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Background. We developed a model-based control system using end-tidal carbon dioxide

fraction (FE¢CO2
) to adjust a ventilator during clinical anaesthesia.

Methods. We studied 16 ASA I±II patients (mean age 38 (range 20±59) yr; weight 67 (54±87)

kg) during i.v. anaesthesia for elective surgery. After periods of normal ventilation the patients

were either hyper- or hypoventilated to assess precision and dynamic behaviour of the control

system. These data were compared with a previous group where a fuzzy-logic controller had

been used. Responses to different clinical events (invalid carbon dioxide measurement, limb

tourniquet release, tube cuff leak, exhaustion of carbon dioxide absorbent, simulation of

pulmonary embolism) were also noted.

Results. The model-based controller correctly maintained the setpoint. No signi®cant

difference was found for the static performance between the two controllers. The dynamic

response of the model-based controller was more rapid (P<0.05). The mean rise time after a

setpoint increase of 1 vol% was 313 (SD 90) s and 142 (17) s for fuzzy-logic and model-based

control, respectively, and after a 1 vol% decrease was 355 (127) s and 177 (36) s, respectively.

The new model-based controller had a consistent response to clinical artefacts.

Conclusion. A model-based FE¢CO2
controller can be used in a clinical setting. It reacts

appropriately to artefacts, and has a better dynamic response to setpoint changes than a

previously described fuzzy-logic controller.
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During anaesthesia, carbon dioxide production varies. Thus,

the minute volume has to be adjusted to maintain end-tidal

carbon dioxide fraction (FE¢CO2
) within acceptable clinical

limits. Several options can be chosen to adjust the venti-

lation settings, depending on the patient's disease and the

surgery. An automatic control system might relieve the

anaesthetist from this continuous control work. New

technologies and better modelling methods have increased

interest in automatic systems in anaesthesiology.1 In 1996,

we compared the performance of fuzzy-logic control of

FE¢CO2
with manual ventilation control and found that

fuzzy-logic feedback control was reliable.2 Fuzzy-logic

systems use a rule-based method to control a process

without an explicit mathematical model of the input±output

relationship. An important disadvantage of fuzzy-logic

control, however, is its limited transparency. In particular,

the steps leading to correction of the error with respect to the

setpoint are not easily understood because of the complex

interaction of many rules. Optimal adaptation to individual

needs is therefore dif®cult. Fuzzy-logic rules and their

interactions are developed empirically and depend on the

expertise of those who develop them. In contrast, model-

based control uses scienti®cally established mathematical

models derived from known physiological processes. This

makes the controller more transparent so that a priori

information (not available to the fuzzy-logic controller) can

improve dynamic performance and optimize individual

responses.
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We designed a new model-based controller for mechan-

ical ventilation, applied it clinically and studied the response

to artefacts. We assessed setpoint precision and dynamic

behaviour and compared this with a fuzzy-logic controller

presented by SchaÈublin and colleagues.2 We expected the

new device to be as stable and have a better dynamic

response.

Methods

After local ethical approval and with the patients' written

informed consent, 16 ASA physical status class I or II

patients were studied. They were aged 18±60 yr, BMI was

15±30 and they were scheduled for elective general

anaesthesia under mechanical ventilation. We excluded

patients with chronic obstructive pulmonary disease and

patients undergoing emergency, pulmonary or intracranial

surgery, and operations lasting less than 2 h.

The patients were given omeprazole 40 mg orally the

evening before surgery and premedicated with midazolam

7.5 mg orally 1±2 h before surgery. Anaesthesia was

induced with propofol 2 mg kg±1and fentanyl 0.3 mg kg±1

i.v. followed by a continuous infusion of propofol and

remifentanil according to clinical needs. A dose of

mivacurium 0.3 mg kg±1 was given using an Asena-GHÔ
pump and the trachea was intubated. Oesophageal tempera-

ture was measured and kept above 35 °C using a forced air

warmer blanket. Standard measures during the study

included: invasive continuous and non-invasive intermittent

systolic, diastolic and mean arterial pressure, continuous

ECG, heart rate, FE¢CO2
, ventilatory frequency (f), tidal

volume (VT), minute volume (MV), transcutaneous periph-

eral oxygen saturation, peak (PPeak) and plateau airway

pressure, inspired oxygen fraction, bispectral index and

neuromuscular blockade monitoring using electromyogra-

phy.

The FE¢CO2
was measured at the mouthpiece by side-

stream infrared spectrometry (DraÈger Medical AG, LuÈbeck,

Germany), calibrated according to the manufacturer's

instructions. This gave an input signal for the automatic

ventilation controller. Normoventilation was de®ned as

FE¢CO2
=4.5% (35 mm Hg), hyperventilation as FE¢CO2

=3.5%

(28 mm Hg) and hypoventilation as FE¢CO2
=5.5% (42 mm

Hg). All patients were initially normoventilated. After

reaching the target FE¢CO2
and having maintained a stable

measurement period of at least 15 min, the setpoint was

randomly changed to either hyperventilation or hypoventi-

lation (1 vol% (7 mm Hg) setpoint change respectively). To

assess the dynamic performance of the controller, the

setpoint was changed by 2 vol% and 1 vol% steps until the

end of the operation, maintaining a setpoint for at least

15 min. Manual control of ventilation was re-established for

the end of anaesthesia. All monitoring data were digitized

every 5 s and stored on a hard disk.

Mathematical model and controller design

The physiological model was derived from Chiari and

colleagues.3 They presented a comprehensive model of

oxygen and carbon dioxide exchange, transport and storage

in the adult human that gave realistic responses under

different physiological conditions. The model had three

compartments (lung, brain and body tissue) with corres-

ponding mass-balance descriptions including compartment

volume, gas exchange and metabolic production. For the

controller design, the model was simpli®ed by assuming

constant cardiac output and constant oxygen saturation in

arterial and venous blood, so that carbon dioxide dis-

sociation curves were not affected by oxygen saturation.4

This gave a model that was considered suf®ciently descrip-

tive for closed-loop control purposes. A simpli®ed sche-

matic structure of the controller is shown in Figure 1.

Based on the physiological model, the controller included

an observer system to predict the end-tidal fraction as well

as the non-measurable compartmental concentrations. In

case the measured input signal was transiently invalid

because of sensor or clinical artefacts, the controller would

switch to the predicted FE¢CO2
(FE¢CO2

pred) from the

physiological model instead of the measured FE¢CO2
, to

increase the safety and applicability of the controller in

routine practice.

The desired MV was calculated by the controller every

5 s. Algorithm J was developed to translate this value into

appropriate values of f and VT for the ventilation system. An

upper constraint on Ppeak and desired settings for ventilatory

frequency fD and tidal volume VTD was set by the

anaesthetist to account for different patient features. When

Ppeak was reached, f was automatically increased, thus VT

decreased and Ppeak was reduced.

Observer-based feedback systems are generally less

sensitive to variation and therefore the controller could be

tuned more aggressively than standard proportional-inte-

gral-derivative controllers. By adding an integral action (kI),

steady-state errors could be minimized. The controller was

set up on a real-time control platform interfaced with a

modi®ed Cicero anaesthesia workplace (DraÈger Medical

AG, LuÈbeck, Germany).

Performance analysis and statistics

Controller performance was assessed by comparing the

measured FE¢CO2
values (the controlled variable Cm) and the

preset FE¢CO2
reference values (Cr) and calculating eFE¢CO2

as the difference between the FE¢CO2
reference value and the

measured FE¢CO2
value. To assess the setpoint precision, the

variables listed below were calculated for each patient for

all setpoint values of the ventilation pattern (normo-, hyper-

and hypoventilation) for the period of 10 min before

changing to the next setpoint. The ®rst two variables were

de®ned as in the previous group with fuzzy-logic control,
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whereas variables 3±7 were calculated for the model-based

control group only:

(1) MD, the mean deviation from setpoint (MD=mean

eFE¢CO2
) as an indicator of the bias of the control.

(2) MDS, the standard deviation of eFE¢CO2
as an indicator

of the stability and range of deviation of the control.

(3) MAD, the mean absolute deviation from setpoint

resulting in Equation 1 for subject i as an indicator of

inaccuracy of the control, where Cmij and Crij represent the

jth measured and reference value for the ith subject,

respectively.

MADi � 1

Ni

XNi

j�1

��Cmij ÿ Crij

�� �1�

Additional measures as proposed by Varvel and colleagues5

for the evaluation of the prediction performance of

computer-controlled infusion pumps and also used to assess

setpoint precision of feedback systems,6 7 were calculated.

(4) MDAPE, the median absolute performance error,

an indicator of precision or inaccuracy of the control in

subject i.

MDAPEi � median
���PEij

��; j � 1;::::;Ni

	 �2�

where PEij is the performance error calculated as the

weighted difference between measured and reference values

(Equation 3) and Ni is the number of performance errors in

the ith subject.

PEij � Cmij ÿ Crij

Crij

� 100 �3�

(5) MDPE, the median performance error, indicator of bias

of the control in subject i, including the signs of the errors

(Equation 4).

MDPEi � median
�

PEij; j � 1;::::;Ni

	 �4�

(6) The wobble is the measure of the variability of the

performance errors in subject i (Equation 5).

wobblei � median
���PEij ÿMDPEi

��; j � 1;::::;Ni

	 �5�

(7) The divergence measures the time-related trend of the

measured effects in relation to the targeted values.

As indicators of dynamic performance, we measured rise

time (time required to move from 10% to 90% of steady

state of the desired change) and overshoot (the absolute

maximum value achieved, expressed as absolute value

above or below the steady-state value after a step change of

the setpoint).2 8 9

SchaÈublin and colleagues2 studied 20 male and 10 female

ASA class I±III patients (mean age 47 (range 12±84) yr;

weight 67 (41±93) kg), during general anaesthesia for

elective surgery. Anaesthetic management except venti-

lation was according to usual practice. They imposed two

step changes from a target FE¢CO2
of 4.5 to 5.5%, each step

lasting at least 20 min. The sequence of the two steps done

manually and by the fuzzy-logic controller was chosen

randomly. They measured static performance, using indi-

cators 1 and 2 above, for each individual in the last 10 min

of each step. Dynamic performance was assessed as above.

The patients in the current clinical trial were compared

with this historic control group using Student's t-test.

P<0.05 was considered signi®cant using a power of 0.8.

Results

Out of the 16 enrolled patients, one patient was excluded

because copious lung secretions were a problem in the

lateral position for hip surgery. The model-based group and

Fig 1 Simpli®ed structure of the controller with patient, model (observer system), state feedback control vector (k), additional integral part (kI), minute

volume (MV), peak airway pressure (Ppeak), measured FE¢CO2
, predicted FE¢CO2

(FE¢CO2
pred) and setpoint reference FE¢CO2

(FE¢CO2
ref), algorithm block

(J) with additional inputs from the anaesthetist for desired respiratory frequency (fD) and tidal volume (VTD).
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fuzzy-logic group are compared in Table 1. A sample data

trace is shown in Figure 2.

The controller kept Ppeak below the prede®ned limits

throughout the trial for both steady-state and dynamic

phases.

Setpoint precision evaluation

In Table 2 the groups are compared in terms of the precision

measures and the ventilation values for normo-, hypo- and

hyperventilation. No signi®cant difference was found

between the groups for these steady-state condition results.

Measures of setpoint precision, calculated for the model-

based control group only, con®rm the stable performance of

the model-based controller.

Dynamic performance

The following 1 vol% (7 mm Hg) steps in FE¢CO2
of the

model-based control group were compared with the data

from the fuzzy-logic control group: (i) 15 downward steps

from normo- to hyperventilation (from 4.5% to 3.5%) or

from hypo- to normoventilation (from 5.5% to 4.5%); (ii) 14

upward steps from normo- to hypoventilation (from 4.5% to

5.5%) or from hyper- to normoventilation (from 3.5% to

4.5%). The rise time in the model-based group was lower

than in the fuzzy-logic group (Table 3, P<0.05). No

difference was found in the overshoot of the controllers.

The results in Table 4 show the dynamic response for the

2 vol% step changes in the model-based group. Approach to

an increased setpoint is signi®cantly slower and generates a

signi®cantly larger overshoot compared with a decrease of

setpoint (P<0.05).

Response to artefacts of the model-based controller (model-

based group only)

Short intervals of invalid FE¢CO2
measurements are seen in

Figure 2 as decreases in the FE¢CO2
curve. One event is

shown in more detail in Figure 3 when the ventilation

system was disconnected to ventilate the patient manually.

As no valid measure of FE¢CO2
was provided by the

ventilation system, the controller switched to the (calcu-

Table 1 Patient characteristics for model-based control and fuzzy-logic

control groups. Data are mean (range)

Fuzzy-logic group Model-based group
(n=30) (n=15)

Sex (F/M) 10/20 11/4

Age (yr) 47 (12±84) 38 (20±59)

Weight (kg) 67 (41±93) 66 (54±87)

Height (cm) 168.5 (153±192) 167 (156±188)

Operation type N/A 3 orthopaedic

5 breast surgery

2 laparoscopic procedures

2 back surgery

2 abdominal plastic surgery

1 leg muscle reconstruction

Fig 2 Example traces with artefacts during model-based control with FE¢CO2
reference (dashed) and actual FE¢CO2

measurement solid (top), tidal

volume (VT) (mid) and respiratory frequency f (bottom). A limb tourniquet is released at 280 min. To eliminate the accumulated carbon dioxide, the

automatic feedback controller reacted by temporarily increasing the respiratory frequency and tidal volume. The decreases in the measured FE¢CO2

curve show periods of invalid measurement which did not in¯uence the controller behaviour (see Figure 3).
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lated) predicted value of FE¢CO2
, thus maintaining MV.

When the system was reconnected, the controller switched

to the measured FE¢CO2
, and reacted by increasing MV in

response to an increased FE¢CO2
.

The reaction of the controller after an abrupt increase in

carbon dioxide was seen after the release of a pneumatic

limb tourniquet when carbon dioxide had to be eliminated

with increased ventilation. This was rapidly obtained by the

controller by temporarily increasing f and VT (Fig. 2).

When the carbon dioxide absorbent was exhausted

towards the end of the operation, carbon dioxide accumu-

lated in the breathing system and was re-breathed by the

patient. The controller reacted by increasing MV to

maintain the target setpoint (Fig. 4).

Another example of fast reaction to an incident was

observed when the cuff of a tracheal tube leaked. The

measured FE¢CO2
dropped rapidly and the controller reduced

MV, triggering the low MV alarms of the monitor. The tube

was replaced and no harm occurred to the patient.

The effect of a pulmonary embolism was simulated. The

pulmonary shunt of the model was suddenly increased,

thereby reducing the pulmonary ¯ow and in consequence

alveolar perfusion. The control system reacted by consid-

erably decreasing MV in order to maintain FE¢CO2
at the

preset level.

The potentially harmful consequences of the latter two

incidents are discussed below.

Discussion

The clinical validation of a newly developed model-based

controller for mechanical ventilation is presented. FE¢CO2
is

used as the controlled variable to adjust the ventilation

parameters. When used with ASA I±II patients, the control

system showed excellent performance and robustness in

response to artefacts. The new controller was compared

with a fuzzy-logic control system.2 In this previous study,

each patient was ventilated under either human or fuzzy-

logic control; automatic control performed as well as human

control.

Patients were satisfactorily ventilated with either control

algorithm (model-based or fuzzy-logic) and no difference

was found in the setpoint precision. The model-based

system responds signi®cantly faster to setpoint changes

(P<0.05). The SD of the rise time was less in the model-

based group (P<0.05), indicating a more consistent

behaviour with step changes. This could be useful when

rapid changes in ventilation are needed such as when carbon

dioxide partial pressure increases after limb tourniquet

Table 2 Comparison of the setpoint precision and measured ventilation values of fuzzy-logic control (FLC) vs model-based control (MBC) for normo-, hypo-

and hyperventilation. Setpoint precision is shown as mean deviation (MD) of the setpoint (MD=mean eFE¢CO2
) to measure bias of the control and the SD of

eFE¢CO2
(MDS) as a measure of the stability and range of deviation of the control. For the model-based group the additional measures mean absolute deviation

(MAD), median absolute performance error (MDAPE), median performance error (MDPE), wobble and divergence were calculated. Ventilation patterns at

hypo-, normo- and hyperventilation setpoints for all patients are in steady state. f, respiratory frequency, VT/BW, tidal volume per kg body weight; MV/BW,

minute volume per kg body weight; Ppeak, peak airway pressure. All data are mean (SD)

Normoventilation (4.5% or 35 mm Hg) Hypoventilation (5.5% or 42 mm Hg) Hyperventilation (3.5% or 28 mm Hg)

FLC (n=30) MBC (n=15) FLC (n=30) MBC (n=15) FLC (n=30) MBC (n=15)

MD (vol%) ±0.01 (0.05) 0.00 (0.00) 0.00 (0.05) ±0.02 (0.00) ± 0.03 (0.00)

MDS (vol%) 0.09 (0.04) 0.07 (0.00) 0.11 (0.05) 0.12 (0.03) ± 0.09 (0.01)

MAD (vol%) ± 0.03 (0.00) ± 0.06 (0.02) ± 0.04 (0.00)

MDAPE (%) ± 0.0 (0.0) ± 0.0 (0.0) ± 0.0 (0.0)

MDPE (%) ± 0.0 (0.0) ± 0.0 (0.0) ± 0.0 (0.0)

Wobble (%) ± 0.0 (0.0) ± 0.0 (0.0) ± 0.0 (0.0)

Divergence (% h±1) ± 0.0 (0.1) ± 0.1 (0.4) ± 0.0 (0.4)

Mean f (min±1) 10.1 (1.2) 9.4 (1.2) 8.5 (0.9) 7.7 (1.0) ± 11.5 (1.0)

Mean VT/BW (ml kg±1) 10.19 (1.05) 9.74 (0.59) 8.14 (1.00) 9.10 (0.73) ± 10.82 (0.74)

Mean MV/BW (ml min±1 kg±1) 103.3 (20.1) 91.8 (14.1) 69.9 (15.1) 70.6 (11.5) ± 124.2 (15.1)

Mean Ppeak (kPa) 2.10 (0.32) 1.69 (0.30) 1.72 (0.22) 1.55 (0.30) ± 1.94 (0.26)

Table 3 Dynamic response (rise time, time required to move from 10% to

90% of steady state of the desired change) and overshoot for upward and

downward setpoint changes (1 vol% or 7 mm Hg difference). Data are mean

(SD). *Signi®cant difference between groups (P<0.05); ²signi®cant

differences between increase and decrease of setpoint (P<0.05)

Fuzzy-logic group Model-based group

1 vol% increase of setpoint n=30 n=14

Rise time (s) 313 (90)* 144 (17.3)*²

Overshoot (vol%) 0.26 (0.22) 0.18 (0.12)

1 vol% decrease of setpoint n=29 n=15

Rise time (s) 355 (127)* 177.1 (35.7)*²

Overshoot (vol%) 0.15 (0.16) 0.14 (0.00)

Table 4 Dynamic response of the model-based controller for setpoint

changes of 2 vol% or 14 mm Hg (rise time and overshoot), model-based

group only. Data are mean (SD). *Signi®cant difference between increase and

decrease of setpoint (P<0.001)

2 vol% increase 2 vol% decrease
(n=16) (n=15)

Rise time (s) 311 (85)* 215 (18)*

Overshoot (%) 0.39 (0.15)* 0.19 (0.07)*
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release or if ventilation has to be adapted to prevent or treat

cerebral oedema.10

Additional measures of setpoint precision and dynamic

behaviour were calculated for the model-based group.

Because of the very small control bias (MD), the MAD

indicator of inaccuracy showed a direct correlation to the SD

of eFE¢CO2
(MDS), con®rming stability of control. However,

the measures de®ned by Varvel and colleagues5 and used by

others7 to estimate control quality proved to be quite

insensitive to the control deviations. Except for the very

small divergence values, all other values were zero. The use

of median values reduces sensitivity (e.g. if the controller

would maintain an exact setpoint for more than half of the

time, the indicators would be zero without showing what

Fig 4 Reaction to exhaustion of the carbon dioxide absorbent. The minute volume was increased by the controller in order to eliminate the carbon

dioxide that accumulated in the breathing system, thereby maintaining the desired setpoint of FE¢CO2
(reference FE¢CO2

= 4.5%).

Fig 3 From 242.3 to 243.4 min of the trial shown in Figure 2, the ventilation system was disconnected and the patient was ventilated manually. The

controller detected artefact measurements and switched to the (calculated) predicted FE¢CO2
as input signal, thus maintaining constant ventilation

values until the ventilation system was reconnected and accumulated carbon dioxide was washed out with increased minute volume (MV).
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happened the rest of the time). In summary all these

measures indicated that the controller could regulate FE¢CO2

appropriately.

We found that the rise time for the model-based controller

was signi®cantly less for an increase than for a decrease for

the 1 vol% steps but longer for the 2 vol% steps. This was

caused by two different constraints of the controller: (i) MV

was allowed to change by only 10% from one control cycle

to the next. Increasing FE¢CO2
means decreasing MV, in

which case the actuator was reacting faster because of the

10% constraint; (ii) for the large increase the minimal MV

(2.1±2.6 litre min±1 depending on body weight) was

imposed before the 5.5% FE¢CO2
was achieved, therefore

dominating the rise time.

Bickford11 described the ®rst example of the application

of closed-loop systems in anaesthesia in 1950, in animals

and in man. Automatic control of FE¢CO2
was suggested as

early as 1974, and subsequent research showed that this

could be done.12 13 Different methods of feedback control

have been developed and implemented to improve the

control of anaesthesia, relieve physicians from routine

activities and increase safety.7 8 14±16 Several attempts have

been undertaken to automate mechanical ventilation.

Laubscher and colleagues17 described a PI-based controller

(controller with an output proportional (P) to the difference

between input value and setpoint, and to the (I) integration

of this difference over a certain time). Special selection

algorithms were used to maintain target alveolar ventilation

by selecting f and VT as close to physiological needs as

possible. This allowed ventilation to be adjusted according

to the state of health of the patient. In this case, continuous

measurements and analysis of expired carbon dioxide,

airway pressure and airway ¯ow were required.

The fuzzy-logic controller described by SchaÈublin and

colleagues2 had a satisfactory steady-state performance.

However, its structure, based on 29 interacting linguistic

rules, was very complex and hindered optimization and

artefact handling. The present model-based controller

performed well and also had a straightforward design

based on mathematical models, which could facilitate future

approval by authorities and/or of®cial bodies. The model-

based controller is `familiar' with the behaviour of the

process that it is adjusting; a priori information about the

natural process not available to model-independent control-

ler types such as fuzzy-logic can be used to improve

dynamic performance. We have shown this was indeed the

case. Furthermore, with a suf®ciently general model, the

controller can handle different ventilation regimens.

However, automatic controllers of mechanical ventilation

cannot directly recognize dead-space ventilation, for

example in the case of pulmonary embolism. With

decreasing FE¢CO2
because of increased dead-space venti-

lation, the controller would react by reducing the venti-

lation, thereby keeping FE¢CO2
as close to setpoint as

possible and this would increase arterial carbon dioxide

partial pressure. This also occurred during a trial when the

tube cuff leaked, which resulted in a reduced effective VT

and reduced alveolar ventilation. With pulmonary embo-

lism, the controller would react to the decrease of FE¢CO2

with a reduced MV, as was veri®ed in a simulation

environment. The detection of increased dead-space venti-

lation and/or circulatory compromise, leading to decreased

carbon dioxide return, is therefore possible when monitor-

ing MV. However, we consider an MV alarm to be less

dependable in a clinical setting than an FE¢CO2
alarm,

because it depends on the size of the patient. To increase

safety, we suggest that the controller should detect and

alarm if a sudden or unexplained decrease in MV occurs in

relation to patient features such as weight, height and sex. In

an alarm situation, the controller could be switched to the

(calculated) predicted value of FE¢CO2
, thus maintaining MV

according to standard patterns until the anaesthetist resolves

the situation and clears the alarm. The controller could also

process the continuous carbon dioxide fraction and ¯ow

measurement, calculate anatomical dead space and signal

changes.

Automated control in anaesthesia is increasingly studied

for various input and output measurements. Because our

model-based controller can maintain adequate control

despite various measurement artefacts, it could serve as an

example for development of robust (artefact-tolerant)

controllers. Once robust control is routinely established in

anaesthesia, the simultaneous use of automatic controllers

of different systems (e.g. mean arterial pressure, bispectral

index, neuromuscular relaxation, ventilation) could consid-

erably relieve the anaesthetist from routine control work,

allow better understanding of the interactions between the

various control loops and should improve patient care. This

could open new perspectives for both research and clinical

use.

Both the fuzzy-logic and the model-based controller can

maintain a chosen setpoint with high precision. The

dynamic performance of the model-based controller was

better. The responses to several artefacts showed that the

model-based control is robust. This controller seems to meet

the requirements for routine clinical application.
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