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Existence and stability of TE modes in a stratified non-linear dielectric
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Starting from Maxwell’s equations for a stratified optical medium with a non-linear refractive index, we
derive the equations for monochromatic planar TE modes. It is then shown that TE modes in which the
electromagnetic fields are travelling waves correspond to solutions of these reduced equations in the form
of standing waves. The equations of the paraxial approximation are then formulated and the stability of
the travelling waves is investigated in that context.
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1. Introduction

We consider the propagation of monochromatic light through a stratified non-linear dielectric. The abil-
ity of such a medium to support guided waves depends both on the spatial variation of the refractive
index across the layers and on its non-linear response to the intensity of the beam of light. The mathe-
matical model for this involves studying special solutions of Maxwell’s equations together with a non-
linear constitutive assumption. InStuart(1993), the basic equations were derived and a variety of results
were proved concerning the existence, non-existence and dependence on the physical parameters of such
solutions. SeeRuppen(1997) andArcoyaet al.(1999) for further work on the mathematical theory. We
are now able to continue the study of this problem in some new directions.

First of all, in Section3, we derive the equations governing all planar monochromatic solutions of
Maxwell’s equations in a non-linear optical medium. These equations form a system of six coupled
second-order partial differential equations in the plane, see (3.13). TE and TM modes are special solu-
tions of this system in which some of the components of the solutions are identically zero. In Section5,
we introduce the notion of guided waves. These are solutions satisfying additional conditions ensuring
that the energy is finite and that the fields decay to zero far from the centre of the waveguide. Among
all planar monochromatic solutions of Maxwell’s equation, those corresponding to travelling waves are
of particular interest and for them the system reduces to six second-order ordinary differential equa-
tions. Travelling waves are introduced in Section4. The discussion inStuart(1993), Ruppen(1997) and
Arcoyaet al. (1999), which deals exclusively with guided TE modes that are planar travelling waves,
can now be seen as part of a broader context. This is an essential preliminary step in order to formulate
in a precise way issues concerning the stability of guided TE travelling waves. So far there seems to
have been no progress on establishing stability in the context of Maxwell’s equations. Instead, stabil-
ity is usually discussed with respect to a non-linear Schrödinger equation (NLS) that is obtained from
the paraxial approximation. In Section6, we show how such an equation is derived in our setting. The
stability of guided TE travelling waves is then shown to correspond to the orbital stability of certain
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periodic solutions (standing waves) of this NLS. However, since all perturbed fields admitted in this
treatment are monochromatic, it must be emphasized that the variable playing the role of time in the
NLS is actually distance in the direction of propagation of the travelling wave whose stability is being
analysed.

It is intuitively clear from Snell’s law that a favorable configuration for the existence of guided waves
is found in a wave guide in which the refractive index decreases away from some central axis. It is also
well-known that the guidance properties are enhanced by the non-linear response of a self-focusing
medium. In Section7, using work fromJeanjean & Stuart(1999) andMcLeodet al. (2003), we present
a fairly complete picture of the existence and stability of guided TE travelling waves in such a structure.
Under appropriate conditions, all the ground states lie on a smooth branch and they are all orbitally
stable.

2. Maxwell’s equations in a non-linear dielectric

In this section, we review briefly Maxwell’s equations for electromagnetic waves in a non-linear dielec-
tric which is supposed to occupy all ofR3. Let E and B: R4 → R3 denote the electric and magnetic
fields and letP: R4 → R denote the polarization of the medium due to the presence of these fields.
In CGS units, Maxwell’s equations are

∂t B = −c∇ ∧ E, (1) ∂t E = c∇ ∧ B − ∂t P, (2)

∇ ∙ B = 0, (3) ∇ ∙ E = −∇ ∙ P (4),
(2.1)

wherec > 0 is speed of light in a vacuum. On the microscopic level, the atoms and molecules of
the dielectric are polarized into dipoles by the electric field andP is the macroscopic manifestation
of this phenomenon. In a given material, the way in whichP is determined byE must be specified
by a constitutive relation. In the context of transparent isotropic optical waveguides, this response is
postulated to have the form

P(x, t) = χ

(
ω, x,

1

2
[|E1(x)|2 + |E2(x)|2]

)
E(x, t); (2.2)

for a monochromatic electric field of frequencyω > 0,

E(x, t) = E1(x) cosωt + E2(x) sinωt,

whereE1, E2: R3 → R3. The functionχ: (a, b) × R3 × [0,∞) → (0,∞) is called the ‘dielectric
susceptibility’, for some interval of frequencies(a, b). The fact thatP is also monochromatic with the
same frequency asE (and so second and third harmonics, etc., are neglected) is appropriate for situations
in which there is no phase matching (seeSaleh & Teich, 1991, e.g.). Furthermore,χ depends onE only
through1

2[|E1(x)|2 + |E2(x)|2] which is the time average of|E(x, t)|2.
It is customary to introduce the ‘electric displacement field’D by setting

D = E + P. (2.3)

Maxwell’s equations in a dielectric can then be written as

∂t B = −c∇ ∧ E, (1) ∂t D = c∇ ∧ B, (2)

∇ ∙ B = 0, (3) ∇ ∙ D = 0, (4)
(2.4)
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and the ‘constitutive relation’ is

D(x, t) =
{

1 + χ

(
ω, x,

1

2
[|E1(x)|2 + |E2(x)|2]

)}
E(x, t), (2.5)

where the function

ε(ω, x, s) = 1 + χ(ω, x, s) (2.6)

is known as the ‘dielectric response’.
The quantityn(ω, x, s) =

√
ε(ω, x, s) is usually referred to the ‘non-linear refractive index’. It

is a function of positionx, but depends also on the monochromatic electric fieldE(x, t) through its
frequencyω and intensitys. To a first approximation, the refractive index can be written as

n(ω, x, s) = n0(ω, x)+ n2(ω, x)s,

and this is usually referred to as a ‘Kerr non-linearity’ (Akhmanovet al., 1972; Svelto, 1974). There are
extensive tables for the coefficientsn0 andn2 (Smith, 1986). See alsoKivshar & Sukhorukov(2001),
Luther-Davies & Stegeman(2001) and the references inStuart(1993) for a discussion of more general
non-linearities. A medium is ‘self-focusing’ whenε(ω, x, s) is an increasing function ofs.

By (2.5), ∂t
1
2{E ∙ D + |B|2} = ∂t D ∙ E + ∂t B ∙ B and so, for any smooth bounded domainV in R3,

∂t

∫

V

1

2
{E ∙ D + |B|2}dx = c

∫

V
{∇ ∧ B ∙ E − ∇ ∧ E ∙ B}dx = −c

∫

∂V
E ∧ B ∙ n ds,

wheren: ∂V → R3 is the field of unit exterior normals on∂V . The quantity1
2{E∙D+|B|2} is considered

to be the ‘electromagnetic energy density’. For any smooth orientable surfaceS in R3,

c
∫

S
(E ∧ B) ∙ n ds (2.7)

is the rate at which this energy is flowing acrossS in the direction of a continuous fieldn: S → R3 of
unit normals. Note that, unlike the energy density, this ‘energy flux’ is independent of the polarizationP.

3. Planar monochromatic solutions of Maxwell’s equations

Let x = (x1, x2, x3) ∈ R3 denote Cartesian co-ordinates in space and lett ∈ R denote time. As in
Section 2, a fieldF : R4 → R3 is ‘monochromatic’ if

F(x, t) = F1(x) cosωt + F2(x) sinωt, for x ∈ R3 andt ∈ R, (3.1)

for some ‘frequency’ω > 0 and functionsF1, F2: R3 → R3. For such fields, the ‘time average’ of
|F(x, t)|2 is 1

2{|F1(x)|2 + |F2(x)|2} and this function will be referred to as the ‘intensity distribution’
of the fieldF .
A field F : R4 → R3 is ‘planar’ with respect to a directionη ∈ R3 if

F(x + sη, t) = F(x, t), for x ∈ R3 ands, t ∈ R. (3.2)

Henceforth, we when dealing with planar fields we shall use a Cartesian co-ordinate system such that
the fields are planar with respect to thex2-axis. Then, we simplify the notation by using

(x1, x2, x3) = (x, y, z) andF(x, y, z, t) = F1(x, z) cosωt + F2(x, z) sinωt (3.3)

to denote a planar monochromatic field where nowF1, F2: R2 → R3.
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When dealing with such fields, it is convenient to use complex notation since

F1(x, z) cosωt + F2(x, z) sinωt = Re{F(x, z)e−iωt },

whereF(x, z) = F1(x, z)+ iF2(x, z) ∈ C3.
As a model for a ‘stratified medium’, we assume henceforth that

ε(ω, x, y, z, s) = μ(ω, x, s)

for some functionμ: (a, b)× R× [0,∞) → R, where forω ∈ (a, b) ⊂ (0,∞),

(i) μ(ω, ∙, ∙) ∈ C1(R× [0,∞)) and, for allK > 0, (3.4)

μ(ω, ∙, ∙) is bounded and uniformly continuous onR× [0, K ]. (3.5)

(ii ) inf{μ(ω, x, s): x ∈ R ands> 0} > 0. (3.6)

From now on, we look for solutions of Maxwell’s equations in which the electric field is planar and
monochromatic. Thus, it can be expressed in the form

E(x, y, z, t) = Re{e(x, z)e−iωt }, wheree(x, z) = e1(x, z)+ ie2(x, z), (3.7)

wheree: R2 → C3. The intensity distribution of such a field is

1

2
[|e1(x, z)|2 + |e2(x, z)|2] =

1

2
|e(x, z)|2 =

1

2

2∑

j =1

3∑

m=1

ej
m(x, z)

2, (3.8)

and so, by (2.5), the associated displacement field is

D(x, y, z, t) = μ

(
ω, x,

1

2
|e(x, z)|2

)
Re{e(x, z)e−iωt }. (3.9)

From the equation∂t B = −c∇ ∧ E, we find that

B(x, y, z, t)− B(x, y, z, 0) = −c
∫ t

0
∇ ∧ E(x, y, z, s)ds = cRe

{
∇ ∧ e(x, z)

1

iω
[e−iωt − 1]

}
,

and so

B(x, y, z, t) = −
c

ω
Re{i∇ ∧ e(x, z)e−iωt }, (3.10)

provided that we choose the initial conditionB(x, y, z, 0) = − c
ω Re{i∇ ∧ e(x, z)}. Thus,B andD are

also planar monochromatic fields with

B(x, y, z, t) = Re{b(x, z)e−iωt } and D(x, y, z, t) = Re{d(x, z)e−iωt }, (3.11)

where

b(x, z) = −i
c

ω
∇ ∧ e(x, z) and d(x, z) = μ

(
ω, x,

1

2
|e(x, z)|2

)
e(x, z). (3.12)
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Maxwell’s equation∂t D = c∇ ∧ B becomes

μ

(
ω, x,

1

2
|e(x, z)|2

)
Re{iωe−iωt } =

c2

ω
Re{i∇ ∧ ∇ ∧ e(x, z)e−iωt }.

This equation is satisfied for allt ∈ R, if and only if e(x, z) satisfies the equation

μ

(
ω, x,

1

2
|e(x, z)|2

)
e(x, z) =

( c

ω

)2
∇ ∧ ∇ ∧ e(x, z) =

( c

ω

)2
{∇(∇ ∙ e(x, z))−Δe(x, z)},

which is actually a system of three equations fore : R2 → C3, namely

(ω

c

)2
μ

(
ω, x,

1

2
|e(x, z)|2

)





e1

e2

e3




 =






∂2
zxe3 − ∂2

zze1

−∂2
xxe2 − ∂2

zze2

∂2
zxe1 − ∂2

xxe3




 ,

whereem = em(x, z), for m = 1, 2, 3. (3.13)

Thus, we see that for planar monochromatic fields, Maxwell’s equation reduce to the system (3.13). The
following more precise statement can be checked by straightforward calculations.

THEOREM 3.1 Let the dielectric response functionμ satisfy (3.4)–(3.6) and lete ∈ C2(R2,C3) satisfy
the system (3.13). Define E, D and B by (3.7), (3.11) and (3.12). Then, E, B, D satisfy Maxwell’s
equations (2.4).

We observe that the equations of the system (3.13) are coupled through the dielectric response

μ

(
ω, x,

1

2
|e(x, z)|2

)
= μ



ω, x,
1

2

2∑

j =1

3∑

m=1

ej
m(x, z)

2



 .

However, it is possible to seek special solutions in which some of the components ofe(x, z) are identi-
cally zero.

3.1 TE modes

The simplest kind of solution is one in whiche1 ≡ e3 ≡ 0, in which case the system (3.13) reduces to a
single equation for the complex functione2 = e1

2 + ie2
2, namely

(ω

c

)2
μ

(
ω, x,

1

2
|e2(x, z)|

2
)

e2 = −∂2
xxe2 − ∂2

zze2. (3.14)

These solutions are referred to as ‘TE modes’ since the electric fieldE is everywhere transverse to the
direction of thez-axis.

3.2 TM modes

Another, somewhat more complicated, type of solution is obtained by requiring thate2 ≡ 0. Then, we
are left with a 2× 2 system for the complex functionse1 ande3, namely

(ω

c

)2
μ

(
ω, x,

1

2
[|e1(x, z)|

2 + |e3(x, z)|
2]

)(
e1

e3

)

=

(
∂2

zxe3 − ∂2
zze1

∂2
zxe1 − ∂2

xxe3

)

. (3.15)
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Note that ife = (e1, 0, e3) is such a solution, then the corresponding magnetic field defined by (3.10)
has the property thatB3(x, y, z, t) ≡ 0 and so solutions of this type are referred to as ‘TM modes’ since
the magnetic field is everywhere transverse to the direction of thez-axis.

4. Monochromatic planar travelling waves

A field F : R4 → R3 is called a ‘travelling wave’ if

F(x, t) = w(x − tξ), for x ∈ R3 andt ∈ R, (4.1)

for some vectorξ ∈ R3\{0} and functionw: R3 → R3. In this case,ξ|ξ | is a ‘direction of propagation’
andυ = |ξ | is the ‘wave speed’ in this direction.

LEMMA 4.1 LetF : R4 → R3 be a monochromatic field with frequencyω > 0 that is also a travelling
wave in the direction(0, 0, 1) with speedυ > 0.Then, there exist fieldsK 1, K 2 : R2 → R3 such that

F(x, t) = K 1(x1, x2) cos(kx3 − ωt)+ K 2(x1, x2) sin(kx3 − ωt), (4.2)

for all (x, t) ∈ R4, wherek = ω
υ is the ‘wave number’ and2πk is the ‘wave length’.

Proof. See Lemma 2.1 ofStuart(2004). �
By this lemma and the discussion at the beginning of Section 3, monochromatic planar fields that

are travelling waves in the direction of thez-axis are of the form

F(x, y, z, t) = K 1(x) cos(kz− ωt)+ K 2(x) sin(kz− ωt) = ReK (x)ei(kz−ωt), (4.3)

whereK 1, K 2: R → R3 andK = K 1 − iK 2.
Consequently, solutionse(x, z) of the system (3.13) yield travelling waves propagating in the direc-

tion of the z-axis if and only if there exist a constantk > 0 and a functionW: R → C3

such that

e(x, z) = W(x)eikz, for all x, z ∈ R. (4.4)

Then, the electric field has the form

E(x, y, z, t) = Re{W(x)ei(kz−ωt)}, (4.5)

and Theorem3.1now yields the following result.

THEOREM 4.1 Let the dielectric response functionμ satisfy (3.4)–(3.6) and letk > 0 andW ∈ C2

(R,C3) satisfy the system

(ω

c

)2
μ

(
ω, x,

1

2
|W(x)|2

)





W1

W2

W3




 =






ik∂xW3 + k2W1

−∂2
xxW2 + k2W2

ik∂xW1 − ∂2
xxW3




 ,

whereWm = Wm(x), for m = 1, 2, 3. (4.6)

Sete(x, z) = W(x)eikz and defineE, D andB by (3.7), (3.11) and (3.12), respectively. Then,E, B and
D satisfy Maxwell’s equations (2.4) and they are planar monochromatic travelling waves propagating
in the direction of thez-axis with speedωk .
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Note that for travelling waves, the formula (3.10) simplifies to

B(x, y, z, t) =
c

ω
Re











−kW2(x)

kW1(x)+ i∂xW3(x)

−i∂xW2(x)




 ei(kz−ωt)





. (4.7)

SinceW(x) = W1(x) + iW2(x), the system (4.6) constitutes a system of six coupled second-order
differential equations for the real functionsW j

m ∈ C2(R), for j = 1, 2 andm = 1, 2, 3.
The simplest solutions of (4.6) are those in which the functionW is constant. The electromagnetic

fields are then plane waves propagating in a homogeneous medium

4.1 Plane waves

Suppose that, in addition to (3.4) and (3.6), the dielectric response functionμ(ω, x, s) is independent
of x. This means that the medium is homogeneous and we write the response function simply asμ(ω, s).
Then, a constant vectorW ∈ C3 satisfies (4.6) if and only if W3 = 0 and

(ω

c

)2
μ

(
ω,

1

2
|W|2

)(
W1

W2

)

=

(
k2W1

k2W2

)

.

This is possible withW 6≡ 0 if and only if

k =
ω

c

√
μ(ω, s), for somes> 0 and|W| =

√
2s. (4.8)

The electric and magnetic fields are then

E = Re











W1

W2

0




 ei(kz−ωt)





and B =

c

ω
Re











−kW2

kW1

0




 ei(kz−ωt)





.

Note that for such solutions, which are called ‘plane waves’,E, B and thez-axis are always mutually
perpendicular.

If the medium is homogeneous and linear, the dielectric response is a constant depending only onω
and so the condition (4.8) becomes

k =
ω

c

√
μ(ω), i.e.

ω

k
=

c

n(ω)
, (4.9)

and there is no restriction on the norm ofW. The condition (4.9) is called the ‘dispersion relation’ and it
determines the spatial wave lengthλ = 2π

k of the plane waves as a function of the temporal frequencyω.
It also shows that the wave speedωk is determined by the refractive index in a linear homogeneous
medium. In a non-linear medium, (4.8) shows that the wave speedωk depends on the intensity as well as
the frequency throughωk = c

n(ω,s) .

5. Guidance conditions

In Section 4, we showed that all planar, monochromatic travelling waves are obtained as solutions of
a system of six second-order differential equations onR. However, not all such solutions correspond
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to physically realistic and interesting situations. On one hand, acceptable solutions should have finite
energy. Furthermore, the intensity of the associated beam of light should be concentrated near the axis
of propagation. For planar waveguides, these additional criteria are formulated as follows.

Guidance conditions

(i) The total electromagnetic energy per unit length in the direction of propagation is finite. That is,

∫ d+1

d

∫ ∞

−∞

1

2
{E ∙ D + |B|2}dx dz< ∞ for all d ∈ R.

(ii) The amplitudes of the electromagnetic fields decay to zero as the distance from the axis of prop-
agation becomes infinite. That is,

|E(x, y, z, t)| → 0 and |B(x, y, z, t)| → 0 as|x| → ∞.

For fields of the form (3.7), (3.11) and (3.12), the condition (i) is satisfied if and only if

∫ d+1

d

∫ ∞

−∞
μ

(
ω, x,

1

2
|e(x, z)|2

)
|e(x, z)|2 + |∇ ∧ e(x, z)|2dx dz< ∞ (5.1)

and the condition (ii) amounts to

|e(x, z)| → 0 and |∇ ∧ e(x, z)| → 0 as|x| → ∞. (5.2)

In the case of travelling waves,e(x, z) = W(x)eikz and these conditions become
∫ ∞

−∞

[
1 + μ

(
ω, x,

1

2
|W(x)|2

)]
|W(x)|2 + |∂xW2|

2 + |∂xW3|
2 dx < ∞ (5.3)

and

|W(x)|, |∂xW2|, |∂xW3| → 0 as|x| → ∞, (5.4)

respectively.
Clearly, plane waves do not satisfy the guidance conditions.

5.1 Guided TE modes

Recall that TE modes are solutions of (3.13) in whiche1
3 ≡ e2

3 ≡ 0. Thus, we find TE modes by solving
the non-linear Helmholtz equation

Δw(x, z)+
(ω

c

)2
μ

(
ω, x,

1

2
|w(x, z)|2

)
w(x, z) = 0, for (x, z) ∈ R2, (5.5)

for w ∈ C2(R2,C) and then setting

E = Re











0

w(x, z)e−iωt

0










and B =

c

ω
Re





i






∂zw(x, z)

0

−∂xw(x, z)




 e−iωt





. (5.6)
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Under the assumptions (3.4)–(3.6), the guidance conditions (5.1) and (5.2) become

(i) w ∈ H1(R× (d, d + 1)), for all d ∈ R, and (5.7)

(ii ) |w(x, z)| and |∇w(x, z)| → 0 as |x| → ∞, for all z ∈ R. (5.8)

Note that for TE modes, the Poynting vectorE∧B is always in the direction of thez-axis, and, according
to (2.7), the rate at which energy is crossing the linez = d is

c
∫ ∞

−∞
E ∧ B ∙ e3 dx.

Using (5.6), the time average of this quantity is

P(d) =
c2

2ω

∫ ∞

−∞
Im{w(x, d)∂zw(x, d)}dx. (5.9)

PROPOSITION 5.1 Suppose thatμ satisfies (3.4)–(3.6). If w ∈ C2(R2,C) satisfies (5.5), (5.7) and
(5.8), the quantityP defined by (5.9) is finite and it is independent ofd. It is called the ‘power’ of the
corresponding TE mode.

Proof. By (5.7),w ∈ H1(R×(d, D)) for all d, D with d < D. In particular,∂zw(x, z)w(x, z) ∈ L1(R)
for almost allz ∈ R, so we can choosed such that∂zw(x, d)w(x, d) ∈ L1(R). Furthermore,|w||∇w| ∈
L1(R× (d, D)) and so there exists a sequence{rn} such thatrn → ∞ and

∫ D

d
|w(rn, z)||∇w(rn, z)| + |w(−rn, z)||∇w(−rn, z)|dz → ∞ asn → ∞. (5.10)

Multiplying (5.5) byw(x, z) and then integrating over the rectangle(−rn, rn)× (d, D) yields
∫ D

d

∫ rn

−rn

(ω

c

)2
μ

(
ω, x,

1

2
|w(x, z)|2

)
|w(x, z)|2dx dz = −

∫ D

d

∫ rn

−rn

Δw(x, z)w(x, z)dx dz

=
∫ D

d

∫ rn

−rn

|∂xw|2 + |∂zw|2dx dz −
∫ D

d
{∂xw(rn, z)w(rn, z)− ∂xw(−rn, z)w(−rn, z)}dz

−
∫ rn

−rn

{∂zw(x, D)w(x, D)− ∂zw(x, d)w(x, d)}dx.

Hence,

Im
∫ rn

−rn

{∂zw(x, D)w(x, D)dx

= Im
∫ rn

−rn

{∂zw(x, d)w(x, d)dx − Im
∫ D

d
{∂xw(rn, z)w(rn, z)− ∂xw(−rn, z)w(−rn, z)}dz.

Lettingn → ∞, (5.10) implies that
∫ ∞

−∞
Im{∂zw(x, D)w(x, D)dx =

∫ ∞

−∞
Im{∂zw(x, d)w(x, d)}dx, for all D > d. �
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5.2 Guided TE travelling waves

For TE modes that are travelling waves, there existk > 0 andW ∈ C2(R,C) such thatw(x, z) =
W(x)eikz. In this case, (5.5) simplifies to

W′′(x)− k2W(x)+
(ω

c

)2
μ

(
ω, x,

1

2
|W(x)|2

)
W(x) = 0, for x ∈ R, (5.11)

and the guidance conditions reduce to

(i) W ∈ H1(R,C) and (ii ) W(x) andW′(x) → 0 as|x| → ∞. (5.12)

The corresponding electromagnetic fields are

E = Re











0

W(x)ei(kz−ωt)

0










and B = −

c

ω
Re











kW(x)

0

iW′(x)




 ei(kz−ωt)





. (5.13)

The power of a TE travelling wave is

P =
c2

2ω

∫ ∞

−∞
Im{w(x, z)∂zw(x, z)}dx =

c2k

2ω

∫ ∞

−∞
|W(x)|2dx. (5.14)

Settingu(x) = ReW(x) andv(x) = Im W(x), the complex equation (5.11) is equivalent to the real
system

u′′ − k2u +
(ω

c

)2
μ

(
ω, x,

1

2
[u(x)2 + v(x)2]

)
u = 0, (5.15)

v′′ − k2v +
(ω

c

)2
μ

(
ω, x,

1

2
[u(x)2 + v(x)2]

)
v = 0, (5.16)

but, in fact, as the next result shows, solutions of this system have a simple form that means it is enough
to study the scalar equation

U ′′ − k2U +
(ω

c

)2
μ

(
ω, x,

1

2
U (x)2

)
U (x) = 0, (5.17)

for U ∈ C2(R,R).

PROPOSITION5.2 Suppose thatμ satisfies (3.4)–(3.6). A function W ∈ C2(R,C) and satisfies (5.11)
and (5.12) if and only if

W(x) = eiθU (x), for all x ∈ R, (5.18)

for someθ ∈ [0, 2π) andU ∈ H1(R,R) such that
∫ ∞

−∞
U ′(x)ϕ′(x)dx

=
∫ ∞

−∞

{(ω

c

)2
μ

(
ω, x,

1

2
U (x)2

)
− k2

}
U (x)ϕ(x)dx, for all ϕ ∈ C∞

0 (R,R). (5.19)
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REMARK 5.1 Thus,U is only required to be a weak solution of (5.17), but this implies thatU ∈ C2

(R,R) and satisfies (5.17) in the classical sense. The functionU may change sign, but as a solution of
(5.17), all its zeros are simple, except for the caseU ≡ 0. The condition (5.18) means that the graph of
W lies on a plane inR× R2 whenC is identified withR2.

REMARK 5.2 ForU ∈ H1(R,R), we have that (5.19) is satisfied for allϕ ∈ C∞
0 (R,R) if and only if it

is satisfied for allϕ ∈ H1(R,R).

Proof. Suppose first thatW = u + iv ∈ C2(R,C) and satisfies (5.11) and (5.12). It follows from (5.15)
and (5.16) that∂x{u∂xv − v∂xu} ≡ 0 and hence thatu∂xv − v∂xu = C onR for some constantC. But
(5.12) implies thatC = 0. If v ≡ 0, the result is trivial (θ = 0 andU = u) so we suppose henceforth
thatv 6≡ 0. It follows from (5.16) that the zeros ofv are isolated and that they are all simple. Let(a, b)
be a maximal interval on whichv 6= 0. Then,∂x

{u
v

}
≡ 0 on(a, b) and so there exists a constantd such

that u ≡ dv on (a, b). SettingU (x) =
√

1 + d2v(x), (5.16) shows thatU satisfies (5.17). Choosing
θ ∈ [0, 2π) such that eiθ = (d + i )/

√
d2 + 1, we have thatW(x) = eiθU (x) for all x ∈ (a, b).

If b < ∞, let (b, β) denote the next interval on whichv 6= 0. Then as above, we have thatu ≡ d1v
on (b, β) for some constantd1. But this implies that

u′(b−) = dv′(b−) andu′(b+) = d1v
′(b+),

whereu′(b−) = u′(b+) andv′(b−) = v′(b+) 6= 0,

sinceu, v ∈ C1(R) andb is a simple zero ofv. This shows thatd1 = d and it follows by induction that
u(x) = dv(x) onR.

Conversely, ifU ∈ H1(R), it follows from (3.5) that
{(
ω
c

)2
μ
(
ω, x, 1

2U (x)2
)

− k2
}

is a bounded
continuous function ofx onR. From this and (5.19) we deduce thatU ∈ C2(R) ∩ H2(R) and satisfies
(5.17). One easily checks that, for anyθ,W(x) = eiθU (x) has the required properties. �

By Proposition5.2, the study of all guided planar TE travelling waves has been reduced to find-
ing U ∈ H1(R,R) such that (5.17) holds in the weak sense. We now turn the results concerning the
existence and stability of such travelling waves.

6. Stability in the paraxial approximation

In Section 5, we found that, for all planar TE travelling waves, the electric field can be expressed in the
form

E(x, y, z, t) = Re{eiθ (x)U (x)ei(kz−ωt)}e2 = U (x) cos(kz− ωt + θ)e2, (6.1)

whereU ∈ C2(R,R) satisfies (5.17) andθ ∈ [0, 2π). On the planez = 0, which is regarded as the
extremity of a slab wave guide occupying the half-spacez> 0, the electric field is

E(x, y, 0, t) = U (x) cos(−ωt + θ)e2. (6.2)

In considering the stability of this travelling wave, it is natural to inquire what happens if a device at
the extremityz = 0 stimulates an electric field̃E(x, y, 0, t) that is close to (6.2). Will the resulting
electromagnetic fields that are generated in the wave guide remain close to the travelling wave for all
z> 0 and allt?

So far, this issue seems only to have been investigated in the context of the paraxial approximation,
in which Maxwell’s equations are simplified to some form of NLS. In this section, we give a derivation
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of this approximate equation in the context of planar TE modes and then formulate the appropriate
notion of stability.

For any guided TE mode, the electric field can be written as

E(x, y, z, t) = Re{w(x, z)e−iωt }e2, (6.3)

wherew ∈ C2(R2,C) satisfies the elliptic equation (5.5) and the guidance conditions (5.7) and (5.8).
Let λ0 be some typical (and hence,λ0 � 1) value of the wavelength of light and letk0 = 2π/λ0 denote
the corresponding wave number,k0 � 1. Without any loss of generality, the functionw(x, z) can be
written as

w(x, z) = W(x, z)eik0z

and (5.5) becomes

ΔW(x, z)+2ik0∂zW(x, z)−k2
0W(x, z)+

(ω

c

)2
μ

(
ω, x,

1

2
|W(x, z)|2

)
W(x, z) = 0, for (x, z) ∈ R2,

(6.4)
whereasW still satisfies same conditions (5.7) and (5.8). In this notation, the power (5.9) becomes

P =
c2

2ω

∫ ∞

−∞
Im{W(x, z)[∂zW(x, z)+ ik0W(x, z)]}dx

=
c2

2ω

∫ ∞

−∞
Im{W(x, z)∂zW(x, z)}dx +

c2k0

2ω

∫ ∞

−∞
|W(x, z)|2dx. (6.5)

In the ‘paraxial approximation’ (seeSaleh & Teich, 1991, p. 50, e.g.) it is supposed thatW(x, z) is
a ‘slowly varying function’ ofz in the sense that∂zW(x, z) and ∂2

zzW(x, z) can be neglected when
compared tok0W(x, z) andk2

0W(x, z), respectively. In this approximation, the exact equation (6.4) is
replaced by

∂2
xxW(x, z)+ 2ik0∂zW(x, z)− k2

0W(x, z)+
(ω

c

)2
μ

(
ω, x,

1

2
|W(x, z)|2

)
W(x, z) = 0 (6.6)

and the power by

P(z) =
c2k0

2ω

∫ ∞

−∞
|W(x, z)|2dx. (6.7)

As we shall see later in Proposition7.2, the quantity (6.7) is independent ofz wheneverW satisfies (6.6)
and the guidance conditions (5.7) and (5.8). Furthermore, prescribing the electric field at the extremity
z = 0 of the wave guide is equivalent to prescribingW(x, 0). Equation (6.6) has the form of a NLS and,
under appropriate assumptions on the response functionμ(ω, ∙), the corresponding initial-value problem
is well-posed so one can meaningfully investigate the stability of a solution determined by a particular
choice of initial condition. We consider the initial conditions that generate guided TE travelling waves,
namely

W(x, 0) = w(x, 0) = eiθU (x), (6.8)

whereθ ∈ [0, 2π) andU ∈ C2(R,R)∩ H1(R,R) satisfies (5.17) for somek > 0. In this case, the exact
solution of (6.4) is

w(x, z) = eiθU (x)eikz



EXISTENCE AND STABILITY OF TE MODES 671

and the electric field is

E(x, y, z, t) = U (x) cos(kz− ωt + θ)e2. (6.9)

Substitution shows that the solution of (6.6) defined by the initial condition (6.8) is the following
z-periodic function

W(x, z) = eiθU (x)eiλkz, whereλk =
k2 − k2

0

2k0
. (6.10)

Observe thatW is a slowly varying function ofz provided that
∣
∣
∣
∣
∣

k2 − k2
0

2k0

∣
∣
∣
∣
∣
� k0.

The corresponding electric field is

E(x, y, z, t) = Re{W(x, z)ei(k0z−ωt)}e2 = U (x) cos([λk + k0]z − ωt + θ)e2.

The difference between the wave numberλk + k0 of this field and the wave numberk in the exact
expression (6.9) is

λk + k0 − k =
(k − k0)

2

2k0
,

and this quantity is negligible fork neark0 andk0 >> 1.

6.1 Stability

Thus, we are lead to investigate the stability of the solution (6.10) of the NLS (6.6) with respect to
perturbations of its initial condition (6.8). By Proposition7.2below,H1(R,C) is the appropriate phase
space for this initial-value problem and we denote by‖ ∙ ‖H1 the usual norm

‖W(∙, z)‖H1 =
[∫ ∞

−∞
|W(x, z)|2 + |∂xW(x, z)|2dx

]1/2

of W(∙, z) in this space. Note that this choice of phase space is also well-adapted to the guidance condi-
tion (5.7).

Let θn → θ and let

Wn(x, z) = eiθnU (x)eiλkz and W(x, z) = eiθU (x)eiλkz.

Clearly,‖Wn(∙, 0)− W(∙, 0)‖H1 = |eiθn − eiθ |‖U‖H1 → 0 asn → ∞, but

‖Wn(∙, z)− W(∙, z)‖H1 = |eiθn − eiθ |‖U‖H1 6→ 0 asz → ∞,

for anyn and so we cannot expect to establish asymptotic stability ofW. Furthermore, if we consider
a sequence{(kn,Un)} of solutions of (5.17) and (5.7) such thatkn → k and‖Un − U‖H1 → 0 (the
existence of such a sequence is established in Theorem7.1), and now set

Wn(x, z) = eiθUn(x)e
iλkn z,
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then again‖Wn(∙, 0)− W(∙, 0)‖H1 = ‖Un − U‖H1 → 0. But

Wn(x, z)− W(x, z) = eiθ [Un(x)− U (x)]eiλkn z + eiθU (x)[eiλkn z − eiλkz],

and so

|Wn(x, z)− W(x, z)| > |U (x)||ei[λkn−λk]z − 1| − |Un(x)− U (x)|,

showing that

lim sup
z>0

|Wn(x, z)− W(x, z)| > 2|U (x)| − |Un(x)− U (x)|,

if kn 6= k. Thus, even stability fails in this case. For these reasons, we concentrate on the orbital stability
of W as a solution of (6.6).

6.2 Orbital stability of guided TE travelling waves

The orbitΘ(eiθU (∙)) of the solution (6.10) in the phase spaceH1(R,C) is

Θ(eiθU (∙)) = {eiθU (∙)eiλkz: z> 0} = {eiθU (∙): θ ∈ R} = Θ(U ).

For anyV ∈ H1(R,C), let

d(V,Θ(U (∙)) = inf{‖V − W‖H1: W ∈ Θ(U (∙))}.

SinceΘ(U (∙)) is a compact subset ofH1(R,C), there existsW ∈ Θ(U (∙)) such thatd(V,Θ(U (∙)) =
‖V − W‖H1, i.e. there existsz> 0 such that

d(V,Θ(U (∙)) = ‖V − eiθU (∙)eiλkz‖H1.

Let W(∙, z) denote the solution of (6.6) having an arbitrary initial conditionW(∙, 0) ∈ H1(R,C).
‘Orbital stability’ of the z-periodic solution (6.10) means that, given anyε > 0, there existsδ > 0
such that

‖W(∙, 0)− eiθU (∙)‖H1 < δ =⇒ d(W(∙, z),Θ(eiθU (∙))) < ε, for all z> 0.

That is, for allz> 0,

there existsz1 > 0 such that‖W(∙, z)− eiθU (∙)eiλkz1‖H1 < ε, (6.11)

or, equivalently,

there existsθ(z)(= θ + λkz1) such that‖W(∙, z)− eiθ(z)U (∙)‖H1 < ε. (6.12)

Of course, a complete statement of this notion of stability should include the requirement that (6.6) has
a unique global solutionW(∙, z) for all initial conditionsW(∙, 0) close toΘ(eiθU (∙)). This will be done
in Section7 when we formulate results concerning orbital stability.

Observing thatΘ(eiθU (∙)) = Θ(U (∙)) for all θ , the above definition is equivalent to requiring that,
for all ε > 0, there existsδ > 0 such that

d(W(∙, 0),Θ(U (∙))) < δ =⇒ d(W(∙, z),Θ(U (∙))), for all z> 0.
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To bring out the physical content of this kind of stability, we consider the behaviour of the amplitude
and the phase ofW(x, z). Let

A(x, z) = |W(x, z)| and W(x, z) = A(x, z)eiϕ(x,z).

Recalling thatU (x) ∈ R, we have thatU (x) = |U (x)|eiψ(x), whereψ(x) = 0 or π . In terms of
the electric fields, we have that the field produced by the perturbed initial conditionE(x, y, 0, t) =
Re{W(x, 0)e−iωt)}e2 is

E(x, y, z, t) = Re{W(x, z)ei(k0z−ωt)}e2 = A(x, z) cos(k0z − ωt + ϕ(x, z))e2,

whereas the unperturbed travelling wave is

Ẽ(x, y, z, t) = Re{eiθU (x)eiλkzei(k0z−ωt)}e2 = |U (x)| cos(k0z − ωt + χ(x, z))e2,

whereχ(x, z) = θ + λkz+ψ(x). From (6.11) we have that, for allz> 0, there existsz1 > 0 such that
‖W(∙, z)− eiθU (∙)eiλkz1‖H1 < ε, from which it follows that

sup
x∈R

|A(x, z)eiϕ(x,z) − eiχ(x,z1)|U (x)|| = sup
x∈R

|A(x, z)ei[ϕ(x,z)−χ(x,z1)] − |U (x)|| < ε.

Thus, orbital stability implies that that the amplitudesA(x, z) and |U (x)| are close for allx and z.
Furthermore, the phaseϕ(x, z) of W(x, z) is almost independent ofx on intervals whereU is bounded
away from zero.

7. Existence and stability of symmetric guided TE travelling waves

Before continuing, let us summarize the problems that have been formulated. The dielectric response
functionμ is supposed to have the following properties.

(A) μ: (a, b)× R× [0,∞) → R where, forω ∈ (a, b) ⊂ (0,∞),

(i) f ∈ C1(R2), where f (x, s) = μ

(
ω, x,

1

2
s2
)

s, (7.1)

(ii ) inf{μ(ω, x, s): x ∈ R ands> 0} > 0, (7.2)

(iii ) for any K > 0, μ(ω, ∙, ∙) is bounded and uniformly continuous onR× [0, K ]. (7.3)

In fact, in (3.4) we made the stronger assumption thatμ(ω, ∙, ∙) ∈ C1(R × [0,∞)) but it is easily
checked that (7.1) is sufficient when dealing with TE modes.
Existence:Findk > 0 andU ∈ H1(R) such that (5.19) is satisfied.

Solutions of this problem furnish all the exact solutions of Maxwell’s equations that are guided by
the planar monochromatic TE travelling waves through the formulae

E(x, y, z, t) = U (x) cos(kz− ωt + θ)e2 and

B(x, y, z, t) = −
ck

ω
U (x) cos(kz− ωt + θ)e1 +

c

ω
U ′(x) sin(kz− ωt + θ)e3,

whereθ ∈ [0, 2π) is arbitrary. Furthermore, for any solution(k,U ) of this problem, the function
W defined by (6.10) is an exact solution of the initial-value problem for NLS (6.6) with the initial
condition (6.8).
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Stability: Discuss the orbital stability of the standing wave defined by (6.10) as a solution of (6.6) with
respect to perturbations of its initial condition. In fact, we have seen that it is sufficient to deal with the
caseθ = 0.

7.1 Canonical form of the equations

In order to present some of the results concerning these problems, it is convenient to reduce the equations
to a more canonical, but equivalent, form. First we set

θ = 0, τ =
z

2k0
and then Ψ (x, τ ) = W(x, z) = W(x, 2k0τ),

so that (6.6) and (6.10) become, forx ∈ R andτ > 0

i∂τΨ (x, τ )+ ∂2
xxΨ (x, τ )− k2

0Ψ (x, τ )+
(ω

c

)2
μ

(
ω, x,

1

2
|Ψ (x, τ )|2

)
Ψ (x, τ ) = 0, (7.4)

Ψ (x, 0) = U (x), for x ∈ R. (7.5)

Next, we set

L(∞) = lim inf
|x|→∞

(ω

c

)2
μ(ω, x, 0), γ = L(∞)− k2

0, λ = L(∞)− k2, (7.6)

V(x) =
(ω

c

)2
μ(ω, x, 0)− L(∞), g(x, s) =

(ω

c

)2
{
μ

(
ω, x,

1

2
s

)
− μ(ω, x, 0)

}
, (7.7)

so that (7.4) becomes

∂2
xxΨ (x, τ )+ i∂τΨ (x, τ )+ [V(x)+ γ ]Ψ (x, τ )+ g(x, |Ψ (x, τ )|2)Ψ (x, τ ) = 0. (7.8)

Then, we setΦ(x, τ ) = Ψ (x, τ )e−iγ τso that (7.8) becomes

i∂τΦ(x, τ )+ ∂2
xxΦ(x, τ )+ V(x)Φ(x, τ )+ g(x, |Φ(x, τ )|2)Φ(x, τ ) = 0. (7.9)

Finally in the new variablesτ andΦ, where

τ =
z

2k0
and Φ(x, τ ) = W(x, 2k0τ)e

−iγ τ = W(x, z)e
−i γ

2k0
z
, (7.10)

the standing waveU (x)eiλkz generated by(k,U ) becomes

Φ(x, τ ) = U (x)eiλkze
−i γ

2k0
z
= U (x)ei[k2−L(∞)]τ = U (x)e−iλτ , (7.11)

sinceλk =
k2−k2

0
2k0

andγ = L(∞)− k2
0. Furthermore, in this notation, (5.19) can be written as

∫ ∞

−∞
U ′(x)ϕ′(x)dx =

∫ ∞

−∞
{V(x)+ g(x,U (x)2)+ λ}U (x)ϕ(x)dx, for all ϕ ∈ C∞

0 (R,R). (7.12)

Using the notation (7.7), we can express the problems of existence and stability in the following equiv-
alent way.
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Suppose that the functionsV : R → (0,∞) andg: R× [0,∞) → R have the following properties:

(H1) V ∈ C1(R) ∩ L∞(R) and lim inf|x|→∞ V(x) = 0.

(H2) For all K > 0, g is bounded and uniformly continuous onR× [0, K ].

(H3) g(x, 0) = 0 for all x ∈ R and inf{g(x, s): x ∈ R ands> 0} > −∞.

(H4) f ∈ C1(R2) where f (x, s) = g(x, s2)s.

For a dielectric responseμ that satisfies (A), the functionsV andg defined by (7.7) have these properties.
Conversely, given two functionsV andg that satisfy (H1)–(H4), there exists a constantL0 > 0 such
that the function defined by

μ(ω, x, s) =
( c

ω

)2
{L + V(x)+ g(x, 2s)} (7.13)

satisfies the condition (A) for allL > L0. Furthermore,L(∞) = L.
GivenV andg satisfying (H1)–(H4), the basic problems now take the following form.

Existence:Findλ < L(∞) andU ∈ H1(R) such that (7.12) is satisfied.
For any solution(λ,U ) of this problem, the functionΦ(x, τ ) = U (x)e−iλτ is an exact solution of

the initial-value problem for the NLS (7.9) with Φ(x, 0) = U (x).
Stability: Discuss the orbital stability of theτ -periodic solutionU (x)e−iλτ as a solution of (7.9) with
respect to perturbations of its initial condition.

REMARK 7.1 The assumptions (H1)–(H4), and consequently the condition (A) in the case of a homo-
geneous self-focusing medium, are satisfied by

V ≡ 0 andg(x, s) = G(s), whereG ∈ G1([0,∞)) with G(0) = 0 andG′(s) > 0, for s> 0. (7.14)

As is shown in Remark 8.3.3 ofCazenave(2003), a standing waveU (x)e−iλτ cannot be orbital stability
in this case due to the fact that the problem is then invariant with respect to translations inx. A weaker
notion of stability is introduced to deal with this situation (Cazenave & Lions, 1982).

7.2 A branch of TE travelling waves in a self-focusing wave guide

To obtain a smooth branch of TE travelling waves we make the following hypotheses.

(E1) V ∈ C1(R) is an even function with

V ′(x) 6 0, for all x > 0, and V(0) > 0 = lim
x→∞

V(x).

(E2) g ∈ C(R × [0,∞)) ∩ C1(R × (0,∞)) with g(x, 0) = 0 andF ∈ C1(R2) whereF(x, s) =
g(x, s2)s. Furthermore, for allK > 0, g and∂2F are bounded and uniformly continuous on
R× [0, K ].

(E3) For allx > 0 ands> 0,

g(x, s) = g(−x, s), ∂1g(x, s) 6 0 and ∂2g(x, s) > 0.

It follows from these assumptions that (H1)–(H4) are satisfied withV(x) > 0 andg(x, s) > 0 for
all x ∈ R ands> 0. Thus, the corresponding response function defined by (7.13) satisfies the condition
(A) for any L > 0. By (E3), the response is everywhere self-focusing.
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Set

g(∞, s) = lim
x→∞

g(x, s), for s> 0.

Clearly, 06 g(∞, s) 6 g(x, s) 6 g(0, s) for all x ∈ R ands > 0. Also g(∞, s) is a non-decreasing
function ofs. It will be useful to distinguish the following two cases.

(L1) lims→∞ g(∞, s) = ∞.

(L2) There existsP ∈ L∞(0,∞) such that lims→∞ g(x, s) = P(x), uniformly for x in compact
intervals.

EXAMPLE 1 For A > 0, σ > 0 andα > 0, the function

g(x, s) = A(1 + x2)−αsσ (7.15)

satisfies the conditions (E2) and (E3). Forα = 0, the case (L1) occurs. Note that for 0< σ < 1, g(x, ∙)
is not differentiable ats = 0, but f (x, ∙) is.

EXAMPLE 2 The function

g(x, s) =
s

1 + s
(7.16)

also satisfies the conditions (E2) and (E3). Here, the case (L2) occurs withP ≡ 1.

By (E1), we can define a self-adjoint operatorS: H2(R) ⊂ L2(R) → L2(R) by

Su= −u′′ − V u, for u ∈ H2(R).

Denoting its spectrum and essential spectrum byσ(S) andσe(S), respectively, we have that

−∞ < Λ = inf σ(S) < 0 and σe(S) = [0,∞).

FurthermoreΛ is a simple eigenfunction ofS with an eigenfunctionϕ ∈ H2(R) ∩ C3(R) that has the
following properties

ϕ(x) = ϕ(−x) > 0, for all x ∈ R, and ϕ′(x) < 0, for all x > 0.

This implies thatΛ is a bifurcation point for non-trivial solutions of (7.12), but one can say much more.

THEOREM 7.1 Let the conditions (E1)–(E3) be satisfied. Then

(i) there existλ∗ < Λ and u ∈ C1((λ∗,Λ), H2(R)) such that(λ, u(λ)) satisfies (7.12) for all
λ ∈ (λ∗,Λ);

(ii) for eachλ ∈ (λ∗,Λ) and withuλ = u(λ);

uλ(x) = uλ(−x) > 0, for all x ∈ R, and u′
λ(x) < 0, for all x > 0,

d

dλ
uλ(0) =

d

dλ
‖uλ‖L∞ < 0,

(iii) we also have that

lim
λ→Λ

‖uλ‖H2 = 0 and lim
λ→λ∗

‖uλ‖H2 = ∞.
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If, in addition,

(E4) there existσ > 0, γ > 0 andA ∈ C1(R) such that

lim
s→0

g(x, s)

sσ
= A(x) > γ, for x ∈ R,

then

lim
λ→λ∗

‖uλ‖L∞ = ∞ whereλ∗ = −∞ if (L1) holds andλ∗ > −∞ if (L2) holds.

Furthermore, if(λ,U ) satisfies (7.12) with U (x) > 0 for all x, butU 6≡ 0, thenλ < Λ andU = uλ.

Proof. SeeJeanjean & Stuart(1999). �

REMARK 7.2 It is only the requirementV(0) > limx→∞ V(x) in assumption (E1) that excludes the
case of a homogeneous medium and thus ensures that positive solutionsU of (7.12) must have their
maximum value atx = 0. Note that (E2)–(E4) can be satisfied by a functiong of the type (7.14).
Theorem7.1 gives a complete description of all positive solutions of (7.12) and, as is shown inStuart
(2006), these solutions have a variational characterization as ‘ground states’. For the homogeneous case
(7.14), it is easy to show that solutions of (7.12) cannot change sign. On the other hand, under the
hypotheses (E1)–(E4), the existence of sign-changing solutions is established inRuppen(1997). The
hypotheses also ensure that all the positive solutionuλ have the same symmetry as the eigenfunctionϕ
of S. As is shown inArcoyaet al. (1999), in a symmetric waveguide, that is for functionsV andg that
are even with respect tox, (7.12) may have positive asymmetric ground states.

7.3 Orbital stability of the TE travelling waves

To ensure global existence of solutions of the initial-value problem for (7.9), we introduce the following
condition ong.

(S1) There exist constantsC > 0 andα ∈ [0, 2) such that

|g(x, s)| 6 C(1 + sα), for all x ∈ R ands> 0.

The function defined by (7.15) satisfies (S1) if and only ifσ < 2. The function defined by (7.16) satisfies
(S1) withα = 0.

PROPOSITION7.2 Let the conditions (E1), (E2) and (S1) be satisfied. Then, for any initial condition
Φ0 ∈ H1(R,C), there exists a unique functionΦ ∈ C([0,∞), H1(R,C)) ∩ C1([0,∞), H−1(R,C))
such thatΦ satisfies (7.10) andΦ(∙, 0) = Φ0. Furthermore,

∫ ∞

−∞
|Φ(x, τ )|2dx =

∫ ∞

−∞
|Φ0(x)|

2dx, for all τ > 0. (7.17)

Proof. SeeCazenave(2003), Section 3.5. �

REMARK 7.3 We note in passing that in the paraxial approximation, the expression (6.5) for the power
of the electromagnetic fields becomes (6.7):

P(z) =
c2k0

2ω

∫ ∞

−∞
|W(x, z)|2dx =

c2k0

2ω

∫ ∞

−∞
|Φ(x, τ )|2dx, whereτ =

z

2k0
,

so (7.17) plays the role of Proposition5.1 in the paraxial approximation.
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In order to ensure the orbital stability of all the standing waves generated by the whole branch of
solutions(λ, uλ) given by Theorem7.1, we need some extra assumptions aboutg.

(S2) For fixeds > 0, ∂2g(x, s) is a non-increasing function ofx on [0,∞) and, for fixedx ∈ R,
s∂2g(x, s) is a non-decreasing function ofs on [0,∞).

Set

Q(x, s) =
2g(x, s)+ x∂1g(x, s)

s∂2g(x, s)
− 1.

(S3) For fixeds > 0, Q(x, s) is a non-negative, non-increasing function ofx on [0,∞) and, for fixed
x ∈ R, Q(x, s) is a non-decreasing function ofs on [0,∞).

By (S2),s∂2g(x, s) > ∂2g(x, 1) > 0 for all s > 1 and sog(x, s) > ∂2g(x, 1) ln s for all s > 1.
Hence, lims→∞ g(x, s) = ∞ for all x ∈ R, and so (L2) cannot occur. Thus, (7.16) does not satisfy (S2).

The function defined by (7.15) satisfies (S2). Furthermore, in this case

Q(x, s) =
1

σ

{
2 − σ − 2α +

2α

1 + x2

}
,

and so (S3) is satisfied if and only if 0< σ 6 2 and 06 α 6 1 − σ
2 .

THEOREM 7.3 Let the conditions (E1)– (E3) and (S1)–(S3) be satisfied and let{(λ, uλ): λ ∈ (λ∗,Λ)}
be the branch of solutions of (7.12) given by Theorem7.1. Then, for allλ ∈ (λ∗,Λ), the standing
waveuλ(x)e−iλτ is an orbitally stable solution of (7.9) in the sense that, for allε > 0, there exists
δ > 0 such that, for all initial conditionsΦ0 ∈ H1(R,C) with ‖Φ0 − uλ‖H1 < δ, the unique solution
Φ of (7.9) given by Proposition7.2 has the property that, for allτ > 0, there existsθ(τ ) ∈ [0, 2π)
such that

‖Φ0(∙, τ )− eiθ(τ )uλ(∙)‖H1.

Proof. SeeMcLeodet al. (2003) andStuart(2006). �

EXAMPLE 3 The function defined by (7.15) satisfies all the conditions of this theorem if 0< σ < 2
and 06 α 6 1 − σ

2 . This includes the case of a Kerr medium sinceσ = 1 in that case.

REMARK 7.4 There are many results establishing the orbital stability of standing wave solutions of
more general NLSs in higher space dimensions. However, these results are either of a perturbative
nature (Grillakis et al., 1987; Strauss, 1989; Rose & Weinstein, 1988; Weinstein, 1986) and deal the
solutions near the bifurcation point or they deal with a weaker notion of orbital stability (Cazenave &
Lions (1982), Cazenave(2003), Hajaiej & Stuart(2004)). In a major contribution to the understanding
of orbital stability, conditions were established inGrillakis et al. (1987) giving a rigorous setting for
the Vakhitov-Kolokolov (V-K) criterion (1973) (Kivshar & Sukhorukov, 2001). In our context, the V-K
criterion states thatuλ(x)e−iλτ is orbital stable if

d

dλ

∫ ∞

−∞
uλ(x)

2dx < 0.

Under the hypotheses of Theorem7.3, this was proved for allλ ∈ (−∞,Λ) in McLeodet al. (2003).
In Stuart(2006), it is shown that the conditions introduced inGrillakis et al. (1987) to justify the V-K
criterion are also satisfied.
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