

set of N constant basis functions (e.g. Boschi & Dziewonski 1999) i
∈ {1, . . . , N} that reduces to a scalar product between two vectors:

δt = Giδdi . (21)

Clearly, this holds for one specific event-topography-receiver
configuration contained in the database causing the traveltime
anomaly δt. Selecting one configuration of the many proposed
throughout Section 2.5, we can compare reverse-modelled δt ob-
tained through eq. (21) with previously computed SPECFEM3D-
based quantities. We then evaluate the magnitude difference by
constructing residual maps. For the sake of correctness, we ignore
values ≤0.2 s as they may be strongly influenced by small errors. The
traveltime maps are depicted in Figs 22a and b. Fig. 22c shows that
AXISEM-based reverse models slightly but systematically overes-
timates SPECFEM3D synthetics. The reason for this is presumably
twofold: on the data acquisition side, the cross-correlation may un-
derestimate such small signals, and the sampling rate (each 0.1 s)
of the seismogram may not be sufficient. On the model side, the
chain of approximations (including first order) used to build the
discrete model parameter vector mi, the gradient Gi and the small
rounding used to construct the curved surface inside SPECFEM3D
may play an important role. The consequences of this discrepancy
are a slight underestimation of the magnitude of the topography at
inversion time. We, however, infer that accuracy of AXISEM ker-
nels is sufficient for application to typical (noisy and non-uniformly
distributed) real seismic observations.

5 D I S C U S S I O N

This paper addresses the effect of global seismic boundary topogra-
phy on waveforms as well as sensitivity kernels, that is, the basis for
tomographic imaging within the framework of full-wave theory. In
the first part, we computed a large ground-truth database to examine
the parameter space spanned by boundary perturbation geometry,
epicentral distance, seismic phase, and frequency on seismograms.
This is to be seen as a guide for optimal data configurations to illu-
minate such topography. In particular, PcP phases are, as expected,
useful to detect CMB topography, whereas Pdiff are less sensitive to

Figure 22. The results of the reverse modelling applying eq. (21) in panel
(a) and those obtained by cross-correlating SPECFEM3D seismograms (b).
While the patterns are practically identical, the magnitude of the δt differs as
shown in the last plot (c). The continuous line represents perfect matching
between the two measures, while asterisks the actual measured residuals.
Cross-correlation residuals are divided in discrete band because of the finite
sampling of the seismograms, while those from reverse modelling are more
scattered around. We intentionally left out from plot (c) values lower than
0.2 s as they are not reliable.

such undulations. Our synthetic experiments highlight the impor-
tance of reflected phases to map discontinuity topography. The poor
sensitivity shown by diffracted waves may represent two pitfalls
of this analysis: T0 = 10 s is not sufficient to constrain CMB to-
pography (also for medium-scale structure) and traveltime analysis
probably may not represent the ideal misfit measurement. A method
based on phase envelopes as in Bozdag et al. (2011) might amplify
the differences. Repeating this analysis with stronger topography
will certainly lead to stronger signals but would violate the con-
straint that the majority of CMB-sensitive observations impose on
their magnitude. The database has been computed using full 3-D
wave propagation, and as such the prohibitive cost at high resolution
(e.g. below periods of 10 s) prevents us from an analysis covering
the full spectrum. As tomographic inversions must be conducted at
sufficiently high frequency (below 10 s) to detect this topography,
we must rely on computationally more efficient methods than full
3-D wave propagation to construct sensitivity kernels.

In the second part, we implemented boundary sensitivity kernels
using first-order perturbation theory following Dahlen (2005), using
the axisymmetric spectral-element code AXISEM. This methodol-
ogy allows to model frequencies as high as required by the database
analysis, even in the framework of large-scale tomographic data
sets. Those kernels, representing the Fréchet derivatives of per-
turbations of data with respect to topography, account for finite-
frequency effects and can be used in waveform inversion to invert for
boundary perturbation. Our kernels share similar properties with
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kernels calculated in other studies (Hung et al. 2000; Dahlen 2005;
Peter et al. 2007; Liu & Tromp 2008). The dependency of the
area of non-negligible sensitivity and amplitude upon the period is
evident in all cases considered here. Its extension scales with the
wavelength and it asymptotically collapses to the ray size at infi-
nite frequency. The values of maximum and minimum sensitivity
change correspondingly to accommodate the area change. Varying
the epicentral distance produces similar effects. From the perspec-
tive of Section 4, in our future finite-frequency imaging of the CMB,
the inclusion of PKP should also be considered as the sensitivity
footprint (particularly true for PKIKP) is similar to PcP. The re-
verse modelling illustrated in Section 4.3 confirms the robustness
of our approach against more general 3-D wave propagation.

The inclusion of volumetric perturbation combined with topog-
raphy will be the next step towards waveform inversion accounting
for the strong connection between boundary topography and the
surrounding volumetric structure. Mantle and crust corrections are
known to heavily trade-off with topography in the target area as
discussed by Flanagan & Shearer (1999). Combining the boundary
sensitivity algorithm with the work from Nissen-Meyer & Fournier
(submitted) will allow a joint volumetric-boundary full-waveform
inversion work-flow at global scale, scalable to any resolution. Be-
fore reaching this stage, further time has to be devoted to assessing
the resolution power of this methodology based on spherical Earth
models. This will be achieved by inverting the synthetic seismo-
grams calculated in Section 2.5 and verifying how well input struc-
tures are recovered. A study on waveforms as in Section 2.5 can
be extended to the combined effect of boundary plus volumetric
anomalies: first to assess how the two trade off one another and
later to benchmark the joint waveform inversion.

Before implementing the inversion technique, further numerical
and computational optimization is needed. In spite of the efficiency
of the software by Nissen-Meyer et al. (2007b), computing global
sensitivity kernels at periods smaller than 5 s is quite expensive.
Preliminary application to GPU hardware shows that GPU com-
puting may be a key factor to making this endeavour affordable,
besides reverting to frequency-domain convolutions (Nissen-Meyer
& Fournier submitted).
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frequency traveltimes—II. Examples, Geophys. J. Int., 141, 175–203.

Ishii, M. & Tromp, J., 2001. Even-degree lateral variations in the mantle
constrained by free oscillations and the free-air gravity anomaly, Geophys.
J. Int., 145(1), 77–96.

Ita, J.J. & Stixrude, L., 1992. Petrology, elasticity and composition of the
transition zone, J. geophys. Res., 97, 6849–6866.

Jackson, A., Bloxham, J. & Gubbins, D., 1993. Time-dependent flow at the
core surface and conservation of angular momentum in the coupled core-
mantle system, in Dynamics of Earth’s Deep Interior and Earth Rotation,
pp. 97–107, eds LeMoul, J.-L., Smylie, D.E. & Herring, T., number 72 in
AGU Geophysical Monograph, IUGG, Washington, DC.

Koelemeijer, P.J., Deuss, A. & Trampert, J., 2012. Normal mode sensitivity
to earth’s D” layer and topography on the core-mantle boundary: what
we can and cannot see, Geophys. J. Int., 553–568, doi:10.1111/j.1365-
246X.2012.05499.x.

Komatitsch, D. & Tromp, J., 2002a. Spectral-element simulations of global
seismic wave propagation—I. Validation, Geophys. J. Int., 149, 390–412.

Komatitsch, D. & Tromp, J., 2002b. Spectral-element simulations of global
seismic wave propagation—II. 3-D models, oceans, rotation, and self-
gravitation, Geophys. J. Int., 150, 303–318.

Lamb, H., 1904. On the propagation of tremors over the surface of an elastic
solid, Phil. Trans. R. Soc. Lond., 203, 1–42.

Lawrence, J.F. & Shearer, P.M., 2008. Imaging mantle transition zone thick-
ness with SdS-SS finite-frequency sensitivity kernels, Geophys. J. Int.,
174, 143–158.

C© 2012 The Authors, GJI, 191, 832–848

Geophysical Journal International C© 2012 RAS



846 A. Colombi et al.

Lehmann, I., 1936. Inner earth, Bur. Cent. seism. Int., 14, 3–31.
Li, C., Van der Hilst, R.D., Engdahl, E.R. & Burdick, S., 2008. A new global

model for P wave speed variations in Earth’s mantle, Geochem. Geophys.
Geosyst., 9, doi:10.1029/2007GC001806.

Liu, Q. & Tromp, J., 2008. Finite-frequency sensitivity kernels for global
seismic wave propagation based upon adjoint methods, Geophys. J. Int.,
174, 265–286.

Montelli, R., Nolet, G., Dahlen, F.A. & Masters, G., 2006. A catalogue
of deep mantle plumes: new results from finite-frequency tomography,
Geochem. Geophys. Geosyst., 7, Q11007, doi:10.1029/2006GC001248.

Montelli, R., Nolet, G., Dahlen, F.A., Masters, G., Engdahl, E.R. & Hung,
S.-H., 2004. Finite-frequency tomography reveals a variety of plumes in
the mantle, Science, 303, 338–343, doi:10.1126/science.1092485.

Mora, P., 1989. Inversion=migration + tomography, Geophysics, 54(12),
1575–1586.

Morelli, A. & Dziewonski, A., 1987. Topography of the core-mantle bound-
ary and lateral homogeneity of the liquid core, Nature, 325, 678–
683.

Nissen-Meyer, T., Dahlen, F.A. & Fournier, A., 2007a. Spherical-earth
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A P P E N D I X A : A X I A L S Y M M E T RY A N D
C A RT E S I A N R E F E R E N C E F R A M E

Going from the 2-D semi-disc quantities given by AXISEM to
general 3-D cylindrical coordinates requires some multiplicative
factor to be applied:

vectors u3D
cyl (s, φ, z) = (

f1(φ) u2D
s , f2(φ) u2D

φ , f1(φ) u2D
z

)
,

(A1)

tensor E3D
cyl (s, φ, z) = F ⊗ E2D, (A2)

where F contains the azimuthal pre-factors f 1 and f 2:

F =

⎛
⎜⎜⎝

f1(φ) f2(φ) f1(φ)

f2(φ) f1(φ) f2(φ)

f1(φ) f2(φ) f1(φ)

⎞
⎟⎟⎠ , (A3)

and ⊗ stands for element-wise product. The values of the azimuthal
pre-factors f i depend on φ, source type and moment tensor compo-
nent. The following table summarizes the dependencies.

Table 1.

Source type M component Prefactor

f 1(φ) f 2(φ)

Monopole 1
2 Mzz 1 0

1
2 (Mxx + Myy ) 1 0

Dipole 1
2 Mxz, px cos φ −sin φ
1
2 Myz, py sin φ cos φ

Quadrupole 1
2 (Mxz − Myy ) cos 2φ −sin 2φ

Mxy sin 2φ cos 2φ

The angle φ is known for each of the kernel grid points x, pro-
jecting its components onto the x–y plane and calculating the angle
with the atan2 function. The Cartesian reference frame is assumed
to have the z-axis oriented towards the source (Fig. 11). The values
of φ have to be recalculated for every source-receiver configura-
tion. The easier case happens when all sources are monopole and
therefore azimuth-invariant such that this operation can be avoided.
If we denote with B the matrix that maps the Cartesian reference
frame into the cylindrical reference frame, then the following trans-
formations hold:

vectors: ucart = BT u3D
cyl tensors: Ecart = BT E3D

cylB, (A4)

where the bij entries of the change of basis matrix B are:

B =

⎛
⎜⎜⎝

cos φr − sin φr 0

sin φr cos φr 0

0 0 1

⎞
⎟⎟⎠ . (A5)

For example, the cylindrical coordinates of the kernel mesh are
converted to Cartesian with: xcart = BT x3D

cyl. The coefficients for

the rotation matrix R in eq. (20) are:

R =

⎛
⎜⎜⎝

cos θr,s cos φr,s − sin φr,s sin θr,s cos φr,s

cos θr,s sin φr,s cos φr,s sin θr,s sin φr,s

− sin θr,s 0 0

⎞
⎟⎟⎠ . (A6)
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Figure A1. A visual interpretation of the projection defined in (A7). The
point on the semi-disc is chosen to be the closest to the actual projection.

Figure A2. The kernel mesh with φ values superimposed. (Left) Values of
φ for the forward field located at north pole. (Right) The backward field
rotated 170◦ towards south. The z-axis in both plots points outwards from
the page.

Here, R is uniquely defined for all the mesh grid points x depend-
ing on the source and receiver coordinate (θ s, φs) or (θ r, φr). Note
that (θ r, φr) are not the initial receiver coordinates, but rather those
defined within the coordinate frame attached to the kernel mesh.

Finally, the geometrical relationships between Cartesian 3-D grid
(x, y, z) and 2-D semi-disc in cylindrical coordinates (s, φ, z) are:

s =
√

x2 + y2; (A7a)

φ = tan−1(y/x); (A7b)

z = z. (A7c)

We compute the gradient of the displacement on-the-fly inside
AXISEM via

∇u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂us

∂s

1

s

∂us

∂φ

∂us

∂z

∂uφ

∂s
− uφ

s

1

s

∂uφ

∂φ
+ us

s

∂uφ

∂z

∂uz

∂s

1

s

∂uz

∂φ

∂uz

∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (A8)

keeping always in mind that multiplicative pre-factors have to be
applied once the geometry of the kernel mesh is known.

A P P E N D I X B : A L G O R I T H M I C
O P T I M I Z AT I O N

To compute Kd in (15) for a given database including Nr receivers
and Ns sources, we proceed as follows:

• Forward fields for every source depth s are computed via
AXISEM, saving the necessary wavefields 10 times per dominant
period of the source time function ṁ, that is, re-sampling using
a larger time step, then imposed by the numerical CFL condition.
This value ensures sufficient time sampling to avoid both aliasing
and reduce the computational cost and storage size (Fichtner et al.
2009).
• By virtue of axial symmetry and the seismic representation

theorem, only two simulations for all the observations are sufficient
to compute the backward field.
• The kernel code computes eq. (11) according to Section 3.2

for every given receiver r associated to each source s.
• Results are stored and the procedure is repeated for all the

sources in the database. Eventually, once one has the inversion grid
available, inversion matrix entries may be given as output.

The parallelization of the forward solver AXISEM is discussed
in Nissen-Meyer et al. (2007b, 2008); therefore, we do not discuss
it here, but depict the domain decomposition in Fig. B1.

B1 Parallelization and in-core optimization

In our formulation, computing kernels is a task involving wavefield
rotations and convolution in time domain; hence, the paralleliza-
tion is straightforward. We set up the domain decomposition along

Figure B1. Domain decomposition for the kernel mesh (a) and for AXISEM
spectral element mesh (b) for eight processors as an example. Each slice is
handled by a different processor. The number of processor is defined by the
users according to memory/wall-clock time desired.
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the φ direction assigning each processor a vertical slice spanning
a given interval. The decomposition ensures perfect load balance
for optimal scalability on large parallel machines. To calculate only
the kernel, there is no need for intra-node communication so that
convolution, once the domain is split, is handled completely inde-
pendently by each processor: Every processor simply needs to know
the δφ spanned by the assigned slice and the permutation array to
remap for actual source or receiver location. Remaining in the same
framework, one can also think to directly project the kernel onto
the inversion grid. Significant performance gain was obtained by
embedding a GPU-accelerated region that handle this task with ex-
tremely high efficiency. This has proven to be particularly useful
to calculate Gi in eq. (21). ‘In-core’ optimizations were obtained
designing the convolution as 1-D array operations compliant to the
Fortran-like memory layout. Wherever possible we avoid nested
for-cycles or control statements. The code is designed to exploit
the most recent compiler optimization especially those of PGI with
GPU accelerators (www.pgroup.com).

B2 I/O optimization

For every source depth s, AXISEM saves vector fields that are used
to compute kernels. For I/O performance, we mean all the operations
transferring data back and forth from the central memory (RAM)

to the hard disk. A few best practices have been followed when
designing this I/O intensive code for parallel machines.

• Use single precision whenever double is not necessary (almost
always true in numerical wave propagation). This countermeasure
simply halves storage requirements.
• I/O infrastructures are designed to handle large files. I/O of

small files is never optimized; thus, it is better to reduce the number
of total disk access (disk latency time is several orders higher than
RAM access). Maximize bandwidth usage for disk I/O building
memory buffers inside RAM memory. To compute one boundary
kernel with AXISEM, only a 1-D time-dependent collection of
points is required (aligned along the interface) and it is therefore
possible to fit all the necessary field values inside a node memory.
In such a way, input fields are read from disk once-and-for-all at the
start-up.
• Use a portable format that can be written/read from heteroge-

neous system. For example, data from the forward simulation can
be computed on specifically designed machines and then the output
fields need to be read from another machine that may have a dif-
ferent hardware structure to specifically enhance the performance
of the algorithm calculating kernels. We use the NetCDF data li-
brary (www.ucar.org), a self describing, meta-data format widely
supported and optimized for data-intensive application.
• We embed data visualization in the output data format using

the CF convention (http://cf-pcmdi.llnl.gov/), natively supported by
software like Paraview or GMT.
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