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Starting from Maxwell’s equations for a stratified optical medium with a non-linear refractive index, we
derive the equations for monochromatic planar TE modes. It is then shown that TE modes in which the
electromagnetic fields are travelling waves correspond to solutions of these reduced equations in the form
of standing waves. The equations of the paraxial approximation are then formulated and the stability of
the travelling waves is investigated in that context.
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1. Introduction

We consider the propagation of monochromatic light through a stratified non-linear dielectric. The abil-

ity of such a medium to support guided waves depends both on the spatial variation of the refractive
index across the layers and on its non-linear response to the intensity of the beam of light. The mathe-
matical model for this involves studying special solutions of Maxwell’s equations together with a non-
linear constitutive assumption. Btuart(1993, the basic equations were derived and a variety of results

were proved concerning the existence, non-existence and dependence on the physical parameters of such
solutions. Se®uppen(1997) andArcoyaet al. (1999 for further work on the mathematical theory. We

are now able to continue the study of this problem in some new directions.

First of all, in Sectior3, we derive the equations governing all planar monochromatic solutions of
Maxwell's equations in a non-linear optical medium. These equations form a system of six coupled
second-order partial differential equations in the plane, 348)( TE and TM modes are special solu-
tions of this system in which some of the components of the solutions are identically zero. In Section
we introduce the notion of guided waves. These are solutions satisfying additional conditions ensuring
that the energy is finite and that the fields decay to zero far from the centre of the waveguide. Among
all planar monochromatic solutions of Maxwell's equation, those corresponding to travelling waves are
of particular interest and for them the system reduces to six second-order ordinary differential equa-
tions. Travelling waves are introduced in Sectdbhe discussion istuart(1993, Ruppen(1997 and
Arcoyaet al. (1999, which deals exclusively with guided TE modes that are planar travelling waves,
can now be seen as part of a broader context. This is an essential preliminary step in order to formulate
in a precise way issues concerning the stability of guided TE travelling waves. So far there seems to
have been no progress on establishing stability in the context of Maxwell's equations. Instead, stabil-
ity is usually discussed with respect to a non-linear 8dimger equation (NLS) that is obtained from
the paraxial approximation. In Secti@hwe show how such an equation is derived in our setting. The
stability of guided TE travelling waves is then shown to correspond to the orbital stability of certain
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periodic solutions (standing waves) of this NLS. However, since all perturbed fields admitted in this
treatment are monochromatic, it must be emphasized that the variable playing the role of time in the
NLS is actually distance in the direction of propagation of the travelling wave whose stability is being
analysed.

Itis intuitively clear from Snell’'s law that a favorable configuration for the existence of guided waves
is found in a wave guide in which the refractive index decreases away from some central axis. It is also
well-known that the guidance properties are enhanced by the non-linear response of a self-focusing
medium. In Sectior7, using work fromJeanjean & Stuaftt999 andMcLeodet al. (2003, we present
a fairly complete picture of the existence and stability of guided TE travelling waves in such a structure.
Under appropriate conditions, all the ground states lie on a smooth branch and they are all orbitally
stable.

2. Maxwell's equations in a non-linear dielectric

In this section, we review briefly Maxwell's equations for electromagnetic waves in a non-linear dielec-
tric which is supposed to occupy all &°. Let E and B: R* — R2 denote the electric and magnetic
fields and letP: R* — R denote the polarization of the medium due to the presence of these fields.
In CGS units, Maxwell's equations are

4B=—-CVAE, (1) s E=cVAB—-&P, (2
(2.1)
V.B=0, 3 V-E=-V-.P (4),

wherec > 0 is speed of light in a vacuum. On the microscopic level, the atoms and molecules of
the dielectric are polarized into dipoles by the electric field & the macroscopic manifestation

of this phenomenon. In a given material, the way in whighs determined byE must be specified

by a constitutive relation. In the context of transparent isotropic optical waveguides, this response is
postulated to have the form

P(x,t) = x(w, X, %[|E1(x)|2 + |E2(x)|21) E(x, t); (2.2)

for a monochromatic electric field of frequeney> 0,
E(x,t) = EX(x) coswt + E?(x) sinot,

whereE®, EZ R® — R3. The functiony: (a,b) x R3 x [0, c0) — (0, c0) is called the ‘dielectric
susceptibility’, for some interval of frequenciés, b). The fact thatP is also monochromatic with the
same frequency &s (and so second and third harmonics, etc., are neglected) is appropriate for situations
in which there is no phase matching (&sdeh & Teich1991 e.g.). Furthermore; depends ot only
through3[|E1(x)|? + | E2(x)|?] which is the time average ¢E(x, t)|?.

It is customary to introduce the ‘electric displacement fiédby setting

D=E+ P. (2.3)
Maxwell’s equations in a dielectric can then be written as

&B=-CVAE, (1) 4D =cVAB, (2
(2.4)
V.B=0, (3) V-D=0, (4
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and the ‘constitutive relation’ is
1
D(x,t) = [1+ x(w, X, SIEYCOP + |E2(x)|2])] E(x,1), (2.5)

where the function
S(C(), X7 S) = 1+X(C{), X’ S) (26)
is known as the ‘dielectric response’.
The quantityn(w, X,s) = +e(w, X, S) is usually referred to the ‘non-linear refractive index’. It

is a function of positiorx, but depends also on the monochromatic electric fied, t) through its
frequencyw and intensitys. To a first approximation, the refractive index can be written as

N(w, X, S) = Ng(w, X) + N2(®, X)S,

and this is usually referred to as a ‘Kerr non-linearitkkhmanovet al., 1972 Sveltq 1974). There are
extensive tables for the coefficients andn, (Smith 1986. See alsdivshar & Sukhorukoy2001),
Luther-Davies & Stegema2001) and the references Btuart(1993 for a discussion of more general
non-linearities. A medium is ‘self-focusing’ whettw, X, S) is an increasing function &

By (2.5, &3{E- D +|BJ?} = &D - E +&B - B and so, for any smooth bounded domirin R?,

1 2
o | Z{E-D+|BPdx=c | (VAB-E—VAE-Bljdx=-c| EAB-nds,
v 2 Y oV

wheren: 8V — R3 s the field of unit exterior normals aiV . The quantity%{E D+|B|?} is considered
to be the ‘electromagnetic energy density’. For any smooth orientable s@fadg3,

c/S(E/\B)-nds (2.7)

is the rate at which this energy is flowing acr@ the direction of a continuous fielt S — R3 of
unit normals. Note that, unlike the energy density, this ‘energy flux’ is independent of the polarRation

3. Planar monochromatic solutions of Maxwell's equations

Let x = (X1, X2, Xx3) € R3 denote Cartesian co-ordinates in space and letR denote time. As in
Section 2, a field=: R* — R3 is ‘monochromatic’ if

F(x,t) = F1(x) coswt + F?(x) sinwt, for x € R®andt € R, (3.1)

for some ‘frequencyw > 0 and functionsF!, F2: R® — R3. For such fields, the ‘time average’ of
IF(x, )% is %{| F1(x)|2 + |F2(x)|?} and this function will be referred to as the ‘intensity distribution’
of the fieldF.

Afield F: R* — R3is ‘planar’ with respect to a direction e R? if

F(x+sn,t)=F(x,t), forxeR®ands,teR. (3.2)

Henceforth, we when dealing with planar fields we shall use a Cartesian co-ordinate system such that
the fields are planar with respect to theaxis. Then, we simplify the notation by using

(X1, X2, X3) = (X, ¥, Z) andF (X, Y, z,t) = F1(x, z) coswt + F?(x, ) sinwt (3.3)

to denote a planar monochromatic field where rfoty F2: R?2 — RS,
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When dealing with such fields, it is convenient to use complex notation since
F1(x, z) coswt + F?(x, z) sinwt = Re(F (x, z)e~"},

whereF (x, z) = F1(x, 2) + iF?(x, z) € C3.
As a model for a ‘stratified medium’, we assume henceforth that

e(w,X,Y,2,5) = u(w, X, S)

for some functioru: (a, b) x R x [0, c0) — R, where forw € (a, b) c (0, x0),

(i) (o, -, -) € CLR x [0, 00)) and, for allK > 0, (3.4)
u(w, -, -) is bounded and uniformly continuous &x [0, K]. (3.5)
(i) inf{u(w, x,s): xe Rands > 0} > 0. (3.6)

From now on, we look for solutions of Maxwell's equations in which the electric field is planar and
monochromatic. Thus, it can be expressed in the form

E(X, Y,z t) = Re{e(x, 267!}, wheree(x, z) = €'(x, 2) + i€?(X, 2), (3.7)
wheree: R? — C3. The intensity distribution of such a field is
1.4 2 2 2 1 2_ 1 S < j 2
Slettx, 21 + 1€%(x, 9I°] = Sle(x, 2)|” = Ejz_lmglan(x, 2", (3.8)

and so, by2.5), the associated displacement field is
1 .
D(X,y,z1) = u(w, X, 5 e, Z)IZ) Refe(x, z)€”'}. (3.9)
From the equatioa;B = —cV A E, we find that
t 1 )
B(x,y,zt)—B(X,y,20) = —c/ VAEWX,Y,zs)ds = cRe[V A e(X, z)i—[e""’t —-1]t,
0 w

and so

B(X,Y,z1) = _< ReliV A e(x, z)e" 1t} (3.10)
w

provided that we choose the initial conditi®{x, y, z, 0) = —g Re(iV A e(x, 2)}. Thus,B andD are
also planar monochromatic fields with

B(X, Y,z 1) = Relb(x,2e7'} and D(x,y,z t) = Re{d(x, 2)e~""}, (3.11)
where

b(x, z) = —igv Ae(x,z) and d(x,z) = ,u(a), X, %|e(x, z)|2) e(x, 2). (3.12)



EXISTENCE AND STABILITY OF TE MODES 663

Maxwell’s equatiors; D = cV A B becomes

1 2 s —iwt 02 ; —iwt

o, X, §|e(x, 2)|° ) Refiwe™”"} = — Re(iV AV Ae(x, 2 e}
w
This equation is satisfied for dlle R, if and only if e(x, z) satisfies the equation
1 2 C\?2 C\?2
i o.x Slex 2 ) ex.2) = (Z) VAV aetx 2 = (=) {V(V - elx. ) - de(x. )}

which is actually a system of three equationsdorR? — C3, namely

o\ 2 1 €1 822X83 - a222el
(E) ﬂ(w, X, 5le(x, z)|2) e|=|-4e-e|,
€3 8zzxel - 6>%xe3

whereem, = en(x,z), form=1,2,3. (3.13)

Thus, we see that for planar monochromatic fields, Maxwell’'s equation reduce to the sysit8mnilthe
following more precise statement can be checked by straightforward calculations.

THEOREM3.1 Let the dielectric response functiprsatisfy @.4)—(3.6) and lete € C2(R?, C3) satisfy
the system3.13. DefineE, D and B by (3.7), (3.11) and @.12. Then, E, B, D satisfy Maxwell’s
equationsZ.4).

We observe that the equations of the syst8r3 are coupled through the dielectric response
1 12 8
2\ _ j 2
,U(C(), X, Ele(xz Z)I ) = u| o, X, E Z z em(X: Z)
j=1m=1
However, it is possible to seek special solutions in which some of the componestis af are identi-
cally zero.
3.1 TE modes
The simplest kind of solution is one in whieh = e3 = 0, in which case the systerf.(3 reduces to a

single equation for the complex functiep = €} + ie2, namely

w\2 1
(E) ﬂ(w, X, 5lea(x, z)|2) & =—026 — 026 (3.14)

These solutions are referred to as ‘TE modes’ since the electricHigddeverywhere transverse to the
direction of thez-axis.

3.2 TM modes

Another, somewhat more complicated, type of solution is obtained by requiringstea0. Then, we
are left with a 2x 2 system for the complex functiomes andes, namely

®\2 1 2 2 €1\ 0283 — 02
(2) N(CO, X, Slles(x DI+ ea(x, ) ]) ( es) = (622Xel B azeg) (3.15)



664 C.A. STUART

Note that ife = (e, 0, e3) is such a solution, then the corresponding magnetic field definegl bg) (
has the property thd3(x, y, z, t) = 0 and so solutions of this type are referred to as ‘TM modes’ since
the magnetic field is everywhere transverse to the direction of-thes.

4. Monochromatic planar travelling waves
Afield F: R* - R3is called a ‘travelling wave’ if

F(x,t) = w(x —t&), forx eR®andt e R, (4.1)
for some vectof e R3\{0} and functionw: R® — R3. In this case,é—| is a ‘direction of propagation’
ando = |£| is the ‘wave speed’ in this direction.

LEMMA 4.1 LetF: R* — R3 be a monochromatic field with frequeney> 0 that is also a travelling
wave in the directior(0, 0, 1) with speed» > 0.Then, there exist field& 1, K2 : R? — R® such that

F(x, t) = K(xq, x2) cogkxa — ot) + K2(x1, X2) sin(kxs — wt), (4.2)
forall (x,t) € R* wherek = o is the ‘wave number’ anq(l is the ‘wave length’.

Proof. See Lemma 2.1 dstuart(2004). O
By this lemma and the discussion at the beginning of Section 3, monochromatic planar fields that
are travelling waves in the direction of tkeaxis are of the form

F(X, Y,z t) = K}(x) cogkz— wt) + K2(x) sin(kz — ot) = ReK (x)ekzb, (4.3)

whereK!, KZ R —» R3andK = K1 —iK?2.

Consequently, solutiorex, z) of the system3.13) yield travelling waves propagating in the direc-
tion of the z-axis if and only if there exist a constaikt > 0 and a functionW: R — C3
such that

e(x,z) = W(x)éX%, forall x,z e R. (4.4)
Then, the electric field has the form
E(x, Y,z t) = RgW(x)ekzV}, (4.5)
and Theoren8.1now yields the following result.

THEOREM 4.1 Let the dielectric response functipnsatisfy 8.4—(3.6) and letk > 0 andW e C2
(R, C3) satisfy the system

W, ikox W3 4 k2Wy
)2 1 2 2 2
(2) o x 51w00r ) | We | = [ —a2wz + k2w |
W3 ikox Wy — 6>%XW3

whereWn = Wip(x), form=1,2,3. (4.6)

Sete(x, z) = W(x)€XZ and defineE, D andB by (3.7), (3.11) and @.12), respectively. TherE, B and
D satisfy Maxwell's equations2(4) and they are planar monochromatic travelling waves propagating
in the direction of the-axis with speed;.
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Note that for travelling waves, the formula.10 simplifies to
. —kWa(x)
B(X,V,z 1) = — Re{ | kWa(X) + ioxWs(x) | €kz=D t 4.7)
w
—i0xWa(X)
SinceW(x) = W(x) + iW2(x), the system4.6) constitutes a system of six coupled second-order
differential equations for the real functiokéh € C2(R), for j = 1,2 andm = 1, 2, 3.

The simplest solutions of(6) are those in which the functiow is constant. The electromagnetic
fields are then plane waves propagating in a homogeneous medium

4.1 Plane waves

Suppose that, in addition t@.4) and @.6), the dielectric response functianw, X, s) is independent
of x. This means that the medium is homogeneous and we write the response function sin(ply s
Then, a constant vectdW e C3 satisfies 4.6) if and only if W3 = 0 and

(2 (o 2) (32) - ()

This is possible withV # 0 if and only if

k= %\/m for somes > 0 and|W| = v/2s. 4.8)
The electric and magnetic fields are then
W1 —kWh
E = Re Wo ei(kz—wt) and B = E Re kW, ei(kz—a)t)
w
0 0

Note that for such solutions, which are called ‘plane wavEs'B and thez-axis are always mutually
perpendicular.

If the medium is homogeneous and linear, the dielectric response is a constant depending»nly on
and so the conditior4(8) becomes

w . w Cc
k= C\/,u(a)), i.e. K~ n@)’ (4.9
and there is no restriction on the norm\f The condition 4.9) is called the ‘dispersion relation’ and it
determines the spatial wave lendth- 2T”of the plane waves as a function of the temporal frequency

It also shows that the wave spegds determined by the refractive index in a linear homogeneous
medium. In a non-linear mediun%.@) shows that the wave spegediepends on the intensity as well as
the frequency through=-2<5.

5. Guidance conditions

In Section 4, we showed that all planar, monochromatic travelling waves are obtained as solutions of
a system of six second-order differential equationsRotHowever, not all such solutions correspond
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to physically realistic and interesting situations. On one hand, acceptable solutions should have finite
energy. Furthermore, the intensity of the associated beam of light should be concentrated near the axis
of propagation. For planar waveguides, these additional criteria are formulated as follows.

Guidance conditions

(i) The total electromagnetic energy per unit length in the direction of propagation is finite. That is,
d+1 ,oo 1
/ / Z{E-D+|B|3jdxdz < 0o foralld e R.
d 00 2

(i) The amplitudes of the electromagnetic fields decay to zero as the distance from the axis of prop-
agation becomes infinite. That is,

I[E(X,Y,z,t)] > 0 and |B(x,y,zt)| > 0 as|x| - oo.

For fields of the form3.7), (3.11) and @.12, the condition (i) is satisfied if and only if

d+1 roo 1
/ / ﬂ(w, X, §|e(x, z)|2) le(x, 2)|% + |V A e(x, 2)|%dx dz < co (5.1)
d —00

and the condition (ii) amounts to
le(x,z)] > 0 and |V Aex,2)|— 0 as|x| > oo. (5.2)

In the case of travelling waves(x, z) = W(x)€*Z and these conditions become
°° 1 2 2 2 2
/ 1+ | o, X, §|W(x)| [W(X)|“ 4 [0xWa | + [0xW3|< dX < oo (5.3)
—0o0
and
[W(X)], |0xWa|, [0xW3| — 0 as|x| — oo, (5.4)

respectively.
Clearly, plane waves do not satisfy the guidance conditions.

5.1 Guided TE modes

Recall that TE modes are solutions 8f13 in which % = %2 = 0. Thus, we find TE modes by solving
the non-linear Helmholtz equation

Aw(x, z) + (%)Zﬂ(a), X, % lw(X, z)|2) w(x,z)=0, for(x,z)eR? (5.5)

for w € C2(R?, C) and then setting
0 dzw(X, 2)
) c )
E =Rel | w(x, et and B= —Re{i 0 gt b (5.6)
w
0 —oxw(X, 2)
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Under the assumption8.4)—(3.6), the guidance condition$ (1) and 6.2) become
(i) w e HY(R x (d,d + 1)), foralld e R, and (5.7)

(i) lw(x,2)| and |Vw(X, 2)| > 0as|x| - oo, forall ze R. (5.8)

Note that for TE modes, the Poynting veckor B is always in the direction of theaxis, and, according
to (2.7), the rate at which energy is crossing the line d is

o0
c/ E A B.e3dx.

—00

Using (6.6), the time average of this quantity is

C2 o0
P() = —/ Im{w(x, d)dzw(x, d)}dx. (5.9)
20 J_
PROPOSITION5.1 Suppose that satisfies 8.4—(3.6). If w € C2(R2, C) satisfies §.5), (5.7) and
(5.8), the quantityP defined by §.9) is finite and it is independent af. It is called the ‘power’ of the
corresponding TE mode.

Proof. By (5.7), w € HY(R x (d, D)) forall d, D with d < D. In particulard,w(x, 2)w(x, z) € L1(R)
for almost allz € R, so we can choosisuch thab,w(x, d)w(x, d) € L1(R). Furthermorejw||Vw| €
LY(R x (d, D)) and so there exists a sequetiGg such that, — oo and

D
/ |w(rn, 2)|IVw(rn, 2)| + lw(=rn, 2)||Vw(—rn, 2)|[dz— co  asn — oo. (5.10)
d

Multiplying (5.5 by w(x, z) and then integrating over the rectang@ler,, rn) x (d, D) yields

D 'n W\ 2 1 D n
/ / (—) u(w, X, ~|w(X, z)|2) lw(x, 2)[?dx dz = —/ / Aw(X, 2)w(X, z)dx dz
d J-r, \C 2 d J-r,

D ,rn D -
_ / / (oxw]? + [zw]Pdx dz — / (ox(tn, 2)0(m D) — Sxt(—rn, 2)0(=Tm; D)}z
d —rn d

- " {6, (X, D)w (X, D) — dzw(X, d)w(X, d)}dx.

Hence,

M
Im {o:w (X, D)w(x, D)dx

—rIn

'n D
=1Im {0z (X, d)w (X, d)dx — Im/ {oxw(rn, 2)w(rp, Z) — oxw(—rn, 2)w(—rn, 2)}dz.
d

—rn

Lettingn — oo, (5.10 implies that

oo o
/ Im{dzw(x, D)w(x, D)dx =/ Im{w(x, d)w(x,d)}dx, forall D > d. 0

—00 —00
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5.2 Guided TE travelling waves

For TE modes that are travelling waves, there ekist 0 andW e C2(R, C) such thatw(x, z) =
W(x)€XZ In this case,§.5) simplifies to

W (x) — KPW(X) + (%)2 ﬂ(w, X, %lW(x)|2) W(x) =0, forxeR, (5.11)

and the guidance conditions reduce to
(HW e HY(R,C) and (i) W(x) andW’'(x) — 0 as|x| — . (5.12)

The corresponding electromagnetic fields are

0 kW(x)
E =Re{ [ wooekz—on and B=—-"Re o |dkzenl (513
w
0 W' (x)

The power of a TE travelling wave is

CZ 0 C2|( %] )
P= —/ Im{w(X, 2)0;w(X, 2)}dx = —/ [W(x)|“dx. (5.14)
20 J_o 20 J_

Settingu(x) = ReW(x) ando(x) = ImW(x), the complex equatiorb(1]) is equivalent to the real
system

U — KU + (%)2 ﬂ(w, X, %[u(x)z + v(x)z]) u=0, (5.15)

2 1
v — K% + (%) ,u(w, X, E[U(X)2 + v(X)z]) v =0, (5.16)

but, in fact, as the next result shows, solutions of this system have a simple form that means it is enough
to study the scalar equation

U” — kU + (%)2 ﬂ(w, X, %U (x)2) U(x) =0, (5.17)

for U € C2(R, R).

PROPOSITION5S.2 Suppose thai satisfies 8.4)—(3.6). A functionW e C2(R, C) and satisfiesH,11)
and 6.12 if and only if

W(x) = €’U(x), forallxeR, (5.18)
for somed € [0, 27) andU € H(R, R) such that

/OO U’ (X)e’ (x)dx

— /Oo [(%)Zﬂ(a} X, %U(x)z) - kZ] U)p(x)dx, forallgp e C&(R, R). (5.19)

—0o0
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REMARK 5.1 Thus,U is only required to be a weak solution &.{7), but this implies that) € C2
(R, R) and satisfiesq.17) in the classical sense. The functidnmay change sign, but as a solution of
(5.17), all its zeros are simple, except for the cabe= 0. The condition%.18 means that the graph of
W lies on a plane ifR x RZ whenC is identified withR2.

REMARK 5.2 ForU € H1(R, R), we have that.19 is satisfied for alp € Co° (R, R) if and only if it
is satisfied for alp € H(R, R).

Proof. Suppose first thatV = u+i» € C3(R, C) and satisfies3.11) and 6.12. It follows from (5.15
and 6.16) thatoy{uoxv — voxu} = 0 and hence thatoyo — voxu = C onR for some constant. But
(5.12 implies thatC = 0. If » = 0, the result is trivial§ = 0 andU = u) so we suppose henceforth
thatv # 0. It follows from (5.16) that the zeros of are isolated and that they are all simple. (ath)
be a maximal interval on which # 0. Then,ox{¥} = 0 on(a, b) and so there exists a constarsuch
thatu = do on (a, b). SettingU (x) = /1 + d2»(x), (5.16 shows thatJ satisfies §.17). Choosing
0 € [0, 27) such that @ = (d +i)/+/d2 + 1, we have thatV(x) = €U (x) for all x € (a, b).

If b < o0, let (b, B) denote the next interval on whiehs# 0. Then as above, we have that dio
on (b, p) for some constard;. But this implies that

u’(b—) = do’(b—) andu’(b+) = dyo’(b+),
whereu’(b—) = U/'(b+) ando’(b—) = v’ (b+) # 0,

sinceu, » € C1(R) andb is a simple zero oé. This shows thatl; = d and it follows by induction that
u(x) = do(x) onR.

Conversely, ifU € HL(R), it follows from (3.5) that{(%)z,u (v, %, $U(x)?) — k?} is a bounded
continuous function ok on R. From this and%.19 we deduce that) € C2(R) N H2(R) and satisfies
(5.17). One easily checks that, for alyW(x) = €?U (x) has the required properties. O

By Proposition5.2, the study of all guided planar TE travelling waves has been reduced to find-
ingU e HL(R, R) such that $.17) holds in the weak sense. We now turn the results concerning the
existence and stability of such travelling waves.

6. Stability in the paraxial approximation

In Section 5, we found that, for all planar TE travelling waves, the electric field can be expressed in the
form

E(X, Y,z t) = Re{d? (x)U (x)dkZ*D}e, = U (x) cogkz — ot + 0)e, (6.1)

whereU e C2(R, R) satisfies §.17) and@ < [0, 2). On the plane = 0, which is regarded as the
extremity of a slab wave guide occupying the half-space0, the electric field is

E(X,y,0,t) = U(X) cod—wt + 0)ey. (6.2)

In considering the stability of this travelling wave, it is natural to inquire what happens if a device at
the extremityz = 0 stimulates an electric fiel(x, y, 0, t) that is close to§.2). Will the resulting
electromagnetic fields that are generated in the wave guide remain close to the travelling wave for all
z> 0andallt?

So far, this issue seems only to have been investigated in the context of the paraxial approximation,
in which Maxwell’s equations are simplified to some form of NLS. In this section, we give a derivation
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of this approximate equation in the context of planar TE modes and then formulate the appropriate
notion of stability.
For any guided TE mode, the electric field can be written as

E(X, Y,z t) = Re{w(x, 26" “1ey, (6.3)

wherew e C2(R2, C) satisfies the elliptic equatios 5) and the guidance conditionS.¢) and 6.9).
Let 1o be some typical (and hencl « 1) value of the wavelength of light and lef = 2z /1o denote
the corresponding wave numbésg, >> 1. Without any loss of generality, the functian(x, z) can be
written as

w(X, Z) = W(x, z)eko?

and 6.5 becomes

AW(X, 2)+2ikod, W (X, 2)—k3W (X, z)+(%)2ﬂ(a), X, %|W(x, z)|2) W(x,2) =0, for(x,z)eR?

(6.4)
whereadWV still satisfies same conditionS.¢) and 6.8). In this notation, the poweBb(9) becomes

2 00
P— C_/ IM{W(X, 2)[0;W(X, 2) + ikoW(X, 2)] }dx

_ < / IM{W(X, 20, W(X, z)}dx+ ko / IW(x, 2))2dx. 6.5)

In the ‘paraxial approximation’ (seBaleh & Teich 1991, p. 50, e.g.) it is supposed th¥{(x, z) is

a ‘slowly varying function’ ofz in the sense that,W(x, z) and aZZZW(x, Z) can be neglected when
compared tdkoW (X, z) and kSW(x, z), respectively. In this approximation, the exact equati®d)(is
replaced by

02, W(X, 2) + 2ikod,W(x, 2) — K2W(x, 2) + (%)2 ﬂ(w, X, %|W(x, z)|2) W(x,2=0 (6.6)
and the power by
2 9]
P(z) = %/_m IW(x, 2)[2dx. 6.7)

As we shall see later in Propositi@i, the quantity 6.7) is independent af whenevel satisfies §.6)

and the guidance conditionS.7) and 6.8). Furthermore, prescribing the electric field at the extremity

z = 0 of the wave guide is equivalent to prescribgx, 0). Equation 6.6) has the form of a NLS and,
under appropriate assumptions on the response funetion-), the corresponding initial-value problem

is well-posed so one can meaningfully investigate the stability of a solution determined by a particular
choice of initial condition. We consider the initial conditions that generate guided TE travelling waves,
namely

W(X, 0) = w(x, 0) = €’U (x), (6.8)
whered € [0, 27) andU e C%(R, R)NHL(R, R) satisfies$.17) for somek > 0. In this case, the exact
solution of ©.4) is

w(x, z) = /U (x)ek?
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and the electric field is
E(X,y,zt) =U(X)cogkz— wt + 0)ey. (6.9)

Substitution shows that the solution d@.§) defined by the initial condition6§(8) is the following
z-periodic function

) . k2 — kS
W(x, 2) = €U (x)é**?, whereiy = TR (6.10)
Observe thaWV is a slowly varying function of provided that
K2 — k2
T < ko.

The corresponding electric field is
E(X, ¥, 2, 1) = R{W(x, 2)*0*V}ey = U (x) cos[ ik + ko]z — ot + O)ez.

The difference between the wave numbgr+ kg of this field and the wave numbérin the exact
expression@.9) is
(k — ko)?
2ko
and this quantity is negligible fde nearkg andkg > > 1.

Ak +ko—k=

6.1 Stability

Thus, we are lead to investigate the stability of the solut®i @ of the NLS 6.6) with respect to
perturbations of its initial conditior(8). By Proposition7.2 below, H(R, C) is the appropriate phase
space for this initial-value problem and we denotg|byi 41 the usual norm

%] 1/2
IW(, 21 = [ / IW(X, 2)|? + [xW(X, z>|2dx}

of W(., z) in this space. Note that this choice of phase space is also well-adapted to the guidance condi-
tion (5.7).
Letd, — 0 and let

Wi(X, 2) = €U (x)€%? and W(x, z) = €U (x)&*2.
Clearly, [Wh(-, 0) — W(-, 0)|y1 = |€% — €’|||U]||y1 — 0 asn — oo, but
IWh (-, 2) = W(, 2)[lg2 = 1€% — €9]U 1 A 0 asz — o,

for anyn and so we cannot expect to establish asymptotic stabilis/ oFurthermore, if we consider
a sequencé(kn, Up)} of solutions of .17 and 6.7) such thak, — k and|Un — U|yj1 — 0 (the
existence of such a sequence is established in Thedrgpand now set

Wi (X, 2) = €/Up(x)e*n?,
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then again|Wh (-, 0) — W(:, 0)||y1 = [|Un — U||y1 — 0. But
W(x, 2) = W(x, 2) = €’[Un(x) — U()]e"0? + /U (x)[e"n* — &7,
and so
IWh(x,2) = W(X, 2)] > |Uq|lelHaZ — 1] — |Un(0) — U (x)],

showing that

lim sup|Wh(x, 2) — W(X, 2)| = 2|U (X)| — [Un(x) — U(X)I,
220

if kn # k. Thus, even stability fails in this case. For these reasons, we concentrate on the orbital stability
of W as a solution of§.6).

6.2 Orbital stability of guided TE travelling waves
The orbit® (€U (-)) of the solution 6.10 in the phase spadé!(R, C) is

0E%U () = (U ()d* % z> 0} = (€U (): 0 e R} = O (V).
ForanyV € HL(R, ©), let
d(V,oMU () =inf{|[V-W[y1:We OU)}

Since® (U (+)) is a compact subset ¢11(R, C), there exist&V € @ (U (-)) such thad(V, & (U () =
IV — W] 1, i.e. there existg > 0 such that

d(V, 0U () = IV — €9U ()™ 1.

Let W(., ) denote the solution of6(6) having an arbitrary initial conditioW(-,0) € HL(R, C).
‘Orbital stability’ of the z-periodic solution §.10 means that, given any > 0, there exist® > 0
such that

IW(-, 0) — €U ()|yr < 6 = d(W(-, 2), ©E€°U () <&, forallz>0.
That s, for allz > 0,
there existg; > 0 such tha|W(-, z) — €U (-)é*4 || 1 < ¢, (6.11)
or, equivalently,
there exist®(z)(= 0 + Axz1) such thaf| W(-, z) — €’PU ()| 41 < &. (6.12)

Of course, a complete statement of this notion of stability should include the requiremest 8hats
a unique global solutiokV(-, z) for all initial conditionsW(, 0) close to® (€?U (-)). This will be done
in Section7 when we formulate results concerning orbital stability.
Observing tha® (€U (-)) = @ (U (-)) for all 6, the above definition is equivalent to requiring that,
forall ¢ > 0, there exist$ > 0 such that

d(W(-,0), @U () < = d(W(-, 2), @U())), forallz> 0.
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To bring out the physical content of this kind of stability, we consider the behaviour of the amplitude
and the phase a(x, z). Let

A(X,2) = |W(x,2)] and W(x,z) = A(x, 2)g?*?,

Recalling thatU (x) € R, we have that) (x) = |U(x)|€¥®, wherey(x) = 0 or z. In terms of
the electric fields, we have that the field produced by the perturbed initial condifieny, 0,t) =
Re{W(x, 0)e"'®V}e, is

E(x, Y, 2 1) = RW(x, 2¢**V}e, = A(x, 2) costkoz — ot + ¢ (X, D)ez,
whereas the unperturbed travelling wave is
E(x, ¥, 2 t) = Refé’U (x)e"*e0*~V}e, — |U (x)| costkoz — ot + 1 (X, D)z,

wherey (X, z) = 0 + ikz+ w(X). From ©.11) we have that, for alt > 0, there existg; > 0 such that
IW(., 2) — €U (€% 41 < &, from which it follows that

sup| A(x, 2)e?*2 — 2201y (x)|| = sup|A(x, 2)el?*D=2 %21 _ 1y (x| < e.

xeR xeR
Thus, orbital stability implies that that the amplitudaéx, z) and |U (x)| are close for allx and z.
Furthermore, the phaggx, z) of W(X, z) is almost independent of on intervals wheré) is bounded
away from zero.

7. Existence and stability of symmetric guided TE travelling waves

Before continuing, let us summarize the problems that have been formulated. The dielectric response
function i is supposed to have the following properties.
(A) u: (@, b) x R x [0,0) = R where, forw € (a, b) c (0, c0),

(i) f e CL(R?), wheref(x,s) = u (a) X, %sz) s, (7.1)

(i) inf{u(w, X, s): x €e Rands > 0} > 0, (7.2)
(iii) foranyK > 0, u(w, -, -) is bounded and uniformly continuous &nx [0, K]. (7.3)

In fact, in (3.4 we made the stronger assumption thdto, -, -) € C1(R x [0, c0)) but it is easily
checked that7.1) is sufficient when dealing with TE modes.
Existence:Findk > 0 andU € H1(R) such that$.19 is satisfied.

Solutions of this problem furnish all the exact solutions of Maxwell's equations that are guided by
the planar monochromatic TE travelling waves through the formulae

E(x,Y,zt) =U(x)cogkz— wt + #)e; and
k
B(x,y,z,t) = ~Zu (x) cogkz — wt + 0)er + EU/(X) sin(kz — wt + 0)es,
(03] (6]

whered e [0, 2r) is arbitrary. Furthermore, for any solutigi, U) of this problem, the function
W defined by 6.10 is an exact solution of the initial-value problem for NL&.6) with the initial
condition 6.8).
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Stability: Discuss the orbital stability of the standing wave definedé¥@ as a solution of§.6) with
respect to perturbations of its initial condition. In fact, we have seen that it is sufficient to deal with the
cased = 0.

7.1 Canonical form of the equations

In order to present some of the results concerning these problems, itis convenient to reduce the equations
to a more canonical, but equivalent, form. First we set

60=0 1= é and then ¥ (x, 1) = W(X, 2) = W(X, 2kgt),
so that 6.6) and .10 become, foxx € R andz > 0

0. ¥ (X, 1) + 02, ¥ (X, 7) — KW (X, 7) + (%)zﬂ (a) X, %W(x, r)|2) P(x,7) =0,  (7.4)

P(x,0) =U(X), forxeR. (7.5)
Next, we set

Lo =im inf (2) w@.x,0. 7 =L -k, /=LK, (7.6)

Voo = (2) wx0 - oo s = (2) | (0x 35) ~u@xol. @)
so that 7.4) becomes
B2 (X, 1) +10: ¥ (X, T) + [V(X) 4+ 7 1P (X, 7) + g(X, | ¥ (X, T)|) ¥ (X, 7) = 0. (7.8)
Then, we setb(x, ) = ¥ (x, 7)e”? ’so that {.8) becomes
i0; D(X, 7) + 02, D (X, 7) + V(X)D(X, 1) + g(X, |D(X, 7)) D (X, 7) = 0. (7.9)

Finally in the new variables and®, where

¢ = % and ®(x, 1) = W(x, 2kor)e 77 = W(x, 2)e ' %07, (7.10)
0

the standing waveJ (x)é*Z generated byk, U) becomes
v

®(x, 7) = U(x)@H2e %% — U (x)dl¥ LT — y(x)ei#r, (7.11)

2 12
sincelk = % andy = L(o0) — kg Furthermore, in this notation5 (19 can be written as

/_Oo U’ (x)¢’ (x)dx = /Oo (V(X) 4+ g(x, U(x)?) + 2JU (x)p(x)dx, forallp € C(R,R). (7.12)

—00

Using the notationq.7), we can express the problems of existence and stability in the following equiv-
alent way.
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Suppose that the functions: R — (0, co) andg: R x [0, co) — R have the following properties:

(H1) V e CY(R) N L®(R) and lim infij oo V (X) = 0.
(H2) ForallK > 0, gis bounded and uniformly continuous &nx [0, K].
(H3) g(x,0) =0forallx € Randinfg(x, s): x € Rands > 0} > —oo.
(H4) f e CL(R?) wheref(x, s) = g(x, s?)s.
For a dielectric respongethat satisfies (A), the functions andg defined by 7.7) have these properties.

Conversely, given two functiong andg that satisfy (H1)—(H4), there exists a constagt> 0 such
that the function defined by

c\2
(@, X, S) = (5) (L + V(X) + g(x, 25)} (7.13)

satisfies the condition (A) for all > Lg. Furthermorel (c0) = L.

GivenV andg satisfying (H1)—(H4), the basic problems now take the following form.
Existence:Find 1 < L(co0) andU € H1(R) such that7.12) is satisfied.

For any solution(4, U) of this problem, the functiom (x, ) = U (x)e7'** is an exact solution of
the initial-value problem for the NLS7(9) with @ (x, 0) = U (x).
Stability: Discuss the orbital stability of the-periodic solutionlJ (x)e~'** as a solution of7{.9) with
respect to perturbations of its initial condition.

REMARK 7.1 The assumptions (H1)—(H4), and consequently the condition (A) in the case of a homo-
geneous self-focusing medium, are satisfied by
V = 0 andg(x, s) = G(s), whereG e G([0, o)) with G(0) = 0 andG'(s) > 0, fors > 0. (7.14)

As is shown in Remark 8.3.3 @fazenav¢2003, a standing wavel (x)e~ 47 cannot be orbital stability
in this case due to the fact that the problem is then invariant with respect to translatiors weaker
notion of stability is introduced to deal with this situatidbgzenave & Lions1982).

7.2 A branch of TE travelling waves in a self-focusing wave guide
To obtain a smooth branch of TE travelling waves we make the following hypotheses.

(E1) V e CL(R) is an even function with

V'(x) <0, forallx >0, and V(0) > 0= lim V(x).
X— o0

(E2) g € C(R x [0, 00)) N CLR x (0, 00)) with g(x,0) = 0 andF e CL(R?) whereF(x,s) =
g(x, s?)s. Furthermore, for alK > 0, g anda;F are bounded and uniformly continuous on
R x [0, K].

(E3) Forallx > 0ands > 0,

9(x,8) =9g(-x,s), 019(x,5) <0 and 029(x,s) > 0.

It follows from these assumptions that (H1)-(H4) are satisfied Witk) > 0 andg(x, s) > 0 for
all x e Rands > 0. Thus, the corresponding response function defined ly3(satisfies the condition
(A) forany L > 0. By (E3), the response is everywhere self-focusing.
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Set
g(oco,s) = lim g(x,s), fors>0.
X—00
Clearly, 0< g(o0, ) < g(X,S) < g(0,s) for all x € R ands > 0. Alsog(oco, S) is a non-decreasing
function ofs. It will be useful to distinguish the following two cases.

(L1) lims_ 00 9(00, 8) = oo.
(L2) There existsP € L*°(0, co) such that lil_ . g(X,s) = P(x), uniformly for x in compact
intervals.

ExAMPLE 1 ForA > 0,0 > 0 anda > 0, the function
g(x,s) = A(l+ x?)~4s” (7.15)

satisfies the conditions (E2) and (E3). ko= 0, the case (L1) occurs. Note that foxOs < 1, g(X, -)
is not differentiable as = 0, but f (x, -) is.

EXAMPLE 2 The function

g(x,s) = %S (7.16)

also satisfies the conditions (E2) and (E3). Here, the case (L2) occur®wth.
By (E1), we can define a self-adjoint opera®mH2(R) c L2(R) — L2(R) by

Su=-u’—Vu, forue H%R).
Denoting its spectrum and essential spectrung B$) andoe(S), respectively, we have that
—00 < A=infa(S) <0 and (S = [0, 00).

Furthermore/ is a simple eigenfunction d8 with an eigenfunctiom € H2(R) N C3(R) that has the
following properties

p(X) =p(—=x) >0, forallxeR, and ¢'(x) <0, forallx > 0.

This implies that4 is a bifurcation point for non-trivial solutions of (12, but one can say much more.
THEOREM7.1 Let the conditions (E1)—(E3) be satisfied. Then

(i) there existi* < 4 andu e CL((4*, 4), H2(R)) such that(1, u(1)) satisfies 7.12) for all
A e (A%, A);
(i) foreachl e (1*, 4) and withu; = u(l);

u,(x) =u;(—x) > 0, forallx e R, and u}(x) <0, forallx > 0,
d d
auﬂu(o) = a”ui”Lw <0,

(iii) we also have that

lim Ju;llgz=0 and lim |luylly2 = oo.
A=A A A*
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If, in addition,
(E4) there exist > 0,y > 0 andA e C1(R) such that

then
xlim luzllLee = oo whered* = —oo if (L1) holds andA* > —oc if (L2) holds.
—A*

Furthermore, if(4, U) satisfies 7.12) with U (x) > 0 for all x, butU = 0, thend < 4 andU = u,.
Proof. SeeJeanjean & StuaftL999. O

REMARK 7.2 It is only the requiremer¥ (0) > limy_ o V(X) in assumption (E1) that excludes the

case of a homogeneous medium and thus ensures that positive soliitimn& .12 must have their
maximum value ak = 0. Note that (E2)-(E4) can be satisfied by a functgpof the type 7.14.
Theorem7.1 gives a complete description of all positive solutions@afl@) and, as is shown iStuart

(2006, these solutions have a variational characterization as ‘ground states’. For the homogeneous case
(7.19), it is easy to show that solutions of.(2 cannot change sign. On the other hand, under the
hypotheses (E1)-(E4), the existence of sign-changing solutions is establisRegpen(1997). The
hypotheses also ensure that all the positive solutiphave the same symmetry as the eigenfuncgion

of S. As is shown inArcoyaet al. (1999, in a symmetric waveguide, that is for functiosandg that

are even with respect tq (7.12 may have positive asymmetric ground states.

7.3 Orbital stability of the TE travelling waves

To ensure global existence of solutions of the initial-value problemaA®),(we introduce the following
condition ong.
(S1) There exist constan@® > 0 anda € [0, 2) such that

lg(x,s)] < C(1+s*), forallxeR ands> 0.

The function defined by7( 15 satisfies (S1) if and only # < 2. The function defined byr(16) satisfies
(S1) witha = 0.

PROPOSITION7.2 Let the conditions (E1), (E2) and (S1) be satisfied. Then, for any initial condition
@y € HL(R, C), there exists a unique functiah € C([0, co), H(R, C)) N C1([0, c0), H~L(R, C))
such that satisfies 7.10 and® (-, 0) = &q. Furthermore,

/ |cb(x,r)|2dx=/ |®o(x)|%dx, forallz > 0. (7.17)
o0 o0

Proof. SeeCazenavg2003, Section 3.5. d

REMARK 7.3 We note in passing that in the paraxial approximation, the expregsmridr the power
of the electromagnetic fields becomésyj:

2 %] 2 0
P(z) = %/ [W(X, Z)|%dx = %/ |D(X, 7)]°dx, wherer = 2iko’

so (7.17) plays the role of Propositiob.1in the paraxial approximation.
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In order to ensure the orbital stability of all the standing waves generated by the whole branch of
solutions(4, u,) given by Theoren7.1, we need some extra assumptions algput

(S2) For fixeds > 0, 629(X, s) is a non-increasing function of on [0, co) and, for fixedx € R,
so29(X, S) is a non-decreasing function son [0, co).

Set

29(x, s) + x019(x,s)
$529(X, S)

Q(x,s) = 1.

(S3) For fixeds > 0, Q(X, S) is a non-negative, non-increasing functionxodn [0, co) and, for fixed
X € R, Q(X, s) is a non-decreasing function son [0, co).
By (S2),s620(X,S) > 920(X,1) > Oforalls > 1 and sog(x,s) > d29(x,1)Insforall s > 1.
Hence, lim_, - g(X, s) = oo for all x € R, and so (L2) cannot occur. Thug,. 16 does not satisfy (S2).
The function defined by7(15 satisfies (S2). Furthermore, in this case

1 20
X,8)=—12—0 — 2 — 1,
Q(X,s) - o a+1+x2

and so (S3) is satisfied if and only if0 ¢ <2and 0< o <1 - 5.

THEOREM 7.3 Let the conditions (E1)— (E3) and (S1)—(S3) be satisfied arfdlet,): 1 € (1*, 4)}
be the branch of solutions of (12 given by Theorenv.1L Then, for allA € (1*, 4), the standing
wave u; (x)e~'** is an orbitally stable solution of7(9) in the sense that, for all > 0, there exists
5 > 0 such that, for all initial conditiongg € H1(R, C) with ||®¢ — u;lly1 < o, the unique solution
@ of (7.9 given by Propositiory.2 has the property that, for all > 0, there exist®(z) € [0, 2r)

such that
|Po(-, 7) — €7Cu, ()|l 1.

Proof. SeeMcLeodet al. (2003 andStuart(2006. O

ExampPLE 3 The function defined by7(15 satisfies all the conditions of this theorem if0o < 2
and 0< o < 1 - 5. This includes the case of a Kerr medium siace- 1 in that case.

REMARK 7.4 There are many results establishing the orbital stability of standing wave solutions of
more general NLSs in higher space dimensions. However, these results are either of a perturbative
nature Grillakis et al, 1987 Strauss1989 Rose & Weinstein1988 Weinstein 1986 and deal the
solutions near the bifurcation point or they deal with a weaker notion of orbital stalfildiggnave &

Lions (1982, Cazenavg2003, Hajaiej & Stuart(2004). In a major contribution to the understanding

of orbital stability, conditions were established@rillakis et al. (1987 giving a rigorous setting for

the Vakhitov-Kolokolov (V-K) criterion 1973 (Kivshar & Sukhorukoy2001). In our context, the V-K
criterion states that; (x)e~'* is orbital stable if

d o0
a/_oo u; (x)%dx < 0.

Under the hypotheses of Theoréh3, this was proved for alk € (—oo, 4) in McLeodet al. (2003.
In Stuart(20086), it is shown that the conditions introduced@rillakis et al. (1987 to justify the V-K
criterion are also satisfied.
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