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In this paper, we consider nonlinear Schrödinger equations of the following type:

−∆u(x) + V (x)u(x) − q(x)|u(x)|σu(x) = λu(x), x ∈ R
N , u ∈ H1(RN ) \ {0},

where N � 2 and σ > 0. We concentrate on situations where the potential function V
appearing in the linear part of the equation is of Coulomb type; by this we mean
potentials where the spectrum of the linear operator −∆ + V consists of an
increasing sequence of eigenvalues λ1, λ2, . . . followed by an interval belonging to the
essential spectrum.

We study, for λ kept fixed inside a spectral gap or below λ1, the existence of
multiple solution pairs, as well as the bifurcation behaviour of these solutions when λ
approaches a point of the spectrum from the left-hand side. Our method proceeds by
an analysis of critical points of the corresponding energy functional. To this end, we
derive a new variational characterization of critical levels
c0(λ) � c1(λ) � c2(λ) � · · · corresponding to an infinite set of critical points.

We derive such a multiplicity result even if some of the critical values cn(λ)
coincide; this seems to be a major advantage of our approach. Moreover, the
characterization of these values cn(λ) is suitable for an analysis of the bifurcation
behaviour of the corresponding generalized solutions.

The approach presented here is generic; for instance, it can be applied when V
and q are periodic functions. Such generalizations are briefly described in this paper
and will be the object of a forthcoming article.

1. Introduction

In this paper, we investigate nonlinear Schrödinger equations of the following type:

− ∆u(x) + V (x)u(x) − q(x)|u(x)|σu(x) = λu(x), x ∈ R
N ,

u ∈ H1(RN ) \ {0},

}
(1.1)

where N � 2 and σ > 0. The nonlinear perturbation q(x)|u(x)|σu(x) is governed
by a positive function q. Therefore, we call it a simple nonlinearity, as opposed to
other nonlinearities like q(x)|u(x)|σu(x) − r(x)|u(x)|τu(x), where both q and r are
positive functions and 0 < σ < τ (see, for example, [10, 11]).

We include in our analysis the important ‘hydrogen-like’ situations. Thus, we
consider potentials V for which the spectrum of the linear operator −∆+V consists
of an increasing set of eigenvalues λ1, λ2, . . . followed by an interval belonging to
the essential spectrum. Our analysis deals not only with situations where this set
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1062 H.-J. Ruppen

of eigenvalues is finite, but also with the important case of a countable number
of eigenvalues. A typical example of such a potential is the Coulomb potential
V (x) = −2/|x|. We will treat the case where λ lies below λ1, as well as the more
delicate one where λ lies inside a spectral gap. As well as the existence of multiple
solutions for a fixed value of λ, we will study the bifurcation behaviour of such
solutions when λ varies.

The paper has the following structure.
In § 2, we set up the basic hypotheses under which we analyse (1.1). Moreover,

we explain what we mean by a solution; we restrict our attention to the existence
of weak solutions characterized as critical points of some energy functional Iλ. In
doing so, we are led in a natural way to an extension L1+V of the operator −∆+V .
Section 3 deals with the invariance of the point spectrum when replacing −∆ + V
by its extension L1 + V .

In § 4, we show that the energy functional Iλ satisfies a compactness assumption
known as the Palais–Smale condition. Note that this assumption holds only on the
resolvent set. Therefore, we must exclude questions about the existence of solutions
when λ belongs to the spectrum of −∆ + V .

In § 5, we present the main abstract result; we study critical points of a functional
Iλ : X → R that is defined on an abstract Hilbert space X and that depends
on a parameter λ. This functional consists of two terms: a quadratic one that
predominates in a neighbourhood of the origin, and a negative, superquadratic
one whose importance increases with the distance from the origin. We deal with a
setting where the space X is split into an orthogonal sum Y ⊕Z; the quadratic term
of Iλ is negative definite on Y and positive definite on Z. Thereby, the subspace Y
is finite-dimensional; we call such situations ‘weakly indefinite’ in contrast to the
‘strongly indefinite’ ones, where dimY = ∞ (see [12,13]).

It would be possible to use here, at least for existence results, the classical results
by Ambrosetti and Rabinowitz [1]. We choose a different approach and give a new
variational characterization of critical levels c0(λ) � c1(λ) � c2(λ) � · · · . As
Ambrosetti and Rabinowitz did, we give a multiplicity result when some of the
levels cj(λ) (j ∈ N) coincide. Our approach has two major advantages. Firstly, we
can easily analyse the behaviour of critical points when the parameter λ varies. In
this way we get multiple bifurcation results. Secondly, and this seems to be the more
important point, we can extend our ideas to the ‘strongly indefinite’ cases and we
will present such situations in a forthcoming paper [12]. This unifying aspect seems
to be new and opens the door to the analysis of multiple bifurcation independently
of the dimension of the space Y .

Section 6 applies the abstract setting to the Schrödinger equation (1.1) when λ is
below the first eigenvalue. In § 7, we consider the same problem when the eigenvalue
λ is in a spectral gap. In both cases, we prove the existence of an infinite number
of solutions and we derive a (multiple) bifurcation result in each spectral gap.

2. Basic assumptions

Our study will include ‘hydrogen-like’ configurations; by this we mean a setting
where a nucleus of mass m1 and of charge Ze is surrounded by an electron of mass
m2 and of charge −e. Following Jost [7], the corresponding governing equation takes
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Bifurcation in simple gaps 1063

the form
−∆u(x) − 2

|x|u(x) = εu(x), x ∈ R
3,

involving the Coulomb potential V (x) = −2/|x|. It is well known that the eigenval-
ues of the operator −∆ + V are λn = −1/n2 (n = 1, 2, 3, . . . ). This fact, together
with σe(−∆ + V ) = [0, +∞[ motivates the following set of assumptions V−, V
and L.

We begin with a basic assumption involving only the potential function V .

Assumption V
−
. When considered as a mapping H1(RN ) → L2(RN ), the opera-

tor V : u(x) �→ V (x)u(x) is continuous. Moreover, lim|x|→+∞ V (x) = 0− uniformly,
i.e. given any b < 0, there exists an rb > 0 such that b/2 � V (x) � 0 for |x| � rb.

We will need an additional assumption, especially when discussing the Palais–
Smale condition.

Assumption V. The potential V satisfies assumption V−. Moreover, when con-
sidered as a mapping H2(RN ) → L2(RN ), the operator V : u(x) �→ V (x)u(x) is
completely continuous in the sense that V um → V u in L2(RN ) as m → ∞ when-
ever um ⇀ u in H2(RN ) as m → ∞.

Proposition 2.1. The Coulomb potential V (x) = −K/|x|, where K is a positive
constant, satisfies assumption V.

For a proof, we refer the reader to Dautray and Lions [3, pp. 385–431].
We now proceed with the assumptions on V as part of the operator

−∆ + V : D(−∆ + V ) ⊂ L2(RN ) → L2(RN ),

with D(−∆ + V ) = D(−∆) = H2(RN ). Under assumption V, we have by Weyl’s
Theorem that

σe(−∆ + V ) = σe(−∆) = [0, +∞[.

Note that σ(−∆) = σe(−∆), but this must no longer be true for the operator
−∆+V . The interested reader can find more details in Dautray and Lions [3, p. 383].
In this paper, we restrict ourselves to situations that satisfy the following condition.

Assumption L. The potential V satisfies assumption V with N > 1. Moreover,
the operator −∆ + V has a discrete spectrum (consisting of isolated eigenvalues of
finite multiplicity) of the form

σd(−∆ + V ) = {λn | n ∈ L},

where

• λ1 < λ2 < · · · < 0, λ1 being simple,

• L = N or L = {1, 2, . . . , �} for some � ∈ N,

• limn→∞ λn = 0− if L = N.

Proposition 2.2. The Coulomb potential V (x) = −2/|x| satisfies assumption L
with L = N.
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1064 H.-J. Ruppen

We now concentrate on the nonlinear perturbation q|u|σu. We work under the
following assumption.

Assumption Q. The non-negative function q ∈ L∞(RN ) satisfies lim|x|→∞ q(x) =
0. The constant σ is strictly positive. Moreover, σ < 4/(N − 2) if N > 2.

Under this assumption, we may consider the functional

Φ(u) :=
1

2 + σ

∫
RN

q(x)|u(x)|2+σ dx ∀u ∈ H1(RN ).

Before proceeding, let us fix some notation. We denote by (·, ·)H1(RN ) the usual
scalar product in H1(RN ); the corresponding norm will be ‖ · ‖H1(RN ). Moreover,
given a functional f of class C1, we define the gradient ∇f by

f ′(u)v = (∇f(u), v)H1(RN )

for all u, v ∈ H1(RN ).
The following result can be found in Stuart [17,18].

Proposition 2.3. If assumption Q holds, we have the following.

(1) Φ ∈ C1(H1(RN ); R), Φ′(u) = q|u|σu, where the equality holds in H−1(RN ).

(2) Φ is completely continuous in the sense that Φ(um) → Φ(u) in R as m → ∞
whenever um ⇀ u in H1(RN ) as m → ∞.

(3) Φ′ is compact in the sense that ∇Φ(um) → ∇Φ(u) in H1(RN ) as m → ∞
whenever um ⇀ u in H1(RN ) as m → ∞.

We now turn our attention to the nonlinear Schrödinger equation. Supposing
that assumptions L and Q hold, for all u ∈ H1(RN ), we set

Bλ(u) :=
∫

RN

(|∇u|2 + V u2 − λu2) dx and Iλ(u) := 1
2Bλ(u) − Φ(u).

Problem (1.1) can be formulated in a weak form as follows.

Problem P. For λ ∈ ]−∞, 0[ \ σ(−∆+V ) kept fixed, find a function u ∈ H1(RN )\
{0}, with I ′

λ(u) = 0 in H−1(RN ).

Note that any solution u of problem P must verify Bλ(u) > 0. This is so, since
I ′
λ(u)u = Bλ(u) − (2 + σ)Φ(u) = 0 implies that

Iλ(u) =
(

1
2

− 1
2 + σ

)
Bλ(u) =

(
2 + σ

2
− 1

)
Φ(u) > 0.

3. Analysis of the linear term

We begin the study of problem P with the analysis of the linear term that generates
the quadratic part Bλ of the energy functional Iλ. We consider the positive, self-
adjoint operator

−∆: H2(RN ) ⊂ L2(RN ) → L2(RN )
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Bifurcation in simple gaps 1065

and its positive, self-adjoint square-root

T := (−∆)1/2 : H1(RN ) ⊂ L2(RN ) → L2(RN )

(see Kato [8, pp. 281 and 331]). Stuart [15–17] devoted a couple of articles to such
operators; we summarize his main results here.

For u ∈ H2(RN ) and v ∈ H1(RN ), we have that

(Tu, Tv)L2(RN ) = (T 2u, v)L2(RN ) = (−∆u, v)L2(RN ) = (∇u, ∇v)L2(RN ).

Using a density argument, we may thus conclude that the bilinear form

a(u, v) =
∫

RN

∇u · ∇v dx

can be written as

a(u, v) = (Tu, Tv)L2(RN ) ∀u, v ∈ H1(RN ).

We introduce the bounded, linear operator (of norm � 1) defined by

T1 : H1(RN ) → L2(RN ), u �→ Tu.

Moreover, we set L1 := T ∗
1 T1 : H1(RN ) → H−1(RN ). Note that we make use of the

identification
H1(RN ) ⊂ L2(RN ) = [L2(RN )]∗ ⊂ H−1(RN ).

Then, we have the following.

(1) L1 is an extension of −∆ and

u ∈ H2(RN ) ⇐⇒ L1u ∈ L2(RN ).

(2) a(u, v) = 〈L1u, v〉H−1(RN ),H1(RN ) ∀u, v ∈ H1(RN ).

Proposition 3.1. For λ < 0, the operator L1−λI : H1(RN ) → H−1(RN ) is invert-
ible (with a bounded inverse).

Proof. We divide the proof into three steps. The whole procedure is deeply inspired
by Heinz [5].

Step 1. Let us consider the positive, self-adjoint operator

M := −∆ + I : H2(RN ) ⊂ L2(RN ) → L2(RN )

and let us set, for α > 0,

• Mα := (−∆ + I)α and M−α := (Mα)−1,

• Hα := D(Mα/2) equipped with the norm ‖u‖α := |Mα/2u|L2(RN ).

Denoting by E(λ) the decomposition of the identity corresponding to M (see
Kato [8, pp. 353–356]), we may then write

M =
∫ +∞

1
λ dE(λ), M1/2 =

∫ +∞

1

√
λ dE(λ) and − ∆ =

∫ +∞

1
(λ − 1) dE(λ).
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1066 H.-J. Ruppen

Hence, we get that

H1(RN ) =
{

u ∈ L2(RN )
∣∣∣∣
∫ +∞

1
(λ − 1) d(E(λ)u, u)L2(RN ) < ∞

}
= D(M1/2) = H1

and, in a similar way, we may derive that H2 = H2(RN ).
Moreover, using a density argument and the relation ‖u‖2

1 = (Mu, u)L2(RN ) =
(−∆u + u, u)L2(RN ) = ‖u‖2

H1(RN ) (for u ∈ H2), we get that ‖u‖1 = ‖u‖H1(RN ) for
all u ∈ H1(RN ).

Step 2. We now look at the operator

N := T ∗
1 T1 + I : H1(RN ) → H−1(RN ),

and we show that, for all λ < 1, N − λI : H1(RN ) → H−1(RN ) is invertible and
has a unique inverse.

Indeed, since λ − 1 �∈ σ(−∆) = [0, +∞[, the operator

R := (−∆ − (λ − 1)I)−1 : L2(RN ) → L2(RN )

is well defined and bounded. So

MR = (−∆ + I)(−∆ + I − λI)−1 = I + λR : L2(RN ) → L2(RN )

is also well defined and bounded. Note that, for v ∈ L2(RN ), Rv ∈ H2(RN ) ⊂
H1(RN ). So

‖Rv‖2
H1(RN ) = ‖Rv‖2

1 = |M1/2Rv|2L2(RN ) = |MRM−1/2v|2L2(RN )

� ‖MR‖2|M−1/2v|2L2(RN ).

But,

|M−1/2v|2L2(RN ) = (v, M−1v)L2(RN ) � ‖v‖H−1(RN )‖M−1v‖1

= ‖v‖H−1(RN )|M−1/2v|L2(RN ).

Hence, we get that

‖Rv‖H1(RN ) � ‖MR‖‖v‖H−1(RN ) ∀v ∈ L2(RN ).

Since the inclusion L2(RN ) ⊂ H−1(RN ) is dense, we can extend the operator R by
continuity, and in this way we get a continuous operator R1 : H−1(RN ) → H1(RN ).
If we can show that R1 = (N − λI)−1, we are done.

We prove this now and we start with the following remark: for each v ∈ H−1(RN ),
there exists a sequence {vm}m∈N in L2(RN ) with vm → v in H−1(RN ) as m → ∞.
Since R1vm ∈ H2(RN ), we have that (N − λI)R1vm = vm. Using the continuity of
the mapping (N − λI)R1 : H−1(RN ) → H−1(RN ) we get that

(N − λI)T1v = v ∀v ∈ H−1(RN ),

i.e. (N − λI)R1 = IH−1(RN ). A similar argument shows that R1(N −λI) = IH1(RN ).
Thus, (N − λI) is invertible and R1 = (N − λI)−1.

Step 3. The claim now follows from L1 − λI = N − (λ + 1)I.
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Bifurcation in simple gaps 1067

With the help of this preliminary result we can analyse the spectrum of the
operator L1 + V appearing in the bilinear form

a1(u, v) = a(u, v) + (V u, v)L2(RN ) = 〈(L1 + V )u, v〉H−1(RN ),H1(RN ).

We have identified here the element V u ∈ L2(RN ) with V u ∈ H−1(RN ) via

〈V u, v〉H−1(RN ),H1(RN ) = (V u, v)L2(RN ) ∀v ∈ H1(RN ).

We say that λ is an eigenvalue of the bounded operator

L1 + V : H1(RN ) → H−1(RN )

and we write λ ∈ σp(L1 + V ) if and only if there exists a ϕ ∈ H1(RN ) \ {0}, with
(L1 + V )ϕ = λϕ in H−1(RN ).

Proposition 3.2. Under assumption V, the set σp(L1+V ) coincides with the point
spectrum σp(−∆ + V ).

Proof. If λ is an eigenvalue, we have that

L1ϕ = λϕ − V ϕ ∈ L2(RN ).

Hence, ϕ ∈ H2(RN ) and (−∆+V )ϕ = λϕ in L2(RN ). This means that λ ∈ σp(−∆+
V ). Thus, we get the desired result.

Proposition 3.3. Suppose that assumption L holds and assume that λ ∈ ]−∞, 0[ \
σd(−∆ + V ). Then,

(L1 + V − λI)−1 : H−1(RN ) → H1(RN )

exists as a bounded operator.

Proof. If λ ∈ ]−∞, 0[ \ σd(−∆ + V ), then

(−∆ + V − λI)−1 : L2(RN ) → L2(RN )

exists as a bounded operator.

Step 1. As a first step, we show that there exists a strictly positive constant C
with

‖(−∆ + V − λI)−1u‖H1(RN ) � C‖u‖−1
H (RN ) ∀u ∈ L2(RN ),

i.e. with

‖w‖H1(RN ) � C‖(−∆ + V − λI)w‖−1
H (RN ) ∀w ∈ H2(RN ).

Suppose, indeed, on the contrary, that there exists some sequence {wm}m∈N in
H2(RN ) with ‖wm‖H1(RN ) = 1, for all m ∈ N, and (−∆ + V − λI)wm → 0 in
H−1(RN ) as m → ∞. This would imply that wm ⇀ 0 in L2(RN ) as m → ∞.
Indeed, for all ϕ ∈ H2(RN ), we have that

(wm, (−∆ + V − λI)ϕ)L2(RN ) = ((−∆ + V − λI)wm, ϕ)L2(RN )

= 〈(−∆ + V − λI)wm, ϕ〉H−1(RN ),H1(RN )

→ 0
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1068 H.-J. Ruppen

as m → ∞. Since the range of (−∆ + V − λI) is L2(RN ), it follows that wm ⇀ 0
in L2(RN ) as m → ∞.

Our assumptions on the sequence {wm}m∈N imply that

〈(−∆ + V − λI)wm, wm〉H−1(RN ),H1(RN ) → 0 as m → ∞.

This in turn means that

lim
m→∞

‖∇wm‖2
L2(RN ) − λ|wm|2L2(RN ) + (V wm, wm)L2(RN ) = 0.

By the equivalence of norms, and since λ < 0, there exists some constant c1 with

lim inf
m→∞

‖∇wm‖2
L2(RN ) − λ|wm|2L2(RN ) � c1 > 0.

Hence, we get a contradiction if we can show that, up to some subsequence, we
have

lim
m→∞

∣∣∣∣
∫

RN

V w2
m dx

∣∣∣∣ � 1
2c1.

But this follows from the complete continuity assumption V since, up to some
subsequence, we may assume that wm converges weakly in H1(RN ).

Step 2. We may now extend the operator (−∆ + V − λI)−1 by continuity to a
bounded operator H−1(RN ) → H1(RN ). Using a density argument, as we did in
the proof of proposition 3.1, one can show that the so-defined operator is in fact
(L1 + V − λI)−1.

4. Palais–Smale condition

We intend to solve problem P with the help of a variational characterization of
critical values of Iλ. We will develop these characterizations under a classical com-
pactness assumption called the ‘Palais–Smale condition’ (see, for example, [2,6,14]).

Let us consider a Palais–Smale sequence {um}m∈N in H1(RN ). By this we mean
a sequence satisfying the conditions

lim
m→∞

Iλ(um) = c ∈ R and lim
m→∞

Iλ(um) = 0.

Thus, we have that

2Iλ(um) = Bλ(um) − 2Φ(um) = 2c + o(1), (4.1)
I ′
λ(um)um = Bλ(um) − (2 + σ)Φ(um) = o(1)‖um‖H1(RN ). (4.2)

Eliminating Φ(um) by a linear combination, we get that

2(2 + σ)c + o(1) + o(1)‖um‖H1(RN ) = σBλ(um). (4.3)

Note that we can replace ‖ · ‖H1(RN ) in this relation by any other equivalent norm.
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We say that the Palais–Smale condition holds if, up to a subsequence, {um}m∈N

is a convergent sequence in H1(RN ). We will now answer the question of whether or
not this condition holds. To that end, we will proceed in two steps: first we assume
that λ < λ1, and then we proceed with the more difficult case when λ ∈ ]λ1, 0[.

4.1. Palais–Smale sequences when λ < λ1

Suppose that assumption V holds. Then, as long as λ is strictly below λ1, we
may consider the norm |‖ · |‖λ defined by

|‖u|‖λ :=
√

Bλ(u) ∀u ∈ H1(RN );

note that this norm is equivalent to the usual norm ‖ · ‖H1(RN ) in H1(RN ). We may
use this norm in (4.3); this leads us to

σ|‖um|‖2
λ = 2(2 + σ)c + o(1) + o(1)|‖um|‖λ.

In this way, we immediately get a first main property exhibited by all Palais–Smale
sequences.

Lemma 4.1. Suppose that assumption L holds and let λ < λ1 be kept fixed. Then,
every Palais–Smale sequence for Iλ is bounded in H1(RN ).

4.2. Palais–Smale sequences when λ ∈ ]λ1, 0[

We now consider the situation where λ is in a spectral gap, say λ ∈ ]λ−, λ+[. Iden-
tifying H−1(RN ) with H1(RN ), we may consider L1 + V as a self-adjoint operator
H1(RN ) → H1(RN ) with

((L1 + V )u, v)H1(RN ) =
∫

RN

∇u · ∇v + V uv dx.

Considered in this way, L1 + V has a spectral decomposition of the form

L1 + V =
∫

R

µdE(µ) =
∫ +∞

λ1

µdE(µ).

For more details, we refer the reader to Kato [8, pp. 353–356].
We fix some point λ̄ inside the gap ]λ−, λ+[. The operator defined by

P :=
∫

]−∞,λ̄]
dE (µ) = E(λ̄) : H1(RN ) → H1(RN )

is a (·, ·)H1(RN )-orthogonal projection, whose definition does not depend on the
choice of λ̄. For convenience, we introduce a second (·, ·)H1(RN )-orthogonal projec-
tion H1(RN ) → H1(RN ) via Q := I−P . Note that P , Q and L1 +V commute and
that the orthogonality implies that PQ = QP = 0.

For λ < λ1, we have established the boundedness of Palais–Smale sequences with
the help of the well suited norm |‖ · |‖λ; for λ ∈ ]λ−, λ+[, we again need a norm that
is well adapted for questions related to the boundedness of Palais–Smale sequences.
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1070 H.-J. Ruppen

We denote this norm once more by |‖ · |‖λ, and we define it via a new scalar product
in the following way:

((u, v))λ = ((L1 + V − λI)(Q − P )u, v)H1(RN ),

|‖u|‖λ =
√

((u, v))λ.

We then get the following proposition.

Proposition 4.2. Suppose that assumption L holds and that λ is in a spectral gap
]λ−, λ+[.

Then, |‖ · |‖λ is a norm on H1(RN ) that is equivalent to the usual norm on
H1(RN ).

For a proof, we refer the reader to Stuart [19].
With the help of this new norm, we can now deal with the boundedness of Palais–

Smale sequences. In fact, the following holds.

Lemma 4.3. Suppose that assumptions L and Q hold and assume that

λ1 ∈ ]−∞, 0[ \ σp(−∆ + V ).

Then, every Palais–Smale sequence is bounded in H1(RN ).

Proof. As we did for Φ(um), we can eliminate Bλ(um) in (4.1) and (4.2). This leads
to the relation

σΦ(um) = 2Iλ(um) − I ′
λ(um)um = 2c + o(1) + o(1)|‖um|‖λ.

We now proceed with an idea found in [9]. Under assumption Q we have, for
|u| � 1, that

|q(x)|u|σu|2 = q(x)2|u|2+2σ � const.q(x)|u|2+σ;

for |u| � 1, the corresponding relation is

|q(x)|u|σu|(2+σ)/(1+σ) � const.q(x)|u|2+σ.

Setting Ωm = {x ∈ R
N | |um(x)| � 1}, we get the estimates

a1 :=
[ ∫

Ωm

|q(x)|um(x)|σum(x)|2
]1/2

� const.(2c + o(1) + o(1)|‖um|‖λ)1/2

and

a2 :=
[ ∫

RN \Ωm

|q(x)|um(x)|σum(x)|(2+σ)/(1+σ)
](1+σ)/(2+σ)

� const.(2c + o(1) + o(1)|‖um|‖λ)(1+σ)/(2+σ).
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Bifurcation in simple gaps 1071

Now, we use the relation I ′
λ(um)Pum = |‖Pum|‖2

λ − Φ′(um)Pum. With the help
of Hölder’s inequality, we get that

|‖Pum|‖2
λ = −I ′

λ(um)Pum −
∫

RN

q|um|σumPum dx

� o(1)|‖Pum|‖λ + a1|Pum|L2(RN ) + a2|Pum|L2+σ(RN )

� [o(1) + const.a1 + const.a2]|‖Pum|‖λ,

|‖Pum|‖λ � o(1) + const.a1 + const.a2.

In a similar way, one can derive the estimate

|‖Qum|‖λ � o(1) + const.a1 + const.a2.

We recall now that PQ = 0; combining this with the above result, we can write

|‖um|‖2
λ = |‖Pum|‖2

λ + |‖Qum|‖2
λ � [o(1) + const.a1 + const.a2]2.

Using the estimates derived above for a1 and a2, we get that

|‖um|‖2
λ � 2[o(1) + const.(2c + o(1) + o(1)|‖um|‖λ)1/2

+ const.(2c + o(1) + o(1)|‖um|‖λ)(1+σ)/(2+σ)]2. (4.4)

This shows that |‖um|‖λ is bounded. Hence, every Palais–Smale sequence is bounded
with respect to all norms that are equivalent to |‖um|‖λ.

4.3. The convergence of Palais–Smale sequences

Combining the results of lemmata 4.1 and 4.3, we affirm that every Palais–Smale
sequence is bounded. We can even strengthen this result in the following way.

Proposition 4.4. Suppose that assumptions L and Q hold, and that λ ∈ ]−∞, 0[ \
σp(−∆ + V ).

Then, every Palais–Smale sequence converges up to some subsequence.

Proof. Due to the boundedness of all Palais–Smale sequences, we may assume that,
up to some subsequence, every Palais–Smale sequence {um}m∈N is weakly conver-
gent. Thus, we have that um ⇀ u in H1(RN ) and Φ′(um) → Φ′(u) in H−1(RN ) as
m → ∞. But, this implies that

(L1 + V − λI)um = I ′
λ(um) + Φ′(um) → Φ′(u) in H−1(RN ).

Hence, since λ �∈ σp(−∆+V ), we may conclude that um → u in H1(RN ) as m → ∞,
and this is the desired result.

5. Critical point theory and bifurcation theory

In this section, we develop a critical point theory and a bifurcation theory within
the following context.

Condition C0. We denote by X a separable, real Hilbert space equipped with a
scalar product (· | ·) and a corresponding norm ‖ · ‖. This Hilbert space is split into
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1072 H.-J. Ruppen

an orthogonal sum X = Y ⊕ Z. In this decomposition, Y is a finite-dimensional
space of dimension n; we thereby explicitly do not exclude the situation where
Y = {0} and n = 0.

Inside the subspace Z, we consider an orthonormal set {z1, z2, . . . , zm} (m � 1)
as well as a ‘circle’ Sn := {z ∈ Z | ‖z‖ = ρ} of radius ρ > 0.

For any R > ρ, we collect in the set Ān,m all the points x ∈ X of the form

y +
m∑

k=1

αkzk,

where y ∈ Y , αk ∈ R for k = 1, . . . , m and ‖x‖ � R. We set An,m := {x ∈ Ān,m |
0 < ‖x‖ < R} and ∂An,m := Ān,m \ An,m.

As well as these sets, we consider the class Γn,m consisting of all odd homeomor-
phisms γ : X → X, where γ|∂An,m is the identity map on ∂An,m.

5.1. Odd linking

Within context C0 defined above, we say that Sn links An,m oddly if γ(An,m) ∩
Sn �= ∅ for all homeomorphisms γ ∈ Γn,m. Odd linking will play a key role when
we characterize critical levels of energy functionals.

The following proposition shows that the size of γ(An,m) ∩ Sn can be character-
ized by its genus. We refer the reader to Struwe [14] or Chow and Hale [2] for more
details about the genus of an odd set.

Proposition 5.1. Within the context C0, the set γ−1(Sn) ∩ An,m is of genus � m
for all homeomorphisms γ ∈ Γn,m. Hence, Sn links An,m oddly.

Proof. We denote by B the open ball of radius ρ in X, and consider a homeomor-
phism γ ∈ Γn,m. Since 0 < ρ < R, we get that γ−1(B) ∩ ∂An,m = {0}. Moreover,
the set U := γ−1(B) ∩ span{An,m} is an open set relative to a subspace of dimen-
sion n + m. Thus, ∂U = γ−1(∂B) ∩ span{An,m} is of genus n + m.

We set K := γ−1(Sn) ∩ span{An,m} and we note that K ⊂ An,m. Thus, it is
enough to show that the genus of K is at least m.

If n = 0, we have that ∂B = S0, so K is of genus m.
If n � 1, we can argue as follows. We consider, for k = 1, . . . , n, the sets Vk :=

γ−1({x ∈ B | (x | yk) �= 0}); all these sets are open, odd and oddly contractible. We
now assume, on the contrary, that the genus g of K is smaller than m. Then, there
exist open and odd sets W1, . . . , Wg that are oddly contractible, with K ⊂

⋃g
i=1 Wi.

Hence, we get that

∂U ⊂
n⋃

k=1

Vk ∪
g⋃

i=1

Wi.

This is the desired contraction, since this inclusion means that the genus of ∂U is
at most n + g, a number that is strictly smaller than n + m.

5.2. Existence of critical points

We now consider a C1-functional I : X → R defined in the context C0 and
satisfying the following conditions.
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Bifurcation in simple gaps 1073

Condition C1. I is even and there exists a constant α > 0 such that I|Sn � α.

Condition C2. I|∂An,m � 0.

Condition C3. I satisfies the Palais–Smale condition for all positive levels c.

These assumptions imply that the functional I possesses a generalized mountain
pass geometry. Ambrosetti and Rabinowitz [1] have studied the existence of critical
points for such functionals. We choose another approach and we propose a new
variational characterization of critical levels. Note that our method extends to sit-
uations where dimY = ∞, and we will discuss such extensions in a forthcoming
article [13].

We start with the candidate

cn,m := inf
γ∈Γn,m

max
u∈Ān,m

I(γ(u)).

Note that proposition 5.1 immediately implies that cn,m � α > 0. The following
proposition justifies our interest in cn,m.

Proposition 5.2. Suppose that I : X → R is a functional operating in the con-
text C0 (for some m � 1) and exhibiting the properties C1–C3.

Then, cn,m = infγ∈Γn,m maxu∈Ān,m
I(γ(u)) is a critical value of I.

Proof. Suppose, on the contrary, that cn,m is a regular value. For any given ε ∈
]0, cn,m/2[, we may then choose a mapping γ ∈ Γn,m in such a way that

max
u∈Ān,m

I(γ(u)) ∈ [cn,m, cn,m + ε].

By the classical deformation theorem (see, for example, Struwe [14]), there exists,
when ε is small enough, a deformation η : [0, 1]×X → X such that γ◦η(1, ·) ∈ Γn,m

and such that maxu∈Ān,m
I(γ(η(u))) � cn,m − ε. But, this contradicts the definition

of cn,m.

Note that we can successively choose in Z the orthonormal sets {z1}, {z1, z2},
{z1, z2, z3}, . . . . In this way, we obtain a sequence of non-decreasing critical values
cn,k, where the index k takes all the values k = 1, 2, . . . , with k � dim Z. Neverthe-
less, even if dim Z > 1, we cannot guarantee the existence of more than one critical
point for I, since all the values cn,1, cn,2, . . . may coincide. There is a way out if
dim Z = ∞ and if one can show, for example, that limk→∞ cn,k = +∞. We present
here an alternative based on additional critical values.

For k = 1, . . . , m − 1, we consider the sets

Vk := {U ⊂ X | U = −U, 0 �∈ Ū and U is of genus � k}. (5.1)

For convenience, we set V0 := {∅}.
We introduce a new set of candidates

dn,m,k := inf
γ∈Γn,m

inf
U∈Vk

max
Ān,m\U

I(γ(u)) for k = 0, . . . , m − 1.

At this point, we must make the following remarks.
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1074 H.-J. Ruppen

• Obviously, dn,m,0 = cn,m.

• For all γ ∈ Γn,m, the intersection γ−1(Sn) ∩ An,m is of genus � m; hence,
dn,m,k � α > 0 for k = 0, 1, 2, . . . , m − 1.

• We have α � dn,m,m−1 � dn,m,m−2 � · · · � dn,m,0 = cn,m.

Proceeding as in the proof of proposition 5.2, we get the following.

Proposition 5.3. In the context C0, the values

dn,m,k := inf
γ∈Γn,m

inf
U∈Vk

max
Ān,m\U

I(γ(u)),

where k = 0, 1, 2, . . . , m−1, are critical values of I provided this functional I exhibits
the properties C1–C3.

Even if we have associated with each critical value cn,m a strictly positive, non-
increasing sequence of critical values dn,m,k, k = 0, 1, 2, . . . , m − 1, the possible
coincidence of these values prohibits at first sight the formulation of a multiplicity
result. But looking somewhat closer, we can obtain a multiplicity result.

Theorem 5.4 (existence of multiple critical points). Suppose that the functional
I : X = Y ⊕ Z → R operates for some m � 1 in the context C0 and has the
properties C1–C3.

Then, there exist at least m pairs ±u �= 0 of critical points of I corresponding to
the level sets

dn,m,0 = cn,m = inf
γ∈Γn,m

max
u∈Ān,m

J(γ(u)),

dn,m,k = inf
γ∈Γn,m

inf
V ∈Vk

max
u∈Ān,m\V

J(γ(u)), k = 1, 2 . . . , m − 1,

where the sets Vk are defined in (5.1).
If, moreover, dn,m,k = dn,m,k+1 = · · · = dn,m,k+s for some k ∈ {0, 1, 2, . . . , m −

s − 1} and s ∈ {1, 2, . . . , m − 1}, then the number of critical points corresponding
to this common value is a set of genus � s+1. Thus, the functional I possesses an
infinite number of critical points corresponding to this common critical value.

Proof. Suppose, indeed, that dn,m,k = dn,m,k+1 for some k ∈ {0, 1, 2, . . . , m −
2}. Furthermore, suppose that there exists only one pair ±u1 of critical points
corresponding to this common value dn,m,k = dn,m,k+1. Under these circumstances,
we choose small, disjoint neighbourhoods ±U1 of ±u1 in such a way that U1 ∪ (−U1)
is oddly contractible.

Given any (small) ε > 0, there exist a homeomorphism γ ∈ Γn,m and a set V ∈ Vk

such that maxu∈Ān,m\V I(γ(u)) < dn,m,k + ε. Applying the classical deformation
theorem, we get a mapping η : [0, 1] × X → X such that γ ◦ η(1, ·) ∈ Γn,m. We set
U := η−1(1, U1), and we note that V ∪ ±U belongs to Vk+1. In this way, we get the
desired contradiction

max
u∈Ān,m\(V ∪±U)

I(γ(η(1, u))) � dn,m,k+1 − ε = dn,m,k − ε.

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0308210511001466
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 12:03:35, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0308210511001466
https:/www.cambridge.org/core
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A detailed analysis of this proof shows that we indeed have a ‘classical multiplicity
result’: if dn,m,k = dn,m,k+1, the corresponding set of critical points is of at least
genus 2, if dn,m,k = dn,m,k+1 = dn,m,k+2, the corresponding set of critical points is
of at least genus 3, and so forth.

5.3. Bifurcation of the level sets dn,m,k

We now extend the setting, and we assume that the functional I depends on
some real parameter λ. Thus, we denote the functional by Iλ instead of I. Thereby,
the parameter λ varies inside an open interval ]λ−, λ+[. We analyse the bifurcation
behaviour of the level set dn,m,k(λ); here, again, we exhibit the dependence on the
parameter λ.

We follow an idea inspired by [4] and we will work under the following assump-
tions on Iλ.

Assumption B1. For each fixed value of u ∈ X, the functional Iλ(u) is non-increas-
ing in λ.

Assumption B2. There exists a constant τ > 1 such that, for k = 0, 1, . . . , m − 1,
we have that

0 < dn,m,k(λ) � const.(λ+ − λ)τ

as λ → λ+, with λ < λ+.

Assumption B3. For all λ(1) and λ(2), with λ− < λ(1) < λ(2) < λ+, we have that

Iλ(1)(v) − Iλ(2)(v) � const.(λ(2) − λ(1))‖v| ∀v ∈ X,

where | · | is some norm on X, with |u| � ‖u‖, for all u ∈ X; thereby, X must not
necessarily be complete with respect to the norm | · |.

Remark 5.5. Under assumption B1, we fix some Λ in ]λ−, λ+[. Then, we can choose
the set Ān,m, as well as Γn,m, in a fixed way for all λ ∈ [Λ, λ+[. The critical values
dn,m,k(λ) obtained in such a way are non-increasing in λ.

The monotonicity of Iλ in (B2) implies that the derivative d′
n,m,k(λ) exists almost

everywhere (a.e.) on ]λ−, λ+[ and, whenever this derivative exists, we have that
d′

n,m,k(λ) � 0. We can even derive a somewhat stronger result, as in the following.

Proposition 5.6. Under assumptions C0–C3 and B1–B3, there exists a sequence
of points {λ(j)}j∈N with the following properties.

(1) λ(j) < λ+ for all j ∈ N.

(2) λ(j) → λ+ as j → ∞.

(3) The derivatives

d′
n,m,0(λ

(j)), d′
n,m,1(λ

(j)), . . . , d′
n,m,m−1(λ

(j))

all exist and, for k = 0, 1, . . . , m − 1, d′
n,m,k(λ(j)) → 0 as j → ∞.
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1076 H.-J. Ruppen

Proof. Otherwise, we consider the limit

a0 := lim inf
(

−
m−1∑
k=0

d′
n,m,k(λ)

)
> 0;

we compute this limit for λ → λ+ and λ < λ+ along points where all d′
n,m,k(λ)

exist. Thus, for λ < λ+, we have that

m−1∑
k=0

dn,m,k(λ) =
m−1∑
k=0

dn,m,k(λ) − lim
s→λ+,s<λ+

m−1∑
k=0

dn,m,k(s)

� lim
s→λ+,s<λ+

∫ s

λ

[
−

m−1∑
k=0

d′
n,m,k(t) dt

]
� 1

2a0(λ+ − λ).

This leads us to the desired contradiction

1
2a0(λ+ − λ) �

m−1∑
k=0

dn,m,k(λ) � const.(λ+ − λ)τ as λ → λ+ (from the left).

We now define what we mean by a bifurcation point within the context C0–C3
and B1–B3.

1. We say that λ+ is a | · |-bifurcation point if there exists a sequence {λ(j)}j∈N

in ]λ−, λ+[ with the following properties.

(a) For each j ∈ N, there exists a u(j) in X \ {0}, with I ′
λ(j)(u(j)) = 0.

(b) limj→∞ λ(j) = λ+ and limj→∞ |u(j)| = 0.

2. We say that λ+ is a | · |-bifurcation point of multiplicity m (m > 1) if there
exists a sequence {λ(j)}j∈N in ]λ−, λ+[ with the following properties.

(a) For each j ∈ N, there exists a collection of m different pairs of points
±u

(j)
1 , . . . ,±u

(j)
m in X \ {0}, with I ′

λ(j)(u
(j)
i ) = 0 for i = 1, . . . , m.

(b) limj→∞ λ(j) = λ+ and limj→∞ |u(j)
i | = 0 for i = 1, . . . , m.

We can now formulate a first bifurcation result.

Theorem 5.7. Suppose that Iλ satisfies, for some m � 1, all the assumptions C0–
C3 and B1–B3.

Then, λ+ is a | · |-bifurcation point for I ′
λ(u) = 0.

Proof. Consider some λ ∈ ]λ−, λ+[, where the derivative d′
n,m,k(λ) exists for some

k ∈ {0, 1, . . . , m − 1}. By proposition 5.2, the set

K := {u ∈ H1(RN ) | I ′
λ(u) = 0, Iλ(u) = dn,m,k(λ)}

is non-empty. We set α(λ) := (λ − λ+)2, and we consider, for u ∈ K, the open balls
U(u) = {v ∈ X | ‖v − u‖ < α(u, λ)}, with α(u, λ) = min{ 1

2‖u‖, α(λ)}. Due to the
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Palais–Smale condition, K is compact. We may thus extract a finite subcover, say
{U(ui)}i=1,...,p, such that K ⊂ U :=

⋃p
i=1 U(ui).

By the deformation theorem (see Struwe [14]), there exist some ε ∈ ]0, 1
2dn,m,k(λ)[

and a continuous 1-parameter family of homeomorphisms η : [0, +∞[×X → X hav-
ing the following properties.

• η(t, ·) : X → X is an odd homeomorphism, with η(t, u) = u if t = 0 or
I ′
λ(u) = 0 or u �∈ I−1

λ ([dn,m,k(λ)/2, 3dn,m,k(λ)/2]).

• Iλ(η(t, u)) is non-increasing in t for all u ∈ X kept fixed.

• Iλ(η(t, u)) < dn,m,k(λ) − ε if u ∈ I−1
λ (]−∞, dn,m,k(λ) + ε[ \ U).

• If u ∈ I−1
λ (]−∞, dn,m,k(λ)+ε[) and Iλ(η(1, u)) � dn,m,k(λ)−ε, then η(1, u) ∈

U .

We now choose δ > 0 so small that dn,m,k(λ − δ) + δ2 < dn,m,k(λ) + ε. Such a
choice of δ is possible since the derivative d′

n,m,k(λ) exists, and thus

lim
δ→0+

dn,m,k(λ − δ) = dn,m,k(λ).

Note that δ2 < ε and that, once we have fixed such a δ > 0, we may use any other
positive value below δ as a replacement for δ.

We consider the set Dk consisting of all u ∈ X satisfying both dn,m,k(λ) − δ2 �
Iλ(u) and Iλ−δ(u) � dn,m,k(λ − δ) + δ2. Note that this set is non-empty, since we
can determine a point belonging to it in the following way. We choose γ ∈ Γn,m and
V ∈ Vk with

max
u∈Ān,m\V

Iλ−δ(γ(u)) � dn,m,k(λ − δ) + δ2.

Using the monotone dependence of Iλ on λ, we even get that

dn,m,k(λ) � max
u∈Ān,m\V

Iλ(γ(u)) � dn,m,k(λ − δ) + δ2 < dn,m,k(λ) + ε.

This maximum is achieved at some point ū ∈ Ān,m \ V ; the point γ(ū) belongs to
Dk.

Note that we have that Dk ∩U �= ∅, for otherwise we would get the contradiction

max
u∈Ān,m\V

Iλ(η(1, γ(u))) � dn,m,k(λ) − ε,

with η(1, γ(·)) ∈ Γn,m.
Hence, we may choose an element v ∈ Dk ∩ U . For such an element, we obtain

that

const.|v|2 � Iλ−δ(v) − Iλ(v)
δ

� dn,m,k(λ − δ) + δ2 − dn,m,k(λ) + δ2

δ

= − dn,m,k(λ − δ) − dn,m,k(λ)
−δ︸ ︷︷ ︸

=d′
n,m,k(λ)+o(1) as δ→0+

+ 2δ.
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1078 H.-J. Ruppen

If δ > 0 is small enough, this implies that |v|2 � −const.d′
n,m,k(λ) + const.α(λ).

Thus, there exists some u(λ) ∈ K with

|u(λ)|2 � −const.d′
n,m,k(λ) + const.α(λ) + α(λ)2.

Applying this estimate to the sequence {λ(j)}j∈N of proposition 5.6, we get the
desired result, with u(j) := u(λj).

We now address the question of multiple bifurcation. Thus, we assume that C0–
C3 and B1–B3 hold, with m � 2. We consider the sequence {λ(j)}j∈N given in
proposition 5.6. If, up to a subsequence, we have

dn,m,m−1(λ(j)) < dn,m,m−2(λ(j)) < · · · < dn,m,1(λ(j)) < dn,m,0(λ(j)) ∀j ∈ N,

then the proof of proposition 5.7 implies that λ+ is a | · |-bifurcation point of
multiplicity m (or higher). This remains true if some of the critical levels coincide.

Theorem 5.8. Suppose that Iλ satisfies, for some m � 2, all the assumptions C0–
C3 and B1–B3.

Then, λ+ is a | · |-bifurcation point of multiplicity m (at least).

Proof. Suppose that

dn,m,k(λ) = dn,m,k+1(λ) = · · · = dn,m,k+s(λ) (5.2)

for some k ∈ {0, 1, . . . , m − 2} and for some s ∈ {1, 2, . . . , m − k − 1}; here λ is one
of the points of the sequence {λ(j)}j∈N given in proposition 5.6. We then proceed
as we did in the proof of theorem 5.7.

The set γ−1(Dk ∩ U) ∩ An,m must be of genus � s + 1. Since, otherwise, we can
derive a contradiction in the following way. First, choose γ ∈ Γn,m and V ∈ Vk such
that

max
u∈Ān,m\V

Iλ−δ(γ(u)) � dn,m,k(λ − δ) + δ2.

Due to (B1), we may assert that

dn,m,k(λ) � max
u∈Ān,m\V

Iλ(γ(u)) � dn,m,k(λ − δ) + δ2 < dn,m,k(λ) + ε.

Set Ṽ := V ∪ (γ−1(Dk ∩ U) ∩ An,m) and note that the genus of Ṽ is � k + s. This
gives the desired contradiction

dn,m,k+s(λ) � max
u∈Ān,m\Ṽ

Iλ(η(1, γ(u))) < dn,m,k(λ) − ε = dn,m,k+s(λ) − ε.

We know that, for all v ∈ Dk ∩ U , we have that

|v|2 � const.d′
n,m,k(λ) + const.α(λ) + α(λ)2.

Recall that

U =
p⋃

i=1

±U(ui).
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Bifurcation in simple gaps 1079

So we collect in the set J all the indices i ∈ {1, . . . , p}, with (U(ui)∪−U(ui))∩Dk �=
∅. Note that J must contain at least s + 1 elements, since the genus of U ∩ Dk is
� s + 1. Hence, we get (at least) s + 1 pairs ±ui ∈ K, with

|ui| � const.d′
n,m,k(λ) + const.α(λ) + α(λ)2.

We can now complete the proof as we did for theorem 5.7.

6. Existence of multiple solutions for λ < λ1

We apply the abstract results to the functional Iλ = 1
2Bλ(u) − Φ(u) of § 2. We

subdivide our analysis into two parts: in this section, we suppose that λ < λ1, and
we will treat the case where λ lies in a spectral gap in the next section.

6.1. Existence of a first critical value

We establish the existence of a first solution pair (λ, u1,λ) for problem P, when
λ < λ1. We do this under the following additional assumption.

Assumption E1. There exists a one-dimensional subspace F1 of H1(RN ), on which
Φ is essentially positive, i.e. on which we have that Φ(w) > 0 for all w ∈ F1 \ {0}.
We denote by w1 some fixed element in F1 with ‖w1‖H1(RN ) = 1.

Note that the above assumption is a necessary condition for the existence of (non-
trivial) solutions of problem P. Assumption E1 holds if, for example, q is strictly
positive on some open set in R

N .

Theorem 6.1. Suppose that assumptions L, Q and E1 hold.
Then, for all λ < λ1, there exists (at least) one solution pair (λ, ±u1,λ) of prob-

lem P.

Proof. We fix some negative value Λ < λ1; we are going to establish the existence
of solutions for each λ ∈ [Λ, λ1[. This will prove the existence of solutions for all
values of λ < λ1, since the choice of Λ is arbitrary.

For each fixed λ ∈ [Λ, λ1[, proposition 5.2 gives the desired existence of a solution,
provided C0–C3 hold. Thereby, we can use a decomposition H1(RN ) = Y ⊕ Z, with
Y = {0}.

Concerning C1, we can argue as follows. We make use of the norm |‖u|‖λ :=√
Bλ(u) for all u ∈ H1(RN ); recall that this norm is equivalent to the usual one on

H1(RN ). For λ < λ1 kept fixed and for |‖u|‖λ small enough,

Iλ(u) � 1
2 |‖u|‖2

λ − const.|‖u|‖2+σ
λ

= 1
2 |‖u|‖2

λ · [1 − const.|‖u|‖σ
λ]

� 1
4 |‖u|‖2

λ.

Hence, there exist ρλ > 0 and αλ > 0 such that

Iλ(u) � αλ > 0 ∀u ∈ H1(RN ) with ‖u‖H1(RN ) = ρλ.

Note that Iλ(u) > 0 as long as 0 < ‖u‖H1(RN ) � ρλ. Thus, C1 holds, with S0 =
{u ∈ H1(RN ) | ‖u‖H1(RN ) = ρλ}.
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1080 H.-J. Ruppen

We now examine the condition C2 and we consider the function

s : [0, +∞[→ R, s(t) := IΛ(tw1) = 1
2BΛ(w1)t2 − Φ(w1)t2+σ.

Since both BΛ(w1) and Φ(w1) are strictly positive, there must exist some R > 0,
with IΛ(Rw1) < 0. Note that this implies that

Iλ(Rw1) < 0 ∀λ ∈ [Λ, λ1[,

since Iλ(u) is, as a function of λ, monotonically non-increasing. We set

Ā0,1 = {tw1 | −R � t � R} ⊂ H1(RN ),
∂A0,1 = {0,±Rw1},

A0,1 = Ā0,1 \ ∂A0,1.

Then, C2 holds for all λ ∈ [Λ, λ1[, since Iλ(u) � 0 for all u ∈ ∂A0,1.
Note that ρλ < R. In this way, we get the oddly linking geometry described in § 5;

thereby we consider the linking property with respect to the family Γ0,1 consisting
of all odd homeomorphisms γ : H1(RN ) → H1(RN ), where γ|∂A0,1 is the identity
mapping. Thus, the context corresponds to the one defined in C0.

Condition C3 holds in view of proposition 4.4.
So we may apply proposition 5.2. For λ ∈ [Λ, λ1[ kept fixed,

c0,1(λ) := inf
γ∈Γ0,1

max
u∈Ā0,1

Iλ(γ(u))

is a critical value of Iλ that is bigger than or equal to αλ > 0. And this proves the
claim.

6.2. Existence of multiple critical values

Before proceeding with the existence of other critical values, we must strengthen
assumption E1; for m = 1, 2, 3, . . . , we introduce a new assumption.

Assumption Em. There exists an m-dimensional subspace

Fm = span{w1, . . . , wm} of H1(RN ),

with Φ(w) > 0 for w ∈ Fm \ {0}. Here, w1, . . . , wm denotes an orthonormal set in
(H1(RN ), ‖ · ‖H1(RN )).

Proposition 6.2. Suppose that assumptions L and Q are fulfilled. Moreover, sup-
pose that assumption Em holds for some m ∈ {1, 2, . . . }.

Then, for any fixed Λ < λ1, there exists a constant RΛ > 0 such that, uniformly
for all λ ∈ [Λ, λ1[,

Iλ

( m∑
i=1

αiwi

)
< 0 ∀α1, . . . , α1 ∈ R with

∥∥∥∥ m∑
i=1

αiwi

∥∥∥∥
H1(RN )

= RΛ.

Proof. Note that ∥∥∥∥ m∑
i=1

αiwi

∥∥∥∥
H1(RN )

=

√√√√ m∑
i=1

α2
i .
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Bifurcation in simple gaps 1081

We set

A := max∑m
i=1 α2

i =1

BΛ

2

( m∑
i=1

αiwi

)
> 0 and B := min∑m

i=1 α2
i =1

Φ

( m∑
i=1

αiwi

)
> 0.

Then, for R > 0,

max∑m
i=1 α2

i =R2
IΛ

( m∑
i=1

αiwi

)
� AR2 − BR2+σ.

Thus, we find an RΛ > 0, with

max∑m
i=1 α2

i =R2
Λ

IΛ

( m∑
i=1

αiwi

)
< 0.

The claim follows from the remark that, for any u ∈ H1(RN ) kept fixed, Iλ(u) is
non-increasing in λ.

Under the assumptions of the above proposition, we consider

Ā0,m :=
{ m∑

i=1

αiwi

∣∣∣∣ α1, . . . , αm ∈ R,

m∑
i=1

α2
i � RΛ

}
,

∂A0,m := {0} ∪
{ m∑

i=1

αiwi

∣∣∣∣ α1, . . . , αm ∈ R,

m∑
i=1

α2
i = RΛ

}
,

A0,m := Ā0,m \ ∂A0,m.

Moreover, we consider the set Γ0,m of all odd homeomorphisms γ : H1(RN ) →
H1(RN ), where γ|∂A0,m

is the identity mapping. For every fixed value λ ∈ [Λ, λ1[,
we can then apply theorem 5.4 to Iλ. Since the choice of Λ is arbitrary, we get the
following existence result.

Theorem 6.3. Suppose that assumptions L and Q hold. Moreover, suppose that
assumption Em is fulfilled for some m ∈ {1, 2, . . . }.

Then, for each fixed value of λ < λ1, there exist at least m solution pairs
(λ, ±uj,λ) (j = 0, 1, 2, . . . , m − 1) of problem P.

Remark 6.4. Let us mention that, for j = 0, 1, 2, . . . , m − 1,

0 < Iλ(±uj,λ) � c0,m(λ) = inf
γ∈Γ0,m

max
Ā0,m

Iλ(γ(u)).

These estimates will be helpful for questions regarding bifurcation.

Remark 6.5. Suppose that assumptions L and Q hold, and suppose that the func-
tion q in assumption Q is strictly positive. Then, assumption Em holds for all m ∈ N

and problem P has an infinite number of solutions for each λ < λ1.

6.3. Bifurcation of solutions from λ1

In order to discuss bifurcation, we introduce an assumption that reinforces as-
sumption E1.
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1082 H.-J. Ruppen

Assumption E
bif
1 . Assumption E1 holds with F1 = span{w1}, where w1 is an

eigenfunction of −∆ + V corresponding to the eigenvalue λ1.

For λ ∈ [λ1 − 1, λ1[, we consider the aforementioned critical value c0,1(λ), con-
structed with the help of the space F1, given in assumption Ebif

1 .

Proposition 6.6. Suppose that assumptions L, Q and Ebif
1 hold.

Then, we get the following.

(1) The critical level c0,1(λ) depends in a non-increasing way on λ ∈ [λ1 − 1, λ1[.

(2) Moreover, we have that

0 < c0,1(λ) � const.(λ1 − λ)1+2/σ,

so limλ→λ−
1

c0,1(λ) = 0.

(3) For λ(1) and λ(1) ∈ [λ1 − 1, λ1[, with λ(1) < λ(2), we have that

Iλ(1)(v) − Iλ(2)(v) = 1
2 (λ(2) − λ(1))|v|L2(RN ) ∀v ∈ H1(RN ).

Proof. The first point follows from the observation that, for u kept fixed, Iλ(u) is
non-increasing as a function depending on λ.

Concerning the second point, we first use the property that w1 is an eigenfunction,
so

Bλ(w1) = Bλ1(w1)︸ ︷︷ ︸
=0

+ |w1|2L2(RN )(λ1 − λ).

The function s(t) := Iλ(tw1) admits its maximal value for

t = t1 :=
[ |w1|2L2(RN )

(2 + σ)Φ(w1)

]1/σ

(λ1 − λ)1/σ;

an easy computation shows that s(t1) = const.(λ1 − λ)1+2/σ. Hence,

0 < c0,1(λ) � max
u∈Ā1

Iλ(u) = s(t1) = const. · (λ1 − λ)1+2/σ.

The last point follows from

Iλ(1)(v) − Iλ(1)(v) = Bλ(1)(v) − Bλ(2)(v) = (λ(2) − λ(1))|v|L2(RN ).

We now apply the abstract results derived in § 5, and, more specifically, theo-
rem 5.7, with n = 0, λ− = λ1 − 1 and λ+ = λ1.

Theorem 6.7. Suppose that assumptions L, Q and Ebif
1 hold. Then, λ1 is an L2-

bifurcation point of problem P.

Remark 6.8. If the function q in assumption Q is strictly positive on an at least
sufficiently large ball of centre 0 in R

N , then assumption Ebif
1 holds and we have

bifurcation.

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0308210511001466
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 12:03:35, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0308210511001466
https:/www.cambridge.org/core


Bifurcation in simple gaps 1083

7. Existence of multiple solutions in spectral gaps

In this section we analyse the existence of solutions for problem P when λ ∈
]λ1, 0[ \ σ(−∆ + V ). For such a λ, there exists some i = i(λ), with

λi < λ and ]λi, λ] ∩ σ(−∆ + V ) = ∅.

We set λ− = λi and we consider the spectral gap ]λ−, λ+[ containing λ. Note that
λ+ = λi+1 except if, in assumption L, we have that L �= N and i = �; in this latter
case we have that λ+ = 0.

Inside the spectral gap ]λ−, λ+[, we can replace the usual norm ‖ · ‖H1(RN ) by the
equivalent norm |‖ · |‖λ defined in § 4. Recall that the corresponding scalar product
is

((u, v))λ = ((L1 + V − λI)(Q − P )u, v)L2(RN ),

where the projections P and Q are defined in § 4.

Proposition 7.1. Suppose that assumption L holds and that λ is inside the spectral
gap ]λ−, λ+[. Let un be an eigenfunction corresponding to an eigenvalue λn of −∆+
V , and let um be an eigenfunction corresponding to another eigenvalue λm of −∆+
V .

The eigenfunctions un and um are then orthogonal with respect to the L2-scalar
product as well as with respect to the scalar product ((·, ·))λ.

Proof. Multiplying −∆un +V un = λnun by um and −∆um +V um = λmum by un

gives

0 = (λn − λm)
∫

RN

unum dx;

the orthogonality in L2 follows, since λn �= λm. Moreover,∫
RN

(∇un · ∇um + V unum) dx = 0

proves the claim, since (Q − P )um = ±um.

7.1. A positivity result

When we have defined critical values as in § 5, we can observe that the behaviour
of Iλ in a vicinity of 0 plays a major role. When we are in a spectral gap ]λ−, λ+[,
we need a positivity result of the following kind.

Proposition 7.2. Suppose that assumptions L and Q hold and that λ ∈ ]λ−, λ+[.
Then, there exists ρλ > 0, αλ > 0 such that Iλ(u) � αλ for all u ∈ Q(H1(RN )),

with ‖u‖H1(RN ) = ρλ. Moreover, Iλ(u) > 0 for u ∈ Q(H1(RN )), with

0 < ‖u‖H1(RN ) � ρλ.

Proof. For u ∈ Q(H1(RN )), we have that

Bλ(u) = |‖u|‖2
λ = ((L1 + V − λI)u, u)L2(RN ).
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1084 H.-J. Ruppen

By the equivalence of norms, we get that

Iλ(u) � const.|‖u|‖2
λ − const.|‖u|‖2+σ

λ

� const.‖u‖2
H1(RN ) − const.‖u‖2+σ

H1(RN )

= const.‖u‖2
H1(RN )[1 − const.‖u‖σ

H1(RN )].

This proves the claim.

We can use the abstract setting of § 5 if we set

X := H1(RN ), Y := P (H1(RN )) and Z := Q(H1(RN )).

Moreover, we need the ‘circle’ SL− := {z ∈ Z | ‖z‖H1(RN ) = ρλ}, where ρλ is given
by the above proposition.

Before proceeding further, we introduce some notation, supposing that assump-
tion L holds. For each eigenvalue λj ∈ σ(−∆ + V ), we denote by E(λj) the corre-
sponding eigenspace, and we set lj := dimE(λj). Moreover, we set Lj := l1+· · ·+lj .
When λ ∈ ]λ−, λ+[, we set L− := Li(λ), where i(λ) is such that λ− = λi(λ).

7.2. Existence of multiple solutions in a gap

Our aim is to establish the existence of an infinite number of critical values of Iλ

for λ ∈ ]−∞, λ+[ \ σ(−∆+V ). To achieve this, we choose some Λ, with Λ < λ−, and
we define, for each fixed value of λ ∈ [Λ, λ+[ \ σ(−∆ + V ), a countable number of
critical values. Since the choice of Λ is arbitrary, we can reach the desired conclusion.

As a first step, we will show that if assumption Ek holds for some k ∈ {L− + 1,
L− + 2, . . . } and if Y ⊂ Fk, problem P has (at least) k − L− solution pairs (λ, ±u)
for the corresponding value of λ. This in turn will imply the existence of an infinite
number of solution pairs, if assumption Ek holds for all values of k > L−.

An analysis of dimensions shows that dim(Fk ∩ Z) = k − L−. We can apply the
results of § 5 if we set

n = L− and m := k − L−,

and if we choose orthonormal elements w1, . . . , wm in Fk ∩Z. Indeed, we may define
the sets

Ān,m :=
{

x = y +
m∑

j=1

αjwj

∣∣∣∣ y ∈ Y, ‖x‖H1(RN ) � RΛ

}
,

∂An,m := {0} ∪
{

x = y +
m∑

j=1

αjwj

∣∣∣∣ y ∈ Y, ‖x‖H1(RN ) = RΛ

}
,

An,m := Ān,m \ ∂An,m,

where we choose RΛ in order to have Iλ|∂An,m
� 0. According to the following

proposition, such a choice for RΛ is possible.

Proposition 7.3. Suppose that assumptions L and Q hold. Furthermore, suppose
that assumption Ek holds for some k > L− and that Y ⊂ Fk.

Then, there exists, for any fixed value of Λ < λ−, a constant RΛ > 0 such that

Iλ|∂An,m � 0 ∀λ ∈ [Λ, λ+[.
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Proof. We put K := span{Y, w1, . . . , wm} and we define

A := max{ 1
2BΛ(u) | u ∈ K, ‖u‖H1(RN ) = 1},

B := min{Φ(u) | u ∈ K, ‖u‖H1(RN ) = 1}.

Then, we conclude as in the proof of proposition 6.2.

We now set, for j = 0, . . . , m − 1,

dn,m,j(λ) := inf
γ∈Γn,m

inf
U∈Gj

max
An,m\U

I(γ(u)).

The set Γn,m contains all the odd homeomorphisms γ : H1(RN ) → H1(RN ), where
γ|∂An,m is the identity. Moreover, we set G0 = {∅} and

Gj := {U ⊂ H1(RN ); | U = −U, 0 �∈ Ū , genus of U � j}.

We then obtain the following result (see proposition 5.4).

Theorem 7.4. Suppose that assumptions L and Q hold. Furthermore, suppose that
assumption Ek holds for some k > L− and that Y ⊂ Fk.

Then, there exist, for all λ ∈ ]−∞, λ+[ \ σ(−∆ + V ), at least k − L− solution
pairs (λ, ui;λ) of problem P. For i = L− + 1, L− + 2, . . . , k, we have that

I ′
λ(ui;λ) = 0, 0 < Iλ(ui;λ) = dn,m,i(λ).

Corollary 7.5. Suppose that assumptions L and Q hold. Moreover, suppose that
assumption Ek holds, for all k > L−, and that Y ⊂ Fk. (This is the case if, for
example, q is strictly positive everywhere.)

Then, there exist, for all λ ∈ ]−∞, λ+[ \ σ(−∆ + V ), an infinite number of
solution pairs (λ, ui;λ) of problem P. For i = L− + 1, L− + 2, . . . , we have that

I ′
λ(ui;λ) = 0, 0 < Iλ(ui;λ) = dn,m,i(λ).

7.3. Bifurcation from eigenvalues

We now discuss the bifurcation from the eigenvalue λ+ = λi+1, with i � 1. Solu-
tions will exist for λ < λi+1 if we assume Em for m = L− + 1. We will discuss
bifurcation under the following, stronger assumption.

Assumption E
bif
L−+1. This assumption holds with

FL−+1 = span{w1, w2, . . . , wL− , wL−+1},

where w1, . . . , wL− are eigenfunctions of −∆ + V corresponding to the eigenvalues
λ1 < · · · < λi, and wL−+1 is an eigenfunction of −∆ + V corresponding to the
eigenvalues λi+1 = λ+.

This assumption holds if q is strictly positive on a sufficiently large ball of centre
0 in R

N .
We intend to apply the abstract result of theorem 5.7. To accomplish this, we

need to verify that assumptions B1–B3 hold.
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Proposition 7.6. Suppose that assumptions L and Q hold, as well as assump-
tion Ebif

L−+1. We consider the critical value cn,1(λ), for λ ∈ ]λ−, λ+[.
Then, we have the following.

(1) cn,1(λ) is non-increasing, while λ varies inside ]λ−, λ+[.

(2) For λ ∈ ]λ−, λ+[, we have that

0 < cn,1(λ) � const.(λ+ − λ)1+2/σ,

so

lim
λ→λ+,λ<λ+

cn,1(λ) = 0.

Moreover, the derivative c′
n,1(λ) exists a.e. on ]λ−, λ+[ and, whenever this

derivative exists, we have that c′
n,1(λ) � 0.

(3) For λ(1) and λ(1) ∈ ]λ−, λ+[, with λ(1) < λ(2), we have that

Iλ(1)(v) − Iλ(2)(v) = 1
2 (λ(2) − λ(1))|v|L2(RN ) ∀v ∈ H1(RN ).

Proof. The first part follows from the fact that Iλ is non-increasing in λ.
To prove the second statement, we show that

max
w∈FL−+1

Iλ(w) � const.(λ+ − λ)1+2/σ.

Note that, for any w ∈ FL−+1, we have that

Bλ(w) = Bλ+(w) + (λ+ − λ)|w|2L2(RN ).

We can now estimate maxw∈FL−+1 Iλ(w) in the following way. One can find an
element w̄ ∈ FL−+1, with |w̄|L2(RN ) = 1 and

max
w∈FL−+1

Iλ(w) = max
t�0

Iλ(tw̄).

Since inf{Φ(w) | w ∈ FL−+1, |w|L2(RN ) = 1} =: m > 0, one gets that

max
t�0

Iλ(tw̄) � max
t�0

1
2 (λ+ − λ)t2 − mt2+σ.

This latter maximum can be computed, since it is achieved when

t =
(

λ+ − λ

(2 + σ)m

)1/σ

.

One thus gets the desired claim that

max
w∈FL−+1

Iλ(w) � const.(λ+ − λ)1+2/σ.

The last part follows as in proposition 6.6.

Applying theorem 5.7, one gets the following bifurcation result.
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Theorem 7.7. Suppose that assumptions L and Q hold, as well as assumption
Ebif

L−+1, with i � 1.
Then, λ+ = λi+1 is an L2-bifurcation point for problem P.

We can even address the problem of multiple bifurcation by applying theo-
rem 5.8. To this end, we introduce the following assumption, where m belongs
to {1, 2, . . . , li+1}.

Assumption E
bif
L−+m. This assumption holds with the special choice of

FL−+m = span{w1, w2, . . . , wL− , . . . , wL−+1, . . . , wL−+m},

where w1, . . . , wL− are eigenfunctions of −∆ + V corresponding to the eigenvalues
λ1 < · · · < λi and wL−+1, . . . , wL−+m are eigenfunctions of −∆ + V corresponding
to the eigenvalues λi+1 = λ+.

Note that this assumption holds if, for example, q is strictly positive.

Theorem 7.8. Suppose that assumptions L and Q hold, as well as assumption
Ebif

L−+m, for some m ∈ {1, 2, . . . , li+1} (i � 1).
Then, λ+ = λi+1 is an L2-bifurcation point of multiplicity m (at least) for prob-

lem P.

Let us end with a remark. If in assumption L we have L = N and if the above
theorem remains valid for each gap ]λi, λi+1[, then the infimum of the essential
spectrum is also a bifurcation point.

Remark 7.9. As already mentioned, the variational characterization of critical lev-
els cn,m and dn,m,k can be extended to situations where dimY = ∞. This will be
done in [12], by considering a Schrödinger equation with periodic functions V and
q. This kind of potential makes everything more difficult. The usual deformation
theorems can no longer be applied and the Palais–Smale condition no longer holds.
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