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Abstract

Motivation: Genomics has revolutionized biological research, but quality assessment of the resulting

assembled sequences is complicated and remains mostly limited to technical measures like N50.

Results: We propose a measure for quantitative assessment of genome assembly and annotation

completeness based on evolutionarily informed expectations of gene content. We implemented

the assessment procedure in open-source software, with sets of Benchmarking Universal Single-

Copy Orthologs, named BUSCO.

Availability and implementation: Software implemented in Python and datasets available for

download from http://busco.ezlab.org.

Contact: evgeny.zdobnov@unige.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genomics data acquisition continues to accelerate, however, the

short lengths of sequencing reads make their assembly into full-

length chromosomes extremely challenging. To gauge potential limi-

tations and implement improvements it is thus important to assess

the quality of the resulting data. Proposed measures (Clark et al.,

2013; Gurevich et al., 2013; Hunt et al., 2013; Simpson, 2014) re-

flect methodologies, e.g. per-base error rates, insert size distribu-

tions; or genome biases, e.g. k-mer distributions; or fragment

(contig) length distributions, e.g. N50, which summarizes assembly

contiguity in a single number: half the genome is assembled on con-

tigs of length N50 or longer. However, such measures do not assess

assembly completeness in terms of gene content: an important con-

sideration that also affects data interpretation and helps to guide im-

proved assembly and annotation strategies.

With the growing number of available sequenced genomes,

knowledge of their gene content is consolidating and can be used to

develop an evolutionary measure of genome completeness. Here, we

revisit the idea of using known genes to measure genome assembly

and annotation completeness (Mende et al., 2013; Parra et al.,

2009), by introducing a citable notation for well-defined measures,

compiling the comprehensive datasets to support such assessments,

and offering these as an off-the-shelf software.

As proposed previously (Waterhouse et al., 2013),

Benchmarking Universal Single-Copy Orthologs (BUSCO) are ideal

for such quantifications of completeness, as the expectations for

these genes to be found in a genome and to be found only in single-

copy are evolutionarily sound. We used our OrthoDB database of

orthologs (www.orthodb.org) to define BUSCO sets for six major

phylogenetic clades. Sampling hundreds of genomes, orthologous

groups with single-copy orthologs in >90% of species were selected.

Importantly, this threshold accommodates the fact that even well-

conserved genes can be lost in some lineages, as well as allowing for

incomplete gene annotations and rare gene duplications. Subsequent
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filtering, e.g. on sequence uniqueness and conservation levels [see

Supplementary Online Material (SOM) for details], resulted in

BUSCO sets representing 3023 genes for vertebrates, 2675 for

arthropods, 843 for metazoans, 1438 for fungi and 429 for eukary-

otes. We also adopted 40 universal marker genes proposed for the

assessment of prokaryotic genomes (Mende et al., 2013). The clades

spanning many phyla offer comprehensive coverage of the tree of

life, while the more narrowly defined clades provide a much greater

resolution with much larger BUSCO sets. These are applicable not

only to the assessment of genome assemblies, but also to annotated

gene sets, as well as assembled transcriptomes (Fig. 1). Additionally,

as near-universal single-copy markers, the recovered genes are ideal

for species phylogeny reconstructions.

We propose intuitive metrics to describe genome, gene set or

transcriptome completeness in BUSCO notation - C:complete

[D:duplicated], F:fragmented, M:missing, n:number of genes used

(Fig. 1). The recovered genes are classified as ‘complete’ when their

lengths are within two standard deviations of the BUSCO group

mean length (i.e. within �95% expectation, Supplementary Fig. S1).

‘Complete’ genes found with more than one copy are classified as

‘duplicated’. These should be rare, as BUSCOs are evolving under

single-copy control (Waterhouse et al., 2011), and the recovery of

many duplicates may therefore indicate erroneous assembly of

haplotypes. Genes only partially recovered are classified as ‘frag-

mented’, and genes not recovered are classified as ‘missing’. Finally,

the ‘number of genes used’ indicates the resolution and hence is in-

formative of the confidence of these assessments.

Using HMMER 3 (Eddy, 2011) hidden Markov model (HMM)

profiles from amino acid alignments, the core of the analysis work-

flow (Fig. 1) assesses whether BUSCO gene matches are orthologous

or not (i.e. satisfy BUSCO group-specific bitscore cut-offs; detailed

in SOM), and classifies positive matches as complete or fragmented.

This core analysis is the same for assessing genomes, transcriptomes

or gene sets. However, additional analyses are required to first anno-

tate genes from transcriptomes and genomes. The simple longest

open reading frame approach performs well for transcriptomes. For

genomes, gene annotation is performed with Augustus (Keller et al.,

2011), guided by amino acid BUSCO group block-profiles, on gen-

omic loci detected with tBLASTn searches using BUSCO group con-

sensus sequences (detailed in SOM). Although this gene prediction

approach may have its limitations and biases, they are consistent

across different species, making for fair comparisons. Conveniently,

the thousands of confident BUSCO gene models provide an excellent

gene predictor training set for use as part of genome annotation

pipelines.

Table 1 reports BUSCO notation assessments of five diverse spe-

cies for both their genome assemblies and their annotated gene sets.

Assessing 70 genomes, 163 gene sets, and 96 transcriptomes re-

vealed substantial variability of completeness (Supplementary Table

S1). Poor correlation with scaffold N50 (Supplementary Fig. S2)

highlights how completeness provides important complementary

information for quality assessment. Nevertheless, the fact that some

genome assemblies appear less complete than their corresponding

gene sets (e.g. H. sapiens Table 1) reveals limitations of the BUSCO

gene prediction step. On the other hand, a reversal of this trend (e.g.

A. nidulans Table 1) suggests that the annotated gene set may be

missing some BUSCO gene matches that are in fact present in the

genome. Thus, it should be noted that while BUSCO assessments

aim to robustly estimate completeness of the datasets, technical limi-

tations (particularly gene prediction) may inflate proportions of

‘fragmented’ and ‘missing’ BUSCOs, especially for large genomes.

More ‘missing’ BUSCOs may also be reported for species that are

highly derived with respect to the assessment clade—even with high-

quality genomes (e.g. C. elegans Table 1)—reflecting the organism’s

evolutionary history rather than an incomplete assembly.

Comparing genome to gene set completeness of 40 species using

a 250-BUSCO eukaryotic subset reveals generally consistent assess-

ments across highly divergent lineages from fungi to human (Fig. 2).

Employing the 248 genes of the Core Eukaryotic Gene Mapping

Approach (CEGMA) (Parra et al., 2007) in a like-for-like

Fig. 1. BUSCO assessment workflow and relative run-times

Table 1. Assessment of fruitfly (D. mela,), nematode worm (C.

eleg,), human (H. sapi,), owl limpet (L. giga,), and fungus (A. nidu,)

genome assemblies (upper row) and gene sets (lower row) in

BUSCO notation (C:complete [D:duplicated], F:fragmented,

M:missing, n: gene number)

Species Size BUSCO notation assessment results

D. mela 139 Mbp C:98% [D:6.4%], F:0.6%, M:0.3%, n:2 675

13 918 genes C:99% [D:3.7%], F:0.2%, M:0.0%, n:2 675

C. eleg 100 Mbp C:85% [D:6.9%], F:2.8%, M:11%, n:843

20 447 genes C:90% [D:11%], F:1.7%, M:7.5%, n:843

H. sapi 3 381 Mbp C:89% [D:1.5%], F:6.0%, M:4.5%, n:3 023

20 364 genes C:99% [D:1.7%], F:0.0%, M:0.0%, n:3 023

L. giga 359 Mbp C:89% [D:2.3%], F:4.3%, M:5.8%, n:843

23 349 genes C:90% [D:13%], F:7.8%, M:2.1%, n:843

A. nidu 30 Mbp C:98% [D:1.8%], F:0.9%, M:0.2%, n:1 438

10 534 genes C:95% [D:7.3%], F:3.8%, M:0.9%, n:1 438

Fig. 2. BUSCOs (eukaryotic subset) and CEGMA CEGs recovered from 40 rep-

resentative genome assemblies and their respective gene sets. Inset: number

of genes in each BUSCO set and the CEGMA CEGs
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comparison (i.e. implementing gene set assessments using CEGMA

HMMs, see SOM for details) appears somewhat less consistent (Fig.

2, BUSCO linear regression is closer to the diagonal). Additionally,

in comparable 250-BUSCO and 248-CEGMA assessments BUSCO

run-times are substantially faster, �2x for small genomes and �10x

for large genomes, but of course the higher resolutions achievable

with the thousands of vertebrate, arthropod and fungal BUSCO sets

do require longer run-times (Supplementary Table S2). Run-times

are generally proportional to the size of the BUSCO set used and the

sizes of the genomes being assessed, e.g. on 4 CPU cores with up to

8 GB memory: the 180 Mbp fruit fly genome ran for 3.2–7.6 h,

while the 3381 Mbp human genome ran for 13–29 h with 843 meta-

zoan and 2675 arthropod or 3023 vertebrate BUSCOs, respectively

(Supplementary Table S2).

BUSCO quality assessments provide high-resolution quantifica-

tions citeable in the simple C[D],F,M,n notation for genomes, gene

sets and transcriptomes. This facilitates informative comparisons,

e.g. of newly sequenced draft genome assemblies to those of gold-

standard models, or to quantify iterative improvements to assem-

blies or annotations. BUSCO assessments therefore offer intuitive

metrics, based on evolutionarily informed expectations of gene con-

tent from hundreds of species, to gauge completeness of rapidly

accumulating genomic data and satisfy an Iberian’s quest for

quality—‘Busco calidad/qualidade’.
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