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A novel optimization approach, capable of extracting the mechanical properties of an
elasto-plastic material from indentation data, is proposed. Theoretical verification is
performed on two simulated configurations. The first is based on the analysis of the
load–displacement data and the topography of the residual imprint of a single conical
indenter. The second is based on the load–displacement data obtained from two conical
indenters with different semi-angles. In both cases, a semi-analytical approach [e.g., Dao
et al., Acta Mater. 49, 3899 (2001) and Bucaille et al., Acta Mater. 51, 1663 (2003)] is
used to estimate Young’s modulus, yield stress, and strain hardening coefficient from the
load–displacement data. An inverse finite element model, based on a commercial solver
and a newly developed optimization algorithm based on a robust stochastic methodology,
uses these approximate values as starting values to identify parameters with high accuracy.
Both configurations use multiple data sets to extract the elastic-plastic material properties;
this allows the mechanical properties of materials to be determined in a robust way.

I. INTRODUCTION

In recent years, instrumented indentation has devel-
oped into an effective, non-destructive method for eval-
uating the mechanical properties of metallic materials at
the nanoscale.1–3 The standard test for determining the
mechanical properties is the tensile test; however, this
requires more complex testing equipment and the prepa-
ration of tensile test samples. With indentation, the
Young’s modulus is estimated by analyzing the slope of
the unloading part of the load (L) and penetration depth
(h) curve (hereafter called L – h curve) and the indenter
contact area.4,5 The determination of the plastic properties
from the loading part of the L – h curve of metals was first
obtained in the form of empirical relationships, which
directly correlated hardness with yield stress and tensile
strength.5,6 The ideal conversion of the L – h data to the
stress–strain data (hereafter called s – e curve) is more
challenging since there is not a direct relationship between
the L – h curve and the s – e curve.7,8 This problem
became the goal of several scientists, who recently

advanced different models that estimate s – e curves from
L – h curves.8–14 The investigation of new and improved
models allowing the determination of the plastic proper-
ties of metals is still widely studied today.15–20 Reviews of
the existing models have been published by Capehart and
Cheng21 and by Gouldstone et al.22

To increase the robustness of the semi-analytical
approach presented here, multiple input data sets have
been coupled,10,11 and recently in-depth sensitivity anal-
ysis has been performed to determine the sensitivity and
robustness of the results.23–24

The inverse method developed consists of fitting a
constitutive law to a set of input data (see Fig. 1).
Simulated data were used as target data throughout this
investigation to perform a theoretical verification of
the optimization approach put forward. Experimental
verification, using experimental data as input data,
will follow. It leads to the formulation of a general
multiobjective optimization problem, which consists of
a number of objectives to be optimized simultaneously
and is associated with a number of inequality and equal-
ity constraints.25 Optimization algorithms can be classi-
fied in three main categories: deterministic algorithms
(gradient-based approaches), stochastic algorithms, and
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hybrid formulations. Deterministic approaches26 are
generally based on robust and efficient methods that
require the computation of the gradient of the objective
function. The solution is generally found in few itera-
tions but may depend on the starting set of parameters,
and these algorithms may also be trapped in local
optima, especially for highly nonlinear problems. The
program SiDoLo,27 based on the gradient-based ap-
proach, was used to identify the elastic plastic para-
meters of the indented materials. To avoid the problem
of a local minimum, Bocciarelli and Maier28 as well as
Stauss29 have obtained good results by coupling the
simulated L – h curve and the simulated profile curve
(topography of the indented material after unloading) to
the experimental ones. However, they were confronted
by a large dependence of the solution on the initial
values. Stochastic methods are search-based algorithms
in which no evaluation of the gradient of the objective
function is required. Among all the methods belonging
to this approach, we can quote those based on the
mechanisms of natural selection, such as genetic algo-
rithms and evolution strategies.30–33 One important ad-
vantage of these methods is the possibility to converge
almost systematically toward a global minimum. How-
ever these methods are more time consuming in the
sense that they require many evaluations of the objective
function. To improve the computation time, more ad-
vanced methods have been proposed recently. For exam-
ple, an evolution strategy method using the so-called
meta-model (or response surface approximation) dramat-
ically reduces the number of evaluations of the objective
function.34 More details about this method are given in
this article. Finally, hybrid methods are based on both
methodologies. They generally consist of using first a
global search algorithm with an evolutionary algorithm
and then a local search algorithm, which allows it to
converge faster toward the optimum value. The local
search algorithm may be based on either the evaluation

of the gradient of the objective function or on an approx-
imation method.

In this paper, we present and validate an automatic
and robust stochastic methodology to identify mechani-
cal parameters in two different experimental configura-
tions. A model data set has been obtained by modeling
indentation tests with the finite element code ABA-
QUS.35 Mesh refinement, topography, finite element
model, and convergence studies are also presented in
the first part. The second part is devoted to the presenta-
tion of the inverse method and a description of the meth-
odology used to identify the mechanical parameters with
the best accuracy. We discuss in particular the evalua-
tion of the starting parameters for the inverse method
and the robustness of the solution. Two experimental
situations have been treated. The first one corresponds
to the identification of the mechanical parameters based
on the experimental load-displacement curve and the
residual imprint of the indented material obtained with
only one conical indenter. The second one concerns the
identification of the mechanical parameters with differ-
ent load–displacement curves obtained with indenters
of different conical semi-angles. As pointed out by
one of the reviewers, this second approach, the dual in-
dentation method, presupposes that the material proper-
ties are identical for the two locations tested by the two
different indenter geometries. Many times, this is the
case for large indentations where the penetration depths
is in the micrometer-range; thus the volume tested is
large compared to the grain size and the mechanical
properties obtained representing average values for that
material. In the case of nanoindentation experiments
investigating the mechanical properties of the single com-
ponent of advanced materials, where the penetration depth
is as low as few tens of nanometers, the dual indentation
method needs either an instrument capable of locating
accurately the indentation position36 (same grain or phase)
or a statistical study to discriminate any inhomogeneity in
the mechanical properties. Indentation instruments with
high position accuracy are, for example, in situ scanning
electron microscopy (SEM) indentation or instruments ca-
pable of mapping the surface topography prior to indenta-
tion. We conclude by comparing the results of the inverse
to the existing analytical approaches. We will also sum-
marize the advantages and drawbacks of each configura-
tion for this identification.

II. FINITE ELEMENT MODEL

Large deformation finite element (FE) indentation
simulations were performed using the commercial FE
code ABAQUS. For simplicity and to reduce computa-
tion time, the indentations were simulated using an axi-
symmetric model. Friction between the indenter and the
indented body was neglected.

FIG. 1. Inverse method illustrating the different steps in the numeri-

cal optimization procedure.

I. Peyrot et al.: Determination of plastic properties of metals by instrumented indentation using a stochastic optimization algorithm

J. Mater. Res., Vol. 24, No. 3, Mar 2008 937
https:/www.cambridge.org/core/terms. https://doi.org/10.1557/jmr.2009.0118
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:21:46, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1557/jmr.2009.0118
https:/www.cambridge.org/core


A. Mesh

A total of 877 nodes and 808 quadrilateral elements
have been used for the continuum, while the conical
indenter was modeled as an analytical rigid body (see
Fig. 2). To achieve a higher accuracy in the determina-
tion of the contact radius and the z-values of the residual
imprint, the density of the mesh was optimized and
refined close to the center of contact and gradually
increased further away from the contact. The meshing
strategy has been tested29 to be a best compromise
between computing time and accuracy of the numerical
results. Convergence studies and the insensitivity to the
far-field effect from boundary conditions have also been
carried out to ensure the validity of the results. Four
different conical indenters have been tested whose
semi-angles evolve between a = 50� and 80� with an
initial tip radius of 5 mm (the most frequently used sym-
bols are listed in Table I). The simulation was divided
into three steps: contact, load, and unload.

B. Constitutive law with an elastic-plastic
hardening model

A limitation of the inverse analysis is the lack of a
generalized plastic constitutive law that can be used to
characterize a broad number of metal materials. This
limitation is shown by the number of different constitu-
tive equations available in the literature37 including

Hollomon,38 Ludwik and Hollomon,39,40 Swift,41 and
Ramberg and Osgood,42 to name a few.
The Ludwik–Hollomon law, a three-parameter consti-

tutive law, has been implemented in this study to simu-
late the elastic-plastic behavior of the indented material.
It has been found that, at least for many pure and alloyed
metals, a fairly good approximation of the stress–strain
behavior is represented by this work-hardening power
law.39,40 Any other three-parameter constitutive law
could be used by minimally varying the inverse method
program code. The relationship between the total true
stress s and the total true strain e is given by

s ¼
Ee for s � sy

sy 1þ E

sy

eP

 !n

¼ sy

E

sy

e

 !n

for s � sy
;

8><
>:

ð1Þ
where E is the Young’s modulus of the material, n is the
strain hardening exponent, sy is the initial yield stress,
and ep is the plastic strain:

ep ¼ e� sy

E

� �
:

The von Mises criterion is assumed. Table II presents
the theoretical mechanical parameters used for the simu-
lations. We call them the target parameters Ptarget. These
values have been chosen to represent a typical copper
alloy. With the above assumption, the mechanical

TABLE I. List of symbols (most frequently used).

List of symbols

a Semi-angle of the conical indenter

E Theoretical value of the Young’s modulus

Ei Value of the Young’s modulus at (incr = i)i=0,. . .,f
e Strain

Nobs Number of observables

Npar Number of parameters to identify

F Function to minimize

H Current penetration depth

Incr Increment of the inverse method

L Current load

Ptarget Theoretical values, target, of the parameters to describe the

mechanical behavior of the material

P Numerical parameters to describe the mechanical behavior of the

material

Rtarget Data set obtained obtained by the theoretical mechanical

properties using FE code (L – d curve, topography. . .)
R Data obtained with the finite element model (L – d curve,

topography. . .)

N Number of parameters to identify

N Theoretical value of the strain hardening coefficient

ni Value of the strain hardening coefficient at (incr = i)i=0,. . .,f
s Stress

sy Theoretical value of the Yield stress

si
y Yield stress at (incr = i)i= 0,. . .,f

W Weight of the function to minimize

FIG. 2. Mesh structure to conduct the FE simulation of the indenta-

tion test with ABAQUS. To remove the effect of boundary conditions,

infinite elements were used in a region far from the contact. Four

nodes reduced integration axisymmetric elements (C4X4R) are used

in the contact zone.
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behavior of the material is fully determined with E, sy,
and n. The indenter is considered to be rigid since the
diamond tip is extremely stiff (Ei = 1140 GPa, ni = 0.07).
At the end of the simulation, the L – h indentation curves
and the topography of the corresponding residual imprint
of the indented material are extracted using the FE code
ABAQUS (see Fig. 3) for each conical indenter. The
L – h curve and the profile are plotted and will be called
target curves Ptarget as we will use these data to backfit
the material properties.

In the following section, we present the inverse method
and show how this method is used to identify the material
parameters Ptarget knowing the target data set Ptarget.

III. INVERSE ANALYSIS METHODOLOGY

For practical applications, the minimization method
needs to ensure that the algorithm converges to the real
solution with the required accuracy, whatever the initial
set of parameters. The classical procedure is known as
the least-square minimization problem, which approxi-
mates the computed data R to the target data set data
Rtarget under variation of the material parameters P:

Minimize wðPÞ ¼ 1

2
jjRtarget � RðPÞjj2 : ð2Þ

To keep the parameters in a physically reasonable
range, an upper pmax

j and a lower limit pmin
j need to be

defined for each parameter. The index j ¼ ð1; . . . ;NparÞ,
where Npar is the number of parameters to identify. Dur-
ing the resolution of the minimization problem, the para-
meters are not allowed to exceed these limits.

Our approach has also been adapted to consider sev-
eral Nobs experimental data. A common difficulty with a

multiobjective function is the conflict between the
objectives: in general, none of the feasible solutions is
optimal at the same time. We have implemented the
most classical one: the method of objective weighting
for its efficiency and its ease of implementation. The
multiobjective functions wi(P) are combined in one func-
tion FðPÞ such that:

FðPÞ ¼
XNobs

i¼1

wiwiðPÞ
XNobs

i¼1

wi¼ 1; with 0 � wi � 1

:

8>>>><
>>>>:

ð3Þ

A preference to one objective can be given by chang-
ing the corresponding weight w.

At each iteration incr of the inverse method, the com-
munication between the FE simulation and the optimiza-
tion algorithm was accomplished through a user interface
written in the Python language.43 The module calls first a
routine written in Fortran77 initializing the different input
files of the simulation and automatically launches the FE
code. After each FE simulation, it calls a script to extract
the numerical data of the simulation (L – h curve, topogra-
phy, etc.). Eventually, the module calls a program coded
in C language to evaluate a new set of parameters P. This
program can use two methods to generate a new set of
parameters: a deterministic approach and a stochastic one
based on Evolution Strategies. In the following, we pres-
ent the Evolution Strategy method based on a meta-model.

A. Evolution strategy

Evolutionary algorithms (EA) are recognized now as
robust and efficient optimization methods for a wide
range of applications. These algorithms are based on the
creation of a population of individuals, which corre-
spond to the set of parameters that have to be identified.
The evolution of this population toward the final result is
based on the natural evolution phenomenon, through
selection, recombination, and mutation rules. There
are three main approaches: Genetic Algorithms (GA),

FIG. 3. Four different conical indenters are used for the indentations. The semi-angle a of the conical indenter varies between 55� and 80�.
(a) L – h curve for each conical indenter. The maximum indentation load Lmax is 20N. (b) Corresponding residual imprint after unloading.

TABLE II. Theoretical mechanical properties Ptarget of the indented

material. Those mechanical properties are typical for copper alloys. In

all simulations the Poisson’s ratio n is fixed at 0.3.

E (GPa) sy (MPa) n

114 731 0.3
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initially proposed by Holland in the sixties,44 which
are based on a binary representation of the individuals;
Evolution Strategies (ES), proposed initially by Rechen-
berg32 and Schwefel,45 in which the individuals are
represented by real values instead of binary ones. Both
algorithms (GA and ES) are based on a Gaussian muta-
tion operator. Evolutionary Programming (EP)46 and
Genetic Programming (GP)47 in which the evolution of
the individuals is similar to the one of computer pro-
grams. ES are similar to GA, except that they use real
coding parameters and that the selection of the parents is
simpler. Mutation is also the main genetic operator,
while recombination is not systematically used for pro-
ducing new individuals. It is just the opposite for GA,
which means that ES may find a solution faster, whereas
GA are more robust to locate a global extremum.

In this paper, we use an enhanced version of ES based
on a meta-model. ES operate on a population b of indi-
viduals Ii. An individual (or chromosome) Ii refers to a
specific object parameter set Pi, its objective function
value Fi, and a strategy parameter si. Index i relates to
the number of individuals generated within a population
(it is fixed here at l = 30).

Ii ¼ ðPi;Fi; siÞ : ð4Þ
The algorithm is synthetized in Fig. 4. The initial

population b(0) (generation g = 0) is chosen randomly
and uses the starting parameters of the inverse method.
Consequently each decision parameter p0i¼½1;l�;j¼½1;Npar�
of each individual I0i of the initial population b

(0) is found
as follows:

s0i;j ¼ s� ziðpmax
j � pmin

j Þ
p0i;j ¼ pmin

j þ ziðpmax
j � pmin

j Þ ;

(
ð5Þ

where pmax
j and pmin

j are the upper and lower limits of the
parameter to identify and s the starting parameter for the
strategy parameter. zi 2 [0,1] is a uniformly distributed
random number generated for each value of i.

Within one ES generation step g, the inverse method
evaluates the objective value Fi for each set of para-
meters Pi of the population b. Each generation g then
reproduces when a subset of individuals in the popula-

tion, called parents, are selected based on some specified
criteria, and various search operators are applied to the
parents to create an offspring (recombination, mutation).
This offspring is evaluated with a fitness function f and a
selection is operated to progressively generate a new
population b(g+1).48 Finally, the termination condition is
checked. For this, convergence criteria can be used or
a maximum number of iterations incr can be fixed.
Our algorithm is based on this second assumption. We
describe here the different stages that are necessary to
generate a new individual at each increment incr of the
inverse method. Therefore we assume that the first gen-
eration (g = 0) has already been evaluated.

1. Recombination

Two main types of algorithms exist to make a child
based on the previous generation g: discrete or interme-
diary recombination. Our algorithm uses a global inter-
mediary recombination, as the algorithm chooses
randomly two parents (Pt,j and Pv,j, t and v are two
random number 2 i ¼ [1, l]) to generate a child:

p
0g
i;j ¼ pgt;j þ ziðpgv;j � pgt;jÞ

s
0g
i;j ¼ sgi;j þ ziðsgv;j � sgt;jÞ

:

(
ð6Þ

This operation is realized m times (we have fixed
m = 7). Typically, this stage ensures that offspring will
have better fitness values than the parents; however, this
is not guaranteed, due to the randomness inherent in the
reproduction process. Even if (p0,s0) does not survive
during the “survivor selection” stage, our algorithm
stores and includes these new individuals in the popu-
lation. They are hence used as parents for the next incre-
ments of the inverse method which guarantees a large
diversity among the individuals.

2. Mutation

The children (p0,s0) are also mutated. Since the selection of
the strategy parameter s is highly dependent on the prob-
lem and its dimensionality, Schwefel45 proposed a concept
referred to as self-adaptation, in which the mutation oper-
ator is applied to p as well as s. This operation is realized
by modifying dynamically s

0g
i;j and P

0g
i;j according to

p
0g
i;j ¼ p

0g
i;j þ Nð0; 1Þ�s0gþ1

i;j

s
0g
i;j ¼ s

0g
i;j�eNð0;1Þt ;

(
ð7Þ

where Nð0; 1Þ denotes a vector of random Gaussian
numbers with zero mean and one standard deviation.
t is called the “learning rate”:

t ¼ 1ffiffiffiffiffiffiffiffi
Npar

p : ð8Þ

The algorithm also has a boundary rule (Modified
Interval Bounds Treatment). If the children parameterFIG. 4. Evolution Strategy in the inverse method.
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p0 is outside the limits, its value is modified and set equal
to the upper or lower limit of the interval ½pmin

j ; pmax
j �.

3. Survivor selection

After the generation of m children, a selection is per-
formed with the result of a new individual. At each
increment of the inverse method incr, a method is used
to choose the best child. This selection is based on the
(m,l) version. One individual is selected, among the m
children, with the fitness function f. This fitness function
measures how well an individual is adapted to the prob-
lem. This may be the same as the objective function of
the problem being optimized, but often is not, in an
effort to increase efficiency. Within survivor selection,
we use the Kriging method to select one individual49

(and reject the others). We progressively generate a new
population b(g+1) with l individuals.

The main advantages of ES are their easy implemen-
tation and the good quality of the approximate solution.
They can treat simultaneously several individuals and
are inherently parallel. Thus, the probability of reaching
only a local minimum is reduced with respect to direct
search methods. They are also more robust than direct
search methods. Furthermore, the ES uses the informa-
tion of the objective function, not derivatives or other
auxiliary knowledge. It is thus well suited for problems in
which the initialization is not intuitive and the cost func-
tional may present several local minima. Consequently,
this method is very well suited to identify the mechanical
properties of the indented material. Meta-model-assisted
evolution strategies34 help in reducing the number of eva-
luations of the objective function. Compared to classical
ES, the main difference is that only 20% of the children
population is exactly evaluated for each generation. The
other 80% are evaluated using a high-dimensional interpo-
lation model, called meta-model, which is dynamically
built. It recycles the already calculated functions to better
approximate the function over the optimization domain.
For this, the Kriging method49 is used. This method pro-
vides both an estimation of the function value at any point
but also the confidence interval of this estimation. The
computation of the children using this approximate func-
tion is thus much faster.

B. Validation of the algorithm

We validate now the convergence of the algorithm.
We use the FE model presented in Sec. II. The indenter
has a semi-angle a equal to 80�. The yield stress sy and
the strain hardening coefficient n are fixed to the theo-
retical material properties shown in Table II.

The goal is to identify the Young’s modulus E. We
choose arbitrary a starting stiffness E0 = 147 GPa (which
corresponds to a 30% increase with respect to the theo-
retical material elastic modulus) and the search has been

limited between 56 and 170 GPa. We compare here the
target curves with the numerical L – h curves.

After only 60 iterations, the inverse method converges
to one solution: Ef = 113.4 GPa. Compared to the theo-
retical material elastic modulus, it induces a relative
error of 0.05% which permits to validate the efficiency
of the evolution strategy for the following.

C. Stability of the system

We adopt a local approach to check the stability of the
objective function using an example data set. We choose
an initial set of values and simulate the indentation tests.
The same computations are then repeated with a slight
variation of parameters. The parameters are listed in
Table II. We then make a variation of 1% on these
parameters and evaluate the Gauss-Newton matrix G:

G ¼
X
k

dhk
dPi

� dhk
dPj

; ð9Þ

where h is the displacement reached during each simula-
tion and P is the set of parameters to identify. Therefore
all values hk(P) are calculated using the first set of para-
meters, as well as perturbed values hk(P + dPi), where
dPi represents a small perturbation of the corresponding
parameter P:

dh

dPi
¼ hðPþ dPiÞ � hðPÞ

dPi
: ð10Þ

The following symmetric matrix G for the three para-
meters (E, sy, n) are obtained:

G¼
7:70�10�9 1:20�10�6 2:91�10�3

1:86�10�4 0:45
1104:55

0
@

1
A : ð11Þ

First of all, we notice that this matrix is not well
conditioned. After the computation of the eigenvalues
we obtain a condition number equal to r = 6.96�1012,
which means that a small perturbation of the system may
lead to a different global response of the material. The
matrix G can lead to the evaluation of the parameter
correlation C with the calculation of:

Cij ¼ cos
dh

dPi
;
dh

dPj

� �
¼ Gijffiffiffiffiffiffiffiffiffiffiffiffi

GiiGjj

p : ð12Þ

We obtain

cos
dh

dE
;
dh

dsy

� �
¼ 1 ;

cos
dh

dE
;
dh

dn

� �
¼ 0:9974 ;

cos
dh

dsy

;
dh

dn

� �
¼ 0:9994 :
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This reveals a strong correlation between the parameters
to identify and proves the need for defining an adapted
range for each material parameter before starting the
identification. If the initial parameters are too far from
the target values, the optimization process becomes
lengthy. Furthermore, due to the large nonlinearity of
the system and ill-conditioned nature of the problem trea-
ted here, it is probable that the desired solution, which
corresponds to the global minimum of the function, cannot
be reached.

To account for the instability of the system and the
difficulties to converge to one unique solution, we suggest
the following methodology: a preliminary study is done to
determine the starting values of the inverse method
through analytical models. Then multiple input data sets
and numerical data sets are compared to ensure the robust-
ness of the solutions. This hybrid approach of selecting the
starting point from analytical models is comparable to
regularization with the goal of focusing on a good spot
and stabilizing the solution there. Two experimental situa-
tions have been evaluated. Method A uses the simulated
target data given by one single indenter: the mechanical
parameters are identified with the L – h curve and the
profile surface of the residual imprint after unloading.50

Method B uses two L – h curves obtained with two conical
indenters with different semi-angles.10

IV. METHOD A: DETERMINATION OF THE
ELASTIC PLASTIC PROPERTIES WITH
ONE SINGLE CONICAL INDENTER
AND TOPOGRAPHY OF RESIDUAL
IMPRINT

We have chosen first to use a conical indenter with a
semi angle equal to 70.5�. A distinctive feature of inden-
tation experiments is that the material around the contact
area tends to deform upward or downward around the
vertical axis, where the load is applied. This behavior
results in piling-up or sinking-in of material. The strain
hardening exponent n influences this surface deforma-
tion.51–53 Therefore the strain hardening coefficient n
should be linked with the profile of the indented material
after unloading. The coupling of the L – h curve with the
profile (Method A) is thus a technique to correlate these
curves with the material properties.

A. Preliminary study

We demonstrate here the importance of the determi-
nation of the starting values to identify the mechanical
parameters. The Young’s modulus is fixed at its
target value (see Table II). We consider arbitrary
starting values for the plastic parameters:
ðs0

y ¼ 300MPa; n0 ¼ 0:05Þ far away from the theoretical
material mechanical properties parameters used for the

simulation. During the optimization procedure, these
parameters can evolve between 290 and 1500 MPa for
sy and 0.01 and 0.53 for n. We suppose herein that the
L – h curve and the profile have the same impact on the
calculated error FðPÞðw1 ¼ w2 ¼ 0:5Þ.
Once the inverse analysis has converged, the follow-

ing final results are obtained: sf
y ¼ 920:6MPa and

nf = 0.098. It induces an error of 26% on sy and 67.3%
on n. We consider here that the inverse method cannot
identify the plastic parameters as the results are too far
from the target values in Table II.

B. Estimation of the starting parameters

The Oliver and Pharr method5 has been widely
adopted to determine the elastic properties of the
indented material. It consists of fitting the unloading part
of the L – h curve to the power law relation derived from
contact mechanics theory (see Fig. 5).
With the target L – h curve (see Fig. 3), this method

leads to the estimation of the reduced Young’s modulus
Er = 136 GPa, where:

Er ¼ 1� n2

E
þ 1� n2i

Ei

� ��1

; ð13Þ

and the Young’s modulus: E0 = 143 GPa which induces
an error of 23% compared to the target value (Table II).
Other parameters to estimate are the yield stress sy

and the strain hardening coefficient n. For elastic per-
fectly plastic materials, hardness H is generally assumed
to be three times the yield stress sy.

3 Many models have

FIG. 5. Typical L – h curve of an indentation test presenting the basic

information that can be deduced for estimating material parameters.
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suggested this model be extended to elastic plastic
materials with a strain hardening coefficient.40,54–56

However, these models are often dedicated to specific
material behavior as elastic perfectly plastic behavior or
reduced to elastic plastic behavior with a low strain
hardening coefficient. The model introduced by Dao
et al.,12 which provides a unique solution from the L –
h curve, is used in this study to estimate the starting
parameters of the inverse method used. The drawback
of this method concerns limiting conditions such as elas-
tic-perfect plastic and perfect elastic materials. This
method uses dimensional analysis to analyze the inden-
tation response. During loading, L is proportional to the
square of the indenter displacement h:57–59

L ¼ Ch2 ; ð14Þ
where C is the loading curvature. From the known para-
meters C and Er, the dimensionless function P1 can be
used to determine s0.033:

P1 ¼ C

s0:033
¼ �1:131ln

Er

s0:033

 !3

þ13:635ln
Er

s0:033

 !2

�30:594ln
Er

s0:033

 !
þ 29:237

: ð15Þ

This equation gives s0.033 = 1580 MPa. The strain
hardening coefficient n is then determined by the dimen-
sionless function P2.

P2 ¼ 1

Erhmax

dL

dh
h¼hmax

¼ C1ln
Er

s0:033

 !3

þC2ln
Er

s0:033

 !2

þC3ln
Er

s0:033

 !
þ C4

: ð16Þ

where (Ci)i = 1.4 are given by Table III. Table III
This gives n0 = 0.123. These two data lead to the estima-
tion of the yield stress by using the Ludwik–Hollomon
law:

s0:033 ¼ sy 1þ E0

sy

0:033

� �n

: ð17Þ

We thus obtain s0
y ¼ 1060 MPa. Table IV summarizes

the mechanical parameters obtained by the analytical
solution. These results underline the possibility to
approach Ptarget but the measured relative error (com-
pared to the target values) highlights the limited accuracy
of the results. The reasons for such significant errors in
the yield stress and strain hardening exponent values are
linked to the high sensitivity of these parameters to the
uncertainties in the indentation response parameters.23,24

We thus study how the inverse method can improve the
identification of these parameters.

C. Identification of the mechanical parameters

We perform two studies. The first one corresponds to
the identification of the two plastic parameters sy and n
by fixing the Young’s modulus E at its exact value. This
approach is also used in practical applications as the
Young’s modulus is often known and the plastic proper-
ties of an alloy or a metal vary with thermal annealing or
deformation hardening. The second study concerns the
identification of elastic and plastic parameters. In each
configuration we use the results of Sec. IV. B to fix the
starting parameters at P0 (see Table IV). During the opti-
mization algorithm, sy (respectively n) can vary between
636 and 1484 MPa (respectively 0.1 and 0.5). In the
second configuration, the Young’s modulus E can vary
between 100 and 186 GPa. These limits have been
chosen based on the following idea. Usually, for metals,
the mechanical properties of the indented material are
generally known within an error of	30%. Consequently,
we consider here that they are sufficiently large to con-
verge to the optimal set of parameters. In both cases the
inverse method converges after 60 iterations. Table V
presents the identified parameters in both configurations.

In the first study, the relative error shows that the iden-
tification gives more accurate results with the inverse

TABLE III. Tabulated functions12 to determine n.

C1 –1.40557n3 + 0.77526n2 + 0.15830n – 0.06831

C2 17.93006n3 – 9.22091n2 – 2.37733n + 0.86295

C3 –79.99715n3 + 40.55620n2 + 9.00157n – 2.54543

C4 122.65069n3 – 63.88418n2 – 9.58936n + 6.20045

TABLE IV. Identified mechanical parameters P0 obtained with the

analytical method.

E0 (GPa) s0
y(MPa) n0

143 (+25%) 1060 (+44%) 0.17 (–43%)

TABLE V. Identified mechanical parameters for Method A. Two

studies have been performed. The first one corresponds to the

identification of the plastic parameters (2). The second one

corresponds to the identification of elastic and plastic parameters (3).

Number of parameters

to identify Ef (GPa) sf
y (MPa) nf

2 (sy;n) 821 (+12%) 0.17 (–43%)

3 (E,sy;n) 112 (+1.32%) 864 (+18%) 0.23 (–23%)
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method than with the analytical solution. Moreover, it
proves the robustness of Method A. Although the chosen
range of sets for each parameter to identify is large (	40%
for sy and 	70% for n), Method A leads to reasonable
values. This result leads to the following question. What is
the most important factor: the starting parameters or the
imposed limits to obtain a good identification? In this way,
we perform once again the first study by keeping the same
range for each parameter but by arbitrarily modifying the
starting values: s0

y ¼ 800 MPa and n0 = 0.4. The identi-
fied mechanical parameters are as follows: sf

y ¼ 881 MPa
and nf = 0.21. The results are different than those obtained
previously and the influence of the starting parameters.
Moreover, it underlines the importance of upper and lower
limits during the operation of the research algorithm. This
conclusion is also confirmed by Eq. (5), where more im-
portance is given to the limits than the starting parameters
in the evaluation of a starting population b(0).

In the second study, we observe that the inverse meth-
od also converges well to Ptarget. This convergence is
very accurate for the identification of the Young’s mod-
ulus and more difficult for the evaluation of the plastic
parameters. Whereas the Evolution Strategy avoids a
local minimum of the cost function FðPÞ, this result
shows that the algorithm does not permit a convergence
to the exact set of parameters Ptarget.

Method A leads to one solution whatever the starting
parameters or the set of range in the case of “reasonable”
starting values. These conclusions are highly correlated
to the use of the Evolution Strategy. Hence, the conclu-
sions of Stauss29 were different as the use of the deter-
ministic approach induced the determination of well
chosen starting values even by coupling the L – h curve
with the topography of the indented material. An advan-
tage of Method A is that the experimental, or in this case
the inputed target data set, measure of the profile is
independent of the indentation response and consequent-
ly independent of external effects and machine compli-
ance. From an experimental viewpoint, however, an
accurate image of the profile can be time consuming
and sometimes difficult to obtain.

V. METHOD B: DETERMINATION OF THE
ELASTIC PLASTIC PROPERTIES WITH
SEVERAL CONICAL INDENTERS

Instead of coupling the L – h curves with the profile,
we now identify the material parameters with two L – h
curves from two conical indenters with different semi-
angles. As an example, we consider here the dual indent-
er geometry of a 60� and 80� pair. The main drawback of
this method compared to method A is the computation
time as for each inverse analysis iteration incr, two
FE simulations are performed. On the other hand, the
measurement of a second L-h curve may be less time

consuming then measurement of the residual indent
topography, in particular for micro and microscopic
indents.

A. Estimation of the starting parameters with
the method developed by Bucaille et al.

We use the same methodology as in Sec. IV. B to
estimate the starting parameters and evaluate the
Young’s modulus with each L – h obtained for each
conical indenter. An average of these values gives us an
initial Young’s modulus equal to E0 = 139 GPa.
Using the different target L – h curves (see Fig. 3),

Bucaille et al.10 and later Chollacoop et al.11 extended
the method proposed by Dao et al.12 for forward and
reverse analysis based on dual sharp indenters. As for
the Dao et al. method, the drawback of these methods is
the problem with asymptotic analysis regarding limiting
conditions such as elastic-perfect plastic and perfect
elastic materials. This method consists of using dimen-
sionless functions to rebuild the s – e curve based on
several points (er; sr), from load–displacement curves of
different conical indenters. Chollacoop et al.,11 Dao
et al.,12 Tho et al.,60 and Zeng and Chiu33 have demon-
strated the robustness of the solution when the method
is based on dual sharp indenters. This method has
been used to assess stress strain properties of thin
films61,62 and the properties of the matrix of metal ma-
trix composites.36

In conical indentation, strain increases continuously
with the indentation depth h, and an appropriate equiva-
lent expression is

er ¼ 0:105cotðaÞ ; ð18Þ
where er is the strain accumulated beyond the yield
point. Bucaille et al.10 have proposed a set of universal
dimensionless functions to link the stress sra value in
one point of the s – e curve of the indented material
with the reduced Young’s modulus of the system Er and
the semi-angle a of the conical tip.

P1a ¼ Ca

sra
¼ 0:02552tan2y ln

Er

sra

 !" #3

�0:72526 ln
Er

sra

 !" #2

þ6:34493 ln
Er

sra

 !" #
� 6:474458

: ð19Þ

Table VI summarizes the analytical results obtained
and the corresponding relative error. It shows that the
Bucaille method gives better results than the classical
analytical method with only one conical indenter.
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B. Identification of the plastic parameters

We fix the Young’s modulus E at its exact value and
we identify the plastic parameters sy and n using
Table VI to fix the starting plastic parameters.
Table VII presents the final results Pf obtained. We
observe here an improvement of the method compared
to the Bucaille one described above.

The yield stress sf
y obtained is better than those iden-

tified by the Bucaille method as the relative error
decreases from 15% for the Bucaille method to 8% for
the inverse method and the same phenomenon is ob-
served for n. We now test the accuracy of the method
when three parameters have to be identified.

C. Identification of the elastic plastic parameters

We consider here that no parameters are known.
We have hence to identify the elastic and the plastic
parameters. If the number of parameters increases,
the efficiency and the convergence of the optimization
technique cannot be guaranteed. Consequently, the pro-
cess is the following: we identify first the Young’s
modulus Ef by fixing the initial yield stress sy and
the strain hardening exponent n to the value identified
in Sec. V. A (see Table VI). Once the elastic parameter
has been identified, we will identify the plastic

parameters sy and n by fixing the identified Young’s
modulus Ef.

We use Sec. V. A to define the starting Young’s
modulus at E0 = 139 GPa. This value can vary at 	30%
during the inverse method. After 6 h of calculations on a
state-of-the-art personal computer, the inverse method
converges easily to a unique value: Ef = 122 GPa. This
means a relative error of almost 8% (compared to the
target value), which is three times lower than for the
Bucaille method. We also suppose that the inverse meth-
od would be more accurate if the fixed yield stress and
the strain hardening coefficient n would be the same as
the theoretical ones.

E is now fixed at 122 GPa and the plastic parameters
are now identified. Table VI presents the starting values
P0 used for the plastic parameters. Each plastic parame-
ter can vary 	30% during the inverse method.
Table VIII presents the results obtained for different
weight function wi. If w1 = w2 = 0.5, the results obtained
with two conical indenters have the same influence on
the identification process. If w1 > w2 (respectively w1 <
w2), and the results obtained with the sharper (respec-
tively the larger) indenter have more influence than the
larger (respectively the sharper) one. Table VIII shows
that the inverse method has a better accuracy than the
Bucaille method. It underlines also that the weights have
less influence on the parameters. Figure 6 presents a
comparison between Rtarget and R. We observe a very
good accuracy between each L – h curves.

TABLE VII. Identification of the plastic parameters with Method B.

The Young’s modulus E is fixed here at its experimental value

(E = 114 GPa).

sf
y(MPa) nf

676 (–8%) 0.33 (+11%)

TABLE VI. Mechanical parameters P0 identified with the Bucaille

method.

E0 (GPa) s0
y (MPa) n0

139 (+23%) 580 (–20%) 0.35 (+17%)
TABLE VIII. Plastic parameters identified with Method B. E is fixed

at 122 GPa. The weight functions vary to evaluate the impact of each

curve on the accuracy of the identification. w1 is the weight associated

to the 60� conical semi-angle and w2 is the weight associated to the

80� conical semi-angle.

Weights sf
y(MPa) nf

w1 = w2 = 0.5 661 (–9%) 0.33 (+9%)

w1 = 0.75; w2 = 0.25 644 (–12%) 0.34 (+13%)

w1 = 0.25; w2 = 0.75 660 (–10%) 0.33 (+9%)

FIG. 6. Comparison between target (solid symbols) and numerical (empty symbols) curves in case of Method B. We have used the mechanical

parameters obtained when w1 = w2 = 0.5: (a) L – h curves and (b) residual imprints after unloading.
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VI. CONCLUSIONS

In this study, we propose a new approach that can be
used to identify elastic plastic material parameters using
indentation tests. This method is based on the coupling
of a semi analytical solution with an Evolution Strategy
Algorithm through an inverse analysis. This coupling is
necessary in order for the inverse method to improve the
accuracy of the solution since the indentation process is
highly nonlinear. The proposed model has shown its
robustness and can be considered an efficient tool to
determine material properties.

Our approach is divided in two steps. First a semi-ana-
lytical study leads to the estimation of starting parameters.
Then the inverse method enables the identification of the
elastic and plastic parameters with accuracy. Theoretical
verification is performed on two simulated configurations.
Method A is based on the L – h curve and the residual
imprint of the material after unloading, indented with one
conical indenter. Method B is based on the L – h curves of
a material indented with different conical indenters. Both
methods achieve reasonable accuracy. Whereas the com-
putation time is higher in case of Method B, its accuracy is
greater than the one of Method A. This better response is
mainly due to a good estimation of the starting parameters
(and consequently boundary limits), which can be
obtained by introducing some physical knowledge, such
as using the method developed by Bucaille et al.,10 in
solving the indentation inverse problem.
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