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Impaired transmission in GABAergic circuits is thought to contribute to the pathogenesis of epilepsy. Although
it is well established that major reorganization of GABAA receptor subtypes occurs in the hippocampus of
patients with medically refractory temporal lobe epilepsy (TLE), it is unclear whether this disorder is also
associated with alterations in GABAA receptor subtypes in the neocortex. Here we have investigated immuno-
histochemically the subunit composition and neocortical distribution of threemajor GABAA receptor subtypes
using antibodies specifically recognizing the subunits a1, a2, a3, b2/3 and g2. Cortical tissue was obtained at
surgery from patients with TLE and hippocampal sclerosis (HS; n = 9), TLE associated with neocortical lesions
(non-HS; n = 12) and frontal lobe epilepsy (FLE; n = 5), with post-mortem samples serving as controls (n = 4).
A distinct laminar and neuronal expression pattern of the a-subunit variants was found across the neocortical
regions examined in the temporal and frontal lobes in both control and patient tissue samples. In the five
patients with FLE, GABAA receptor subunit staining was unchanged as compared to controls. In patients with
TLE we observed a marked decrease in a3-subunit staining in the superficial neocortical layers (I–III), but no
change in the deep layers (V and VI) or in the expression pattern of the a1 and a2-subunits. Reduced expression
in a3-containing GABAA receptors was detected in six out of nine patients of the HS group and four out of
twelve patients of the non-HS group. Histopathological changes were present in eight out of the ten patients
with decreased a3-subunit staining. The selective reduction in a3-containing GABAA receptors was confirmed
using semiquantitative measurements of optical density (OD). The specific changes unique to a3-subunit
expression in the superficial neocortical layers of patients with TLE suggest that this subtype is of particular
significance in the reorganization of cortical GABAergic systems in focal epilepsy.
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Introduction
A variety of evidence indicates that inhibitory brain circuits,

which depend primarily on signalling through GABAA

receptors, are functionally impaired in epilepsy. Thus,

blocking GABAA receptors pharmacologically promotes the

generation of seizures in animals and in humans, whereas

drugs that enhance GABAA receptor function are effective in

treating seizures. This straightforward notion becomes more

complex, however, when taking into account the wide array
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of structurally and functionally distinct GABAA receptor

subtypes found in the central nervous system. Nineteen

GABAA receptor subunits (a1–6, b1–3, g1–3, d, «, p, �,

r1–3) have been identified and cloned from the mammalian

CNS (Simon et al., 2004), which theoretically can assemble

into a vast number of distinct pentameric receptors. In fact,

only a few dozen of these potential combinations are found

in the brain, most of which include at least one of each of

the a, b and g subunit class (Fritschy and Möhler, 1995;

Pirker et al., 2000). Furthermore, these distinct receptor

subtypes are preferentially expressed in specific regions and

neuronal populations and they exhibit different sensitivities

to modulators including neurosteroids, benzodiazepines,

ethanol and barbiturates (Sieghart and Sperk, 2002; Fritschy

and Brünig, 2003).

Temporal lobe epilepsy (TLE) is the most common form

of focal epilepsy in adults, and, when associated with

hippocampal sclerosis (HS), is the most refractory to

pharmacotherapy (Wieser and ILAE Commission on

Neurosurgery of Epilepsy, 2004). Although abundant

human data are available regarding reorganization of

GABAergic interneuron circuits in the neocortex and

hippocampus of TLE patients (DeFelipe, 1999; Sperk

et al., 2004; Maglóczky and Freund, 2005), most studies

aimed at characterizing the alterations of individual

GABAA receptor subtypes in human TLE have focused on

the hippocampus (Brooks-Kayal et al., 1999; Loup et al.,

2000; Pirker et al., 2003; Porter et al., 2005). Previous

immunohistochemical investigations of GABAA receptors in

the neocortex of patients with refractory focal epilepsy

were restricted to the a1-subunit (Wolf et al., 1994,

1996b). Results from autoradiographic investigations in the

neocortex of patients with pharmacoresistant epilepsy

yielded divergent conclusions, reporting no changes,

decreases or increases in GABAA receptors (Olsen et al.,

1992; Burdette et al., 1995; Nagy et al., 1999; Zilles et al.,

1999; Sata et al., 2002). In vivo imaging studies using 11C-

flumazenil, an antagonist at the benzodiazepine–GABAA

receptor complex, have shown both focal increases and

decreases of flumazenil binding in the neocortex of patients

with partial epilepsy (Theodore, 2002; Koepp and

Woermann, 2005). Although flumazenil-PET studies are

indispensable for tracking changes in living subjects, the

resulting images provide low spatial resolution of GABAA

receptor distribution and flumazenil fails to distinguish

between the different GABAA receptor subtypes. In the

present study, we have used an immunohistochemical

approach to investigate alterations in GABAA receptor

subtype organization in neocortex removed at surgery from

patients with medically intractable focal epilepsy. Tissue was

processed following a protocol based on microwave

irradiation to visualize the major GABAA receptor subunits

a1, a2, a3, b2/3 and g2 with subunit-specific antisera (Loup

et al., 1998). Other potentially relevant subunits could not

be studied as the corresponding antisera effective in human

brain tissue are not yet available.

Material and methods
Patient selection, intraoperative
electrocorticography
Twenty-six patients undergoing surgery for medically intractable

focal epilepsy were included in this study. Brain tissue was obtained

from the neurosurgical units of the University Hospitals of Zurich,

Geneva and Strasbourg. All procedures were performed with the

informed consent of the patients or legal next of kin and were

approved by the ethics committees of the respective institutions

according to the Declaration of Helsinki. Presurgical assessment

comprised high-resolution MRI, PET with 18fluoro-2-deoxyglucose

and/or ictal and interictal single photon emission computed

tomography for all cases, functional MRI in six cases, and magnetic

resonance spectroscopy (MRS) in five cases. All patients underwent

scalp EEG and, where indicated, invasive or semi-invasive EEG

recordings were obtained (Zumsteg and Wieser, 2000). Based on

the histopathological findings in conjunction with neuroimaging,

EEG and clinical data, patients were categorized into those with

frontal lobe epilepsy (FLE) (n = 5, mean age at surgery 6 SD:

22.6 6 12.3 years, range 5–34 years) and those with TLE. The latter

group was further subdivided into those with HS (n = 9, mean age

at surgery 6 SD: 39.6 6 14.4 years, range 12–56 years) and those

with neocortical lesions (non-HS; n = 12, mean age at surgery 6

SD: 28.3 6 12.2 years, range 9–49 years). Patients with focal

cortical dysplasia (FCD) alone were specifically excluded. Relevant

clinical data are summarized in Table 1.

Intraoperative electrocorticography (ECoG) was performed in 18

of 26 patients with grids of 4 · 8 electrodes and/or with strips of

four electrodes (Pt/Ir) embedded in Silastic sheets (Ad-Tech,

Racine, WI). In FLE patients, electrodes were placed over the

exposed prefrontal and polar cortex and positioning of the grid and

strip electrodes was modified to record from neighbouring areas

where indicated. In TLE patients, the 4 · 8 grid was placed over the

anterior and middle temporal lateral and inferior cortex and the

strip electrode was positioned on the intraventricular hippocampus

allowing for simultaneous recording from lateral and inferior

temporal neocortex and from hippocampus. Centre-to-centre

inter-electrode distance was 1 cm, the diameter of each electrode

was 1.2 mm. Recordings were sampled at 400 Hz, with a bandwidth

of 1–70 Hz over a minimum period of 25 min, using a 32-channel

Nihon-Kohden EEG system. Spiking areas were defined where

electrodes showed spikes and/or sharp waves with a mean

frequency greater than 1 spike/min (+, 1–10; ++, 11–20; +++,

> 20 spikes/min). Non-spiking areas were defined where electrodes

showed no epileptiform graphoelements. Degree of spiking (+, ++,

+++) was taken into account, as well as propagation if present.

ECoG was carried out before resection and repeated during the

surgical procedure as necessary. After surgical ablation, ECoG was

performed again and showed either spike-free activity or residual

spiking at the resection border. Residual spiking was anatomically

localized and its degree was rated (+, ++, +++).

All tissue blocks were from resections performed for strictly

therapeutic purposes. The surgical procedures included corticect-

omy or lesionectomy in the frontal or temporal lobe or anterior

temporal lobectomy. Sixteen patients underwent amygdalo-

hippocampectomy and HS was confirmed histopathologically in

nine of these cases. The neocortical tissue samples originated from

the anterolateral temporal neocortex and the frontopolar area, the

frontal lateral region, and the orbital part of the inferior gyrus of

the frontal lobe. In the patients with a circumscribed pathology,

neocortical samples were collected within and adjacent to the

3278 Brain (2006), 129, 3277–3289 F. Loup et al.
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lesion. Finally, control neocortical tissue from four subjects (mean

age 6 SD: 62.5 6 11.1 years, range 48–73 years) with no known

history of neurological or psychiatric disorders was collected at

autopsy (mean post-mortem interval 6 SD: 11.2 6 3.4 h). Results

on the hippocampi of these four subjects were reported in a

previous study (Loup et al., 2000). The left, and, in two cases, also

the right hemispheres were cut into coronal slabs of 1–1.5 cm

thickness. One to three tissue blocks per subject were dissected

from parts of the anterolateral temporal neocortex, which

corresponded to the areas removed in those patients undergoing

surgery for epilepsy. In one case, three blocks of control tissue were

also dissected from the frontal lobe.

Tissue preparation
Immediately upon resection in the operating room or after

dissection at autopsy, tissue blocks were rinsed in phosphate-

buffered saline (PBS) at pH 7.4. They were then immersion-fixed

for 6–8 h at 4�C under constant agitation in a mixture of 4%

freshly dissolved paraformaldehyde and 15% saturated picric acid

in 0.15 M phosphate buffer at pH 7.4 (Somogyi and Takagi, 1982)

or in 4% paraformaldehyde alone. Following fixation, tissue blocks

were pre-treated using a modified antigen-retrieval method based

on microwave irradiation as described previously (Loup et al.,

1998). Tissue blocks were cryoprotected in 10, 20 and 30% sucrose

in PBS over a period of 3–4 days, frozen at �28�C in isopentane,

and stored at �80�C. Series of 40 mm thick sections were

subsequently cut in a cryostat and collected in ice-cold PBS. These

were either processed for immunohistochemistry (see below) or

transferred to antifreeze solution and stored at �20�C until use.

This procedure allowed up to 12 different specimens to be

processed in parallel. Staining for each of the five GABAA receptor

subunits was always carried out on five consecutive sections with an

interseries space of 720–800 mm. For histopathological examina-

tion, two additional adjacent series of sections were stained for

Nissl with cresyl violet and with antibodies against the neuron-

specific nuclear protein NeuN (Wolf et al., 1996a). In selected cases,

we also used antibodies against glial fibrillary acid protein (GFAP)

and an antiserum that recognizes specifically a non-phosphorylated

epitope of neurofilament protein (SMI-32) and labels a subpopula-

tion of pyramidal cells (Campbell and Morrison, 1989).

Immunohistochemistry
The following subunit-specific antibodies were used: mouse

monoclonal antibodies bd-24 and bd-17 recognizing the human

GABAA receptor a1-subunit and both the b2 and b3-subunits,

respectively (Schoch et al., 1985; Ewert et al., 1990), and polyclonal

guinea-pig antisera recognizing the a2, a3 and g2-subunits. The

specificity of these antibodies has been extensively documented

(Fritschy and Möhler, 1995; Loup et al., 1998; Waldvogel et al.,

1999). The dilutions of the subunit-specific antibodies were:

a1-subunit (monoclonal antibody bd-24), 0.14 mg/ml; a2-subunit

(affinity-purified), 1.3 mg/ml; a3-subunit (crude serum), 1:3000;

b2/3-subunit (monoclonal antibody bd-17), 3.8 mg/ml; and

g2-subunit (crude serum), 1:1500. Further, antibodies used were

NeuN 1:1000 (MAB377; Chemicon, Temecula, CA), GFAP

1:100 000 (MAB360, Chemicon, Temecula, CA), and SMI-32

1:5000 (Sternberger Monoclonals Inc.; Covance Research Products,

Berkeley, CA). Series of free-floating sections were pre-incubated in

1.5% H2O2 in PBS for 10 min at room temperature to block

endogenous peroxidase activity. They were then washed three times

for 10 min in PBS and processed for immunoperoxidase staining

(Hsu et al., 1981) as described previously (Loup et al., 1998, 2000).

Data analysis
Sections were analysed with a Zeiss Axioskop 2 (Jena, Germany)

equipped for bright-field microscopy. For display, images

were digitized using a high-resolution camera (AxioCam; Zeiss,

Jena, Germany) with Zeiss camera software (AxioVision version

4.4). Images were modified for contrast only and comparison

images were adjusted uniformly (Adobe Photoshop version 7.0;

Adobe Systems Incorporated, San José, CA). No other manipula-

tion of images was performed. Illustrations were composed

in Adobe Illustrator (version 10.0; Adobe Systems Incorporated,

San José, CA).

Densitometric measurements
The intensity of labelling for the GABAA receptor subunits a1, a2,

and a3 was measured by densitometry in sections from controls

(n = 4), FLE (n = 4), HS (n = 8), and non-HS cases (n = 10) as

described previously (Loup et al., 2000). Optical density (OD)

measurements were recorded in the superficial (layers II and III)

and deep layers (layers V and VI) of the neocortex. The average OD

per section was calculated from measurements in four rectangles

with an area of 400 · 200 mm each in the superficial as well as in

the deep layers and all measurements were repeated twice in sets of

adjacent sections for each patient. In four patients, insufficient

tissue was available to perform a complete quantitative analysis of

the subunits.

Statistical analysis
Densitometric measurements were analysed for statistical signifi-

cance using the Kruskal–Wallis test [non-parametric analysis of

variance (ANOVA); GraphPad Prism, GraphPad Software, San

Diego, CA]. Data were further compared between individual

groups (at P < 0.05) with a multiple comparisons test. In the cases

where more than one block was available, values were first

subjected to statistical analysis to ensure that interblock variations

were not significant.

Results
The distribution of the GABAA receptor subunits a1, a2, a3,

b2/3 and g2 was analysed in neocortical specimens from

three different groups of patients with medically intractable

focal epilepsy. Tissue obtained at autopsy from patients with

no evidence of neurological disease was used for controls as

previous data indicated that staining patterns for GABAA

receptor subunits in autopsy and surgical samples are

comparable (Loup et al., 2000).

Patient histories and histopathological
evaluation
Table 1 provides a summary of the relevant clinical data for

each patient. The duration of epilepsy ranged from 4 to 29

years in the FLE group, from 10 to 44 years in the HS group

and from 1 to 32 years in the non-HS group. Mean epilepsy

duration was 13.4 years in the FLE group, 30.7 years in the
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HS group and 10.6 years in the non-HS group. The mean

age of onset was 9.2 years in the FLE group, 8.9 years in the

HS group and 17.6 years in the non-HS group. In the HS

group, but not in the FLE or non-HS groups, an initial

precipitating event was documented as described previously

(French et al., 1993; Mathern et al., 1995), including febrile

convulsions (n = 4), infantile meningitis/encephalitis (n = 2)

and neonatal anoxia/ischaemia (n = 1). The overall mean

postsurgical follow-up period was 57.3 months. Seizure-free

status (class I; Engel, 1987) was achieved for all patients of

the HS group, 9 out of 12 patients in the non-HS group and

1 patient of the FLE group.

With respect to the patients with FLE, histopathological

examination revealed discrete focal Chaslin’s subpial gliosis

(n = 1), leptomeningeal venous angiitis with no abnorm-

alities in the brain parenchyma (n = 1), a low grade tumour

(n = 1), and a glial scar (n = 2). In the patients with

histopathologically confirmed HS, examination of the

anterolateral temporal neocortex showed mild Chaslin’s

subpial gliosis (n = 3), gliosis (n = 4) and/or white matter

changes. Thus, in two cases, small aggregates of heterotopic

neurons were detected in the subcortical white matter.

According to Palmini et al. (2004), such abnormalities are

classified as type II mild malformations of cortical

development (mild MCD II). In contrast, in neocortical

grey matter, staining for Nissl, NeuN or SMI-32 revealed a

normal cytoarchitecture with no apparent neuronal cell loss

(see Fig. 4A and D). The non-HS group consisted of patients

with vascular cavernous malformations (n = 3), low grade

tumours (n = 8) and a glial scar secondary to cranial trauma

(n = 1). All lesions were located in the anterolateral temporal

neocortex. In 4 of the 12 patients with non-HS we also

found histopathological changes in tissue adjacent to the

lesion. In particular, dyslamination and large neurons were

observed in two cases, one with a dysembryoplastic

neuroepithelial tumour (DNT) and the other with a

ganglioglioma. According to Palmini et al. (2004), the

abnormalities described above are consistent with type IB

(FCD IB). Neocortical tissue from autopsy controls

displayed a normal cytoarchitecture.

GABAA receptor subtypes in control
grey matter
We first examined the distribution of the GABAA receptor

subunits a1, a2, a3, b2/3 and g2 in temporal neocortex at

low power magnification (Fig. 1). Adjacent sections were

stained for the neuronal marker NeuN to identify laminar

borders. All subunit antibodies revealed specific patterns of

immunoreactivity. In normal grey matter, the laminar

pattern for the subunits a1, a2 and a3 was distinct, whereas

the laminar pattern was similar for the subunits b2/3 and g2

(Fig. 1). A comparable organization was also described in

rodent brain where the a-subunit variants represent largely

distinct subtypes with a specific pharmacological profile

while the b2/3 and g2-subunits are common to most

GABAA receptor subtypes (Fritschy and Möhler, 1995).

Furthermore, the distribution pattern for the a1-subunit

was nearly identical to that of the b2/3 and g2-subunits,

indicating that the a1-subunit is the most abundant of the

a-subunit variants in the human neocortex. Unless

otherwise mentioned, the ubiquitously present subunits

b2/3 and g2, although analysed, will not be further

described.

Figure 2 shows at higher magnification the distinct and

specific pattern of laminar distribution in neocortex of each

of the a-subunit variants tested. Staining for the a1-subunit

was particularly intense in the lower part of layer III and in

layer IV (Fig. 2B). A weaker labelled band corresponding

to the upper/mid layer IV in adjacent NeuN and SMI-32-

stained sections was often observed (Fig. 2A and B) and was

best seen at low power magnification (Fig. 1). For the

a2-subunit, labelling was pronounced in the superficial layers

and weak in the deep layers (Figs. 1 and 2C). A transition in

labelling intensity generally was apparent in layer IV.

Immunoreactivity for the a3-subunit was most intense in

layer II and the upper part of layer III, gradually decreasing

Fig. 1 Regional distribution of the major GABAA receptor
subunits in temporal neocortical tissue obtained at autopsy
from a control. Adjacent sections were stained for the subunits
a1, a2, a3, b2/3 and g2, and for NeuN. The NeuN staining
illustrates the laminar distribution of neuronal cell somata. Each
of the a-subunit variants exhibits a distinct laminar distribution
whereas labelling for the b2/3 and g2-subunits is largely similar.
Note that the a1-subunit has a nearly identical distribution
pattern to that of the b2/3 and g2-subunits. Scale bar: 2 mm.
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toward the lower part of layer III. Layer IV was only

lightly labelled (Figs. 1 and 2D). The deep layers were

moderately labelled. Even at this power of magnification,

apical dendrites originating from layers V and VI could be

seen to extend toward the pial surface (Fig. 2D). For each

subunit, similar patterns of staining were observed in

temporal and frontal neocortical tissue of all autopsy cases

(data not shown).

At the cellular level, staining for the a2-subunit was

present in the neuropil of each layer with the neuronal cell

bodies appearing lightly labelled against the background

(Fig. 3A). a3-Subunit immunoreactivity was also observed

in the neuropil, but additionally in the soma and dendrites

of individual neurons, including in pyramidal cells

predominantly situated in the lower part of layer III

(Fig. 3B). In layers V and VI, a subpopulation of neurons

was labelled that displayed the typical morphology of

pyramidal cells with a few basal dendrites and long apical

dendrites coursing toward the superficial layers (Fig. 3C).

Figure 3D shows a high magnification image of a layer V

pyramidal cell immunoreactive for the a3-subunit. For both

the a2 and a3-subunits, intense immunoreactivity was also

detected on the axon initial segment of pyramidal cells, as

shown previously (Loup et al., 1998). Staining for the a1-

subunit, and less prominently for the b2/3 and g2-subunits,

was not only seen in the neuropil, but also in numerous

non-pyramidal cells. In particular layer II and the upper part

of layer III displayed a high density of intensely stained

interneurons with somata of small size and several, often

radially oriented, dendrites (Fig. 3E).

GABAA receptor subtypes in the grey
matter of patients with focal epilepsy
Neocortical tissue from patients with FLE, HS or non-HS

was analysed for changes in GABAA receptor subunit

immunoreactivity. In the patients with a circumscribed

lesion in the neocortex (see Table 1), the tissue samples used

for study were from the periphery of the lesion. Two major

observations were made. First, in all three groups the

staining pattern for the subunits a1 and a2, as well as b2/3

and g2, was largely similar to that of controls in terms of

laminar distribution and intensity (Fig. 4B, C and E).

Secondly, a subset of patients (10/26) was found to exhibit

markedly decreased a3-subunit staining in the superficial

layers, whereas the deep layers appeared unchanged and thus

provided an internal control within each section for each

case (Figs. 4F and 5). In the patients with reduced a3-

subunit staining, no apparent neuronal cell loss was

observed in adjacent sections stained for SMI-32 or NeuN

(Fig. 4A and D). The data for the a3-subunit in the

superficial neocortical layers for each patient are summar-

ized in Table 1.

In the group of patients with FLE (n = 5), no changes

in a3-subunit immunoreactivity were observed as com-

pared to controls. In the HS group (n = 9), a3-subunit

Fig. 2 Differential laminar distribution of GABAA receptor subunit immunoreactivity in control human temporal cortex. (A) NeuN-stained
section. The characteristic six-layered structure of neocortex (I–VI) was used to define the laminar borders in adjacent immunostained
sections. (B) a1-Subunit immunoreactivity is present throughout the six layers, but most intense in the lower part of layer III and IV. A
lighter band of staining beneath layer III corresponds to the upper/mid part of layer IV. Note the staining of the neuropil, in which individual
neurons cannot be distinguished at this magnification. (C) a2-subunit immunoreactivity is most abundant in the superficial layers (I–III),
decreases progressively (III and IV) and becomes weakest in layers V and VI. (D) a3-Subunit immunoreactivity is most intense in layer II
and the upper part of layer III, light in layer IV and moderate in layers V and VI. Labelled apical dendrites originating from layer V and VI
pyramidal cells and extending towards the superficial layers (arrows) are observed even at this low magnification. Scale bar: 400 mm.
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immunoreactivity was unchanged in three and decreased in

five cases. In the remaining case, regions of unchanged and

decreased a3-subunit staining were seen in the superficial

layers in two different samples while no alterations were

observed in a3-subunit staining in the deep layers. In the

non-HS group (n = 12), a3-subunit labelling was unchanged

in seven cases, decreased in the superficial layers in four

cases, and could not be determined in one case. Fig. 5 shows

low power images of the laminar distribution pattern of the

a3-subunit from six different cases (five HS, one non-HS),

three of which had no changes and three of which had

decreased a3-subunit staining in the superficial neocortical

layers.

Semiquantitative densitometric analysis was performed to

assess differences in staining intensity between the control,

FLE, HS and non-HS groups for the subunits a1, a2 and a3

in the superficial and the deep layers of temporal or frontal

neocortical tissue (Fig. 6). The following observations were

made: (i) no significant differences in OD were found for the

a1 and a2-subunits in the superficial or the deep layers

between the different groups of patients (Fig. 6A–D). (ii)

Differences in OD for the a3-subunit were observed in the

superficial layers of a subset of patients in both the HS and

the non-HS groups (Fig. 6E). When compared to the FLE

group, a3-subunit OD was significantly decreased in both

the HS and the non-HS groups (P < 0.01 and P < 0.05,

Fig. 3 Differential cellular distribution of GABAA receptor subunit immunoreactivity in control human temporal neocortex.
(A) a2-Subunit staining in the neuropil. The lightly labelled round structures represent pyramidal cell somata located in layer II. (B–D)
a3-Subunit immunoreactivity. In B, a pyramidal cell in the lower part of layer III exhibits strong staining of the soma membrane and long
dendrites whereas the surrounding neuropil is weakly stained. (C) Several layer V pyramidal cells with basal (arrows) and long apical
dendrites that extend throughout layer IV toward the pial surface. (D) High magnification of a layer V pyramidal cell with one apical and
several basal dendrites against the diffusely stained background. (E) a1-Subunit immunoreactivity. Prominent labelling against the diffusely
stained neuropil of two small interneurons (arrowheads), one of which displays radial dendrites. The large and lightly labelled structures
represent pyramidal cell somata. Scale bar: (A and B) 50 mm; (C) 100 mm; (D and E) 20 mm.
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respectively). Comparison within the HS group and within

the non-HS group showed that a3-subunit OD was

significantly decreased in a subset of patients (P < 0.0001

and P < 0.0001, respectively). (iii) No significant difference

in OD was found for the a3-subunit in the deep layers for all

patients (Fig. 6F).

At the cellular level, sections stained for the subunits a1

and a2 revealed similar patterns in all specimens when

compared to controls (data not shown). For the a3-

subunit, Fig. 7A shows a section from a case with an

unchanged pattern of staining similar to what was seen in

control tissue. In the HS and non-HS patients with changes

in a3-subunit immunoreactivity in the superficial neocor-

tical layers, a striking decrease in staining was present

throughout layers I, II and III (Fig. 7B–D). Moreover, in

layer II only, we observed pyramidal cells immunopositive

for the a3-subunit, which had apical dendrites extending

into layer I (Fig. 7C and D). These neurons possessed

numerous long dendrites, which at times formed an intri-

cate predominantly horizontal network with neighbouring

layer II neurons (Fig. 7C). Some cells had a prominently

labelled soma (Fig. 7D). Changes at the cellular level as

depicted in Fig. 7 were seen to a variable degree in the

temporal neocortex of all patients with reduced a3-subunit

staining.

Intraoperative ECoG, changes in
a3-containing GABAA receptors
and histopathology
ECoG was performed during surgery in 18 of 26 patients and

results were analysed in a semiquantitative manner as

described in Material and methods. As can be seen in Table 1,

no consistent correlation was found between the degree of

spiking activity recorded before resection and the changes in

a3-subunit staining or the histopathology. In particular,

areas with high spiking activity (+++) exhibited either

unchanged or decreased a3-subunit expression. The post-

resection ECoG recordings showed that no or only little

residual spiking was present at the border of the resection

except in one FLE patient with rhythmic discharges in the

contralateral frontal neocortex.

Fig. 4 Subunit-specific changes in GABAA receptor immunoreactivity in the temporal neocortex from two TLE patients. (A–C) Adjacent
sections stained for SMI-32 (A), the a1-subunit (B) and the a2-subunit (C). The distribution pattern of these subunits is unchanged as
compared to controls (see Figs. 1 and 2). (D–F) Adjacent sections stained for NeuN (D), the a2-subunit (E) and the a3-subunit (F).
The cytoarchitecture is conserved with no apparent neuronal cell loss. Note that layer-specific changes occur only for the a3-subunit, which
is decreased in the superficial layers and unchanged in the deep layers. Scale bar: (A–C) 300 mm; (D–F) 1 mm.
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Discussion
Our first principal finding is that in the normal human

neocortex the expression of five of the major GABAA

receptor subunits (a1, a2, a3, b2/3 and g2) displayed

remarkable laminar and neuronal specificity. Moreover,

the regional distribution of the GABAA receptor subunits

was similar across all the neocortical regions examined in

the temporal and frontal lobes. Second, in a subset of

patients with TLE we observed a decrease in a3-subunit

staining in the superficial neocortical layers, usually

accompanied by histopathological changes. In contrast, the

distribution and the intensity of labelling of the subunits a1,

a2, b2/3 and g2 were unchanged in patients with focal

epilepsy.

Methodological considerations
The feasibility of this study depended on the utilization of

high affinity antibodies and the quality and processing of the

tissue. We verified the specificity of the subunit-specific

antisera in human brain tissue in previous studies with

competition experiments, by replacing primary antibodies

with non-immune serum and in western blots (Loup et al.,

1998; Waldvogel et al., 1999). Moreover, to achieve high

specificity of staining with a low background, we used an

antigen-retrieval microwave procedure adapted to human

brain tissue (Loup et al., 1998).

A number of potential pitfalls must be considered in the

interpretation of our findings. (i) Variability, because tissue

samples originated from different epilepsy centres. However,

tissue processing was performed according to a common

protocol (Loup et al., 1998, 2000) and the specific reduction

in a3-subunit staining was found in tissue samples from all

three centres. (ii) A sampling problem, in that areas

compared between different patients were in fact not

homologous. This is rather unlikely as the location of the

resected neocortical areas was carefully documented and the

distribution of the subunits a1 and a2, which served as a

reference, was unchanged across samples. (iii) Effects of

confounding biographical/clinical data, in particular differ-

ences in pharmacotherapy or the occurrence of presurgical

seizures (Bouvard et al., 2005). Thorough review of the

clinical data from each patient failed to identify major

discrepancies among patients. Furthermore, it is unlikely

that the changes in a3-subunit expression are secondary to

drug treatment for the following reasons: a decrease in a3-

subunit expression was observed in tissue both from patients

taking GABAergic drugs and from patients not taking

GABAergic drugs. In other words, there was no correlation.

Also, at least four patients who were not treated with

GABAergic drugs at the time of surgery and with no history

of prior exposure nevertheless exhibited decreased a3-

subunit staining. Moreover, in patients in whom a3-subunit

expression was decreased in temporal neocortex, the

expression in the entorhinal cortex was unchanged

(F. Loup, unpublished data), whereas all five subunits

studied including the a3-subunit were differentially altered

in the hippocampus (Loup et al., 2000). (iv) Staining

artefacts. This possibility can be ruled out based on our

uniform processing in parallel of the various tissue samples.

In addition, immunohistochemical staining in the cases with

decreased a3-subunit labeling was repeated several times

and, finally, staining in the deep layers was unchanged, thus

providing an intrasection control.

GABAA receptor subtype expression in
normal grey matter
Among the three GABAA receptor subtypes identified in our

study, the a1-subtype was most abundant, with highest

staining in lower layer III and layer IV, followed by the a2

and the a3-subtypes. This is in line with the results of previous

autoradiographic GABAA receptor binding studies (Young

and Kuhar, 1979; Zezula et al., 1988) reporting high densities

of benzodiazepine receptor sites, especially in layers III

and IV. Using in situ hybridization for six GABAA receptor

subunit mRNAs (a1, a2, a5, b1, b2 and g2), Akbarian et al.

(1995) found three principal patterns of laminar expression in

normal human prefrontal cortex, with the a1-subtype

dominating. The laminar distribution pattern that they

reported for the a1, a2, b2 and g2-subunit mRNAs is largely

Fig. 5 GABAA receptor a3-subunit immunoreactivity in the
temporal neocortex from six TLE patients. The colour-coding
indicates OD of staining using a normalized scale with the
strongest signal in white and no signal (background) in dark
blue. (A, C and E) a3-subunit immunoreactivity in three patients
with HS showing no change in the laminar distribution of this
subunit. (B, D and F) In two other patients with HS (B and D)
and one with non-HS (F), staining for the a3-subunit is
decreased in the superficial layers and unchanged in the deep
layers. Scale bar: 1 mm.
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similar to that described in the present immunohistochemical

study. Moreover, the GABAA receptor subunits a1, b2/3 and

g2 show a similar laminar distribution in the human visual

cortex with immunoreactivity greatest in layer IV (Hendry

et al., 1994). Finally, electrophysiological data from a study in

human temporal cortical neurons demonstrated a benzodia-

zepine sensitivity profile consistent with a preponderance of

a1-subunit expression (Gibbs et al., 1996).

Fig. 6 Densitometric measurements (mean 6 SD) in four controls, 4 FLE, 8 HS and 10 non-HS patients showing that a subset
exhibits decreased a3-subunit staining in the superficial neocortical layers (13–18, 26–29). Sets of three immediately adjacent
sections stained for the subunits a1 (A and B), a2 (C and D) and a3 (E and F) were used. OD measurements were made in layers II
and III (A, C and E) and in layers V and VI (B, D and F) of the same section. The numbers 1–29 indicated in A refer to each of the
patients listed in Table 1. One exception is number 13 (marked with an x). In tissue from this patient, densitometric measurements
of a3-subunit staining in the superficial layers showed a lack of change in one sample and decreased staining in the other (E, xx). In contrast,
all the other densitometric measurements in this patient were uniform between blocks as reflected by the low SDs (A–D and F).

Fig. 7 Variability of a3-subunit immunoreactivity at the cellular level in the superficial neocortical layers in TLE specimens with
decreased a3-subunit staining (B–D) versus a TLE specimen with unchanged labelling (A). (A) a3-Subunit immunoreactivity showing strong
neuropil staining in layer II and weaker staining in the upper part of layer III. In (B), a3-subunit labelling is decreased throughout the
superficial layers. (C) Section showing a layer II pyramidal cell with an extensive dendritic arborization restricted to layers I and II. (D)
Section showing a large pyramidal cell also located in layer II revealed by a3-subunit immunoreactivity. Scale bar: 100 mm.
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To our knowledge, the present study provides the first

description of a3-subunit immunoreactivity in the human

neocortex, revealing a remarkably specific laminar distribu-

tion pattern. This subunit is especially interesting because, in

contrast to the other subunits, its expression differs from

that described in the rodent brain (Fritschy and Möhler,

1995; Pirker et al., 2000). In rodent neocortex, a3-subunit

expression is mainly located in the deep layers, while in the

human neocortical frontal and temporal regions examined,

a3-subunit staining was also pronounced in the superficial

layers, especially in layer II. Our results further demonstrate

a cell-specific distribution of the five major GABAA

receptor subunits. The a1 together with the b2/3 and the

g2-subunits were localized not only in pyramidal cells but

also in numerous small interneurons, especially in the

superficial layers. Layer II and the upper part of layer III of

the human temporal neocortex contain smaller and a higher

density of GABA-positive somata than the other layers

(Kisvárday et al., 1990). In contrast, the a2 and a3-subunits

were localized solely in pyramidal cells, most prominently at

the axon initial segment (Loup et al., 1998; Volk et al.,

2002).

Altered GABAA receptor subtype
expression in the grey matter of patients
with focal epilepsy
We found a selective reduction of the a3-subunit in the

neocortex of a subset of TLE patients in the absence of

a change of the a1, a2, b2/3 and g2-subunits. Data

from animal studies indicate, however, that functional

a3-containing GABAA receptors generally co-assemble with

b and g2-subunits (Sieghart and Sperk, 2002; Fritschy and

Brünig, 2003). The reason that we did not detect an

associated decrease in b2/3 and g2-subunit labelling

probably relates to the ubiquitous distribution of these

subunits. The b and g2-subunits are included in the vast

majority of GABAA receptors, most frequently in combina-

tion with the a1 or a2-subunit. Thus, a decrease in the

fraction of b and g2-subunits co-expressed with the a3-

subunit, which in rodent brain constitutes only 10–20% of

the total number of GABAA receptors (Sieghart and Sperk,

2002; Fritschy and Brünig, 2003), would result in a change

too low to be detected by immunohistochemical methods.

Among all known subunits the a1 is the only one

previously analysed immunohistochemically in the temporal

neocortex of patients with pharmacoresistant focal epilepsy

(Wolf et al., 1994, 1996b). In their first study where the

primary focus was the hippocampal formation, Wolf et al.

(1994) used the temporal neocortex as a reference and repor-

ted no changes in a1-subunit GABAA receptor immuno-

reactivity, which is confirmed by our data. Autoradiographic

analysis of binding at GABAA receptors or at the

benzodiazepine–GABAA receptor complex in the temporal

neocortex of patients with medically refractory focal epilepsy

has provided conflicting findings. Thus Zilles et al. (1999)

using 3H-muscimol reported a downregulation of GABAA

receptor density in four out of nine cases with non-HS and

variable upregulation in the remaining cases. In TLE patients

with HS, Olsen et al. (1992) found no significant difference

in flumazenil binding between epileptic temporal neocortex

and control tissue, whereas Burdette et al. (1995) reported a

significant increase in flumazenil binding in layers V and VI

of epileptic temporal neocortex. Taken together these studies

show non-uniform changes in GABAA receptor binding in

tissue from TLE patients. Similarly, imaging studies using
11C-flumazenil in patients with refractory focal epilepsy due

to diverse pathologies have reported not only focal decreases

but also focal increases of flumazenil binding either in

temporal or extratemporal neocortex (Theodore, 2002;

Koepp and Woermann, 2005). Until subtype-specific ligands

become available it will not be possible to determine how the

changes in a3-subunit expression observed in the present

work relate to the changes described in autoradiography and

PET studies.

In our study, the non-HS group consisted of patients with

a focal lesion located in the anterolateral temporal

neocortex. When we examined the neocortex adjacent to

the lesion, we observed that it was histologically normal in 8

of the 12 cases where we also did not find any changes in

a3-subunit staining compared to controls. In the other four

patients with decreased a3-subunit expression, we found

histopathological changes including gliosis and type IB FCD.

This type of mild MCD was present in one patient with a

DNT and one patient with a ganglioglioma. Both types of

tumours may be associated with surrounding dysplastic

cortical regions as described previously (Prayson et al., 1993;

Daumas-Duport et al., 1999; Palmini et al., 2004). Wolf et al.

(1996b) reported decreases as well as increases in a1-subunit

immunoreactivity in the perilesional tissue in a subset of

patients with neocortical lesions. We did not find alterations

in a1-subunit staining in our study, but overall these results

show that GABAA receptor changes can occur in the vicinity

of focal lesions.

The HS group comprised nine patients, three with no

change in a3-subunit labelling, five with decreased labelling

and one with a decrease in one of two tissue samples. Mild

Chaslin’s subpial gliosis was detected in two of the patients

with no change in a3-subunit labelling and in the patient

where there was reduced staining in one of the two samples.

In contrast, in four of the five cases with decreased

a3-subunit staining, we observed gliosis and/or white matter

changes, two of whom exhibited type II mild MCD (Palmini

et al., 2004). Thus, decreased a3-subunit expression in

patients with HS or with non-HS was associated in 8 out of

10 patients with histopathological changes, in particular

mild forms of MCD. We did not, however, observe neuronal

loss in TLE specimens, in agreement with previous studies

(Babb et al., 1984; Bothwell et al., 2001). These findings

suggest that the reduction in a3-subunit staining is related

primarily to a downregulation of this subunit in pyramidal

cells rather than to a loss of neurons expressing this subunit.
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Furthermore, decreased a3-subunit expression was not

accompanied by a reduction in the a1 or a2-subunits,

which would be expected were the changes a result of

extensive neuronal loss.

We also studied five patients with FLE, where we did not

find any changes in GABAA receptor subunit staining.

Whether this lack of change reflects the small sample size,

the type of pathology (absence of a circumscribed lesion

except in one case) or other factors remains unclear. It is

however interesting to note that the laminar distribution

and intensity of GABAA receptor subunits was basically

similar to that in the autopsy specimens and TLE samples.

In the patients with altered a3-subunit expression, the

laminar pattern was remarkably stereotyped with a lack of

change in deep layers and a marked decrease in staining in

superficial layers. At the cellular level it is not possible to

determine whether the more darkly stained, and therefore

visible, pyramidal cells were the last cells to express the

a3-subunit or whether these neurons expressed this subunit

de novo. Nevertheless, the selective localization in layer II

of intensely stained neurons with an extensive dendritic

arborization confined to layers I and II suggests a

reorganization of the a3-subtype in these layers. A recent

study using complementary DNA microarrays and immuno-

staining reported a pattern of persistent gene activation in

epileptic neocortex of patients with focal epilepsy mainly in

layers II and III (Rakhade et al., 2005). As the superficial

layers are primarily involved in processing activity from

other cortical areas (Jones, 1984) and electrophysiological

studies have shown the critical role of layers II and III in the

generation of synchronous population events in human

epileptic neocortex (Köhling et al., 1999), downregulation of

a3-containing GABAA receptors in the superficial layers may

contribute to decreased functional inhibition.

Other GABAA receptor subunits, for which antibodies

effective in human tissue do not yet exist, might be upreg-

ulated and may thus compensate for a reduction in

a3-subunit expression. However, a recent study using

transcriptome profiling in human epileptic neocortex

reported a prominent downregulation of the a5-subunit

gene and other GABA system transcripts in both the pre-

synaptic and the post-synaptic compartments in spiking

samples (Arion et al., 2006). Further, functional and

morphological alterations in GABAergic circuits in the

neocortex of TLE patients have been described previously

(DeFelipe, 1999; Avoli et al., 2005). In particular, the group

of DeFelipe found patterns of decreased immunoreactivity

for parvalbumin (PV) and glutamate decarboxylase in

human epileptogenic neocortex (DeFelipe et al., 1993, 1994;

Marco et al., 1996). The most important change was a focal

loss of PV-positive chandelier cells (among other inter-

neurons), which are thought to be the most powerful

cortical inhibitory cells. Using quantitative electron micro-

scopy, the same group found a loss of inhibitory synapses in

the regions with marked decrease in staining for PV (Marco

and DeFelipe, 1997). Interestingly, the changes in synaptic

density in their study were most pronounced in the

superficial layers, where we observed downregulation of

a3-containing GABAA receptors. Taken together, these

results suggest a prominent reorganization of the GABAergic

circuitry, which could contribute to the genesis or the

maintenance of seizure activity in human focal epilepsy.

Acknowledgements
The authors are grateful to Franziska Parpan and Corinne

Sidler for excellent technical assistance. The authors thank

Drs N. de Tribolet, J.-G. Villemure and A. L. Benabid for

providing surgical specimens and Dr A. Aguzzi for supplying

post-mortem tissue. The authors also thank Dr H. Möhler
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