J. Group Theory **12** (2009), 803–812 DOI 10.1515/JGT.2009.014 Journal of Group Theory © de Gruyter 2009

Defect of characters of the symmetric group

Jean-Baptiste Gramain

(Communicated by G. Malle)

Abstract. Following the work of B. Külshammer, J. B. Olsson and G. R. Robinson on generalized blocks of the symmetric groups, we give a definition for the ℓ -defect of characters of the symmetric group \mathfrak{S}_n , where $\ell > 1$ is an arbitrary integer. We prove that the ℓ -defect is given by an analogue of the hook-length formula, and use it to prove, when $n < \ell^2$, an ℓ -version of the McKay conjecture in \mathfrak{S}_n .

1 Introduction

B. Külshammer, J. B. Olsson and G. R. Robinson gave in [6] a definition of *generalized blocks* for a finite group. Let G be a finite group, and denote by Irr(G) the set of complex irreducible characters of G. Take a union \mathscr{C} of conjugacy classes of G containing the identity. Suppose furthermore that \mathscr{C} is *closed*, that is, if $x \in \mathscr{C}$, and if $y \in G$ generates the same subgroup of G as x, then $y \in \mathscr{C}$. For $\chi, \psi \in Irr(G)$, we define the \mathscr{C} -contribution $\langle \chi, \psi \rangle_{\mathscr{C}}$ of χ and ψ by

$$\langle \chi, \psi \rangle_{\mathscr{C}} := \frac{1}{|G|} \sum_{g \in \mathscr{C}} \chi(g) \psi(g^{-1}).$$

The fact that \mathscr{C} is closed implies that, for any $\chi, \psi \in \operatorname{Irr}(G), \langle \chi, \psi \rangle_{\mathscr{C}}$ is a rational number.

We say that $\chi, \psi \in \operatorname{Irr}(G)$ belong to the same \mathscr{C} -block of G if there exists a sequence of irreducible characters $\chi_1 = \chi, \chi_2, \ldots, \chi_n = \psi$ of G such that $\langle \chi_i, \chi_{i+1} \rangle_{\mathscr{C}} \neq 0$ for all $i \in \{1, \ldots, n-1\}$. The \mathscr{C} -blocks define a partition of $\operatorname{Irr}(G)$ (the fact that $1 \in \mathscr{C}$ ensures that each irreducible character of G belongs to a \mathscr{C} -block). If we take \mathscr{C} to be the set of p-regular elements of G (i.e. whose order is not divisible by p), for some prime p, then the \mathscr{C} -blocks are just the 'ordinary' p-blocks (cf. for example [8, Theorem 3.19]).

Let CF(G) be the set of complex class functions of G, and $\langle ., . \rangle$ be the ordinary scalar product on CF(G). For any $\chi \in Irr(G)$, we define $\chi^{\mathscr{C}} \in CF(G)$ by letting

$$\chi^{\mathscr{C}}(g) = \begin{cases} \chi(g) & \text{if } g \in \mathscr{C}, \\ 0 & \text{otherwise.} \end{cases}$$

Then, for $\chi \in Irr(G)$, we have

$$\chi^{\mathscr{C}} = \sum_{\psi \ \in \ \mathrm{Irr}(G)} \langle \chi^{\mathscr{C}}, \psi \rangle \psi = \sum_{\psi \ \in \ \mathrm{Irr}(G)} \langle \chi, \psi \rangle_{\mathscr{C}} \psi.$$

Since $\langle \chi, \psi \rangle_{\mathscr{C}} \in \mathbb{Q}$ for all $\psi \in \operatorname{Irr}(G)$, there exists $d \in \mathbb{N}$ such that $d\chi^{\mathscr{C}}$ is a generalized character of *G*. We call the smallest such positive integer the \mathscr{C} -defect of χ , and denote it by $d_{\mathscr{C}}(\chi)$.

It is easy to check that $\chi \in Irr(G)$ has \mathscr{C} -defect 1 if and only if χ vanishes outside \mathscr{C} . This is also equivalent to the fact that $\{\chi\}$ is a \mathscr{C} -block of G.

Writing 1_G for the trivial character of G, we see that, for any $\chi \in Irr(G)$, $d_{\mathscr{C}}(1_G)\chi^{\mathscr{C}} = \chi \otimes (d_{\mathscr{C}}(1_G)1_G^{\mathscr{C}})$ is a generalized character, so that $d_{\mathscr{C}}(\chi)$ divides $d_{\mathscr{C}}(1_G)$. In particular, 1_G has maximal \mathscr{C} -defect.

Note that, if \mathscr{C} is the set of *p*-regular elements of *G* (*p* a prime), then, for all $\chi \in Irr(G)$, we have (cf. for example [8, Lemma 3.23])

$$d_{\mathscr{C}}(\chi) = \left(\frac{|G|}{\chi(1)}\right)_p = p^{d(\chi)},$$

where $d(\chi)$ is the ordinary *p*-defect of χ .

One key notion defined in [6] is that of a *generalized perfect isometry*. Suppose that G and H are finite groups, and \mathscr{C} and \mathscr{D} are closed unions of conjugacy classes of G and H respectively. Take a union b of \mathscr{C} -blocks of G, and a union b' of \mathscr{D} -blocks of G. A *generalized perfect isometry* between b and b' (with respect to \mathscr{C} and \mathscr{D}) is a bijection with signs between b and b', which furthermore preserves contributions. That is, $I: b \mapsto b'$ is a bijection such that, for each $\chi \in b$, there is a sign $\varepsilon(\chi)$ such that

$$\langle I(\chi), I(\psi) \rangle_{\mathscr{D}} = \langle \varepsilon(\chi)\chi, \varepsilon(\psi)\psi \rangle_{\mathscr{C}} \text{ for all } \chi, \psi \in b.$$

In particular, one sees that a generalized perfect isometry *I* preserves the defect, that is, for all $\chi \in b$, we have $d_{\mathscr{C}}(\chi) = d_{\mathscr{D}}(I(\chi))$.

Note that, if \mathscr{C} and \mathscr{D} are the sets of *p*-regular elements of *G* and *H* respectively, then this notion is a bit weaker than that of *perfect isometry* introduced by M. Broué (cf. [1]). If two *p*-blocks *b* and *b'* are perfectly isometric in Broué's sense, then there is a generalized perfect isometry (with respect to *p*-regular elements) between *b* and *b'*. It is however possible to exhibit generalized perfect isometries in some cases where there is no perfect isometry in Broué's sense (cf. [3]).

Külshammer, Olsson and Robinson defined and studied in [6] the ℓ -blocks of the symmetric group, where $\ell \ge 2$ is any integer. They did this by taking \mathscr{C} to be the set of ℓ -regular elements, that is, which have no cycle (in their canonical cycle decomposition) of length divisible by ℓ (in particular, if ℓ is a prime p, then the ℓ -blocks are just the p-blocks).

In Section 2, we find the *l*-defect of the characters of the symmetric group \mathfrak{S}_n . It turns out (Theorem 2.6) that it is given by an analogue of the hook-length formula

804

(for the degree of a character). In Section 3, we then use this to prove, when $n < \ell^2$, an ℓ -analogue of the McKay conjecture in \mathfrak{S}_n (Theorem 3.4).

2 Hook-length formula

2.1 ℓ -blocks of the symmetric group. Take two integers $1 \leq \ell \leq n$, and consider the symmetric group \mathfrak{S}_n on *n* letters. The conjugacy classes and irreducible complex characters of \mathfrak{S}_n are parametrized by the set $\{\lambda \vdash n\}$ of partitions of *n*. We write $\operatorname{Irr}(\mathfrak{S}_n) = \{\chi_{\lambda}, \lambda \vdash n\}$. An element of \mathfrak{S}_n is said to be ℓ -regular if none of its cycles has length divisible by ℓ . We let \mathscr{C} be the set of ℓ -regular elements of \mathfrak{S}_n . The \mathscr{C} -blocks of \mathfrak{S}_n are called ℓ -blocks, and they satisfy the following:

Theorem 2.1 (Generalized Nakayama conjecture [6, Theorem 5.13]). Two characters $\chi_{\lambda}, \chi_{\mu} \in \operatorname{Irr}(\mathfrak{S}_n)$ belong to the same ℓ -block if and only if λ and μ have the same ℓ -core.

The proof of this goes as follows. If $\langle \chi_{\lambda}, \chi_{\mu} \rangle \neq 0$, then an induction argument using the Murnaghan–Nakayama rule shows that λ and μ must have the same ℓ -core. In particular, the partitions labeling the characters in an ℓ -block all have the same ℓ -weight, and we can talk about the ℓ -weight of an ℓ -block.

Conversely, let *B* be the set of irreducible characters of \mathfrak{S}_n labeled by those partitions of *n* which have a given ℓ -core, γ say, and ℓ -weight *w*. It is a well-known combinatorial fact (cf. for example [5, Theorem 2.7.30]) that the characters in *B* are parametrized by the ℓ -quotients, which can be regarded as the set of ℓ -tuples of partitions of *w*. For $\chi_{\lambda} \in B$, the quotient β_{λ} is a sequence $(\lambda^{(1)}, \ldots, \lambda^{(\ell)})$ such that, for each $1 \leq i \leq \ell, \lambda^{(i)}$ is a partition of some $k_i, 0 \leq k_i \leq w$, and $\sum_{i=1}^{\ell} k_i = w$ (the quotient β_{λ} 'stores' the information about how to remove $w \ell$ -hooks from λ to get γ). We write $\beta_{\lambda} \Vdash w$. To prove that *B* is an ℓ -block of \mathfrak{S}_n , Külshammer, Olsson and Robinson use a generalized perfect isometry between *B* and the wreath product $\mathbb{Z}_{\ell} \wr \mathfrak{S}_w$ (where \mathbb{Z}_{ℓ} denotes a cyclic group of order ℓ).

The conjugacy classes of $\mathbb{Z}_{\ell} \wr \mathfrak{S}_w$ are parametrized by the ℓ -tuples of partitions of w as follows (cf. [5, Theorem 4.2.8]). Write $\mathbb{Z}_{\ell} = \{g_1, \ldots, g_{\ell}\}$ for the cyclic group of order ℓ . The elements of the wreath product $\mathbb{Z}_{\ell} \wr \mathfrak{S}_w$ are of the form $(h; \sigma) = (h_1, \ldots, h_w; \sigma)$, with $h_1, \ldots, h_w \in \mathbb{Z}_{\ell}$ and $\sigma \in \mathfrak{S}_w$. For any such element, and for any k-cycle $\kappa = (j, j\kappa, \ldots, j\kappa^{k-1})$ in σ , we define the *cycle product* of $(h; \sigma)$ and κ by

$$g((h;\sigma),\kappa) = h_j h_{j\kappa^{-1}} h_{j\kappa^{-2}} \dots h_{j\kappa^{-(k-1)}} \in \mathbb{Z}_\ell.$$

If σ has cycle structure π say, then we form ℓ partitions $(\pi_1, \ldots, \pi_\ell)$ from π as follows: any cycle κ in π gives a cycle of the same length in π_i if $g((h; \sigma), \kappa) = g_i$. The resulting ℓ -tuple of partitions of w describes the *cycle structure* of $(h; \sigma)$, and two elements of $\mathbb{Z}_{\ell} \wr \mathfrak{S}_w$ are conjugate if and only if they have the same cycle structure. An element of $\mathbb{Z}_{\ell} \wr \mathfrak{S}_w$ is said to be *regular* if it has no cycle product equal to 1.

The irreducible characters of $\mathbb{Z}_{\ell} \wr \mathfrak{S}_w$ are also canonically parametrized by the ℓ -tuples of partitions of *w* in the following way. Write $\operatorname{Irr}(\mathbb{Z}_{\ell}) = \{\alpha_1, \ldots, \alpha_{\ell}\}$, and

take $\beta_{\lambda} = (\lambda^{(1)}, \dots, \lambda^{(\ell)}) \Vdash w$, with $\lambda^{(i)} \vdash k_i$ as above $(1 \le i \le \ell)$. The irreducible character $\alpha_1^{k_1} \otimes \dots \otimes \alpha_{\ell}^{k_{\ell}}$ of the *base group* \mathbb{Z}_{ℓ}^w can be extended in a natural way to its inertia subgroup $(\mathbb{Z}_{\ell} \wr \mathfrak{S}_{k_1}) \times \dots \times (\mathbb{Z}_{\ell} \wr \mathfrak{S}_{k_{\ell}})$, giving the irreducible character $\prod_{i=1}^{\ell} \widehat{\alpha_i^{k_i}}$. The tensor product $\prod_{i=1}^{\ell} \widehat{\alpha_i^{k_i}} \otimes \chi_{\lambda^{(i)}}$ is an irreducible character of

$$(\mathbb{Z}_{\ell}\wr\mathfrak{S}_{k_1})\times\cdots\times(\mathbb{Z}_{\ell}\wr\mathfrak{S}_{k_\ell})$$

which extends $\prod_{i=1}^{\ell} \widehat{\alpha_i^{k_i}}$, and it remains irreducible when induced to $\mathbb{Z}_{\ell} \wr \mathfrak{S}_w$. We denote by $\chi_{\beta_{\lambda}}$ this induced character. Furthermore, any irreducible character of $\mathbb{Z}_{\ell} \wr \mathfrak{S}_w$ can be obtained in this way.

In [6], the authors show that the map $\chi_{\lambda} \mapsto \chi_{\beta_{\lambda}}$ is a generalized perfect isometry between *B* and Irr($\mathbb{Z}_{\ell} \wr \mathfrak{S}_w$), with respect to ℓ -regular elements of \mathfrak{S}_n and regular elements of $\mathbb{Z}_{\ell} \wr \mathfrak{S}_w$.

On the other hand, they show that, writing 'reg' for the set of regular elements of $\mathbb{Z}_{\ell} \wr \mathfrak{S}_w$, we have, for all $\chi \in \operatorname{Irr}(\mathbb{Z}_{\ell} \wr \mathfrak{S}_w)$,

$$\mathbb{Z} \ni \frac{\ell^{w} w! \langle \chi, 1_{\mathbb{Z}/\ell\mathfrak{S}_{w}} \rangle_{\text{reg}}}{\chi(1)} \equiv (-1)^{w} \ (\text{mod }\ell), \tag{1}$$

where $1_{\mathbb{Z}_{\ell} \wr \mathfrak{S}_{w}}$ is the trivial character of $\mathbb{Z}_{\ell} \wr \mathfrak{S}_{w}$. In particular, $\langle \chi, 1_{\mathbb{Z}_{\ell} \wr \mathfrak{S}_{w}} \rangle_{\text{reg}} \neq 0$. Using the generalized perfect isometry that we described above, we see that there exists a character $\chi_{\lambda} \in B$ such that, for all $\chi_{\mu} \in B$, we have $\langle \chi_{\lambda}, \chi_{\mu} \rangle_{\mathscr{C}} \neq 0$, where \mathscr{C} is the set of ℓ -regular elements of \mathfrak{S}_{n} . In particular, all characters in *B* belong to the same ℓ -block of \mathfrak{S}_{n} , which ends the proof of Theorem 2.1.

2.2 ℓ -defect of characters. Using the ingredients in the proof of Theorem 2.1, we can now compute explicitly the ℓ -defects of the irreducible characters of \mathfrak{S}_n (that is, their \mathscr{C} -defect, where \mathscr{C} is the set of ℓ -regular elements of \mathfrak{S}_n).

As we remarked earlier, if λ is a partition of n of ℓ -weight w, then, because of the generalized perfect isometry we described above, the ℓ -defect $d_{\ell}(\chi_{\lambda})$ of $\chi_{\lambda} \in \operatorname{Irr}(\mathfrak{S}_n)$ is the same as the reg-defect $d_{\operatorname{reg}}(\chi_{\beta_{\lambda}})$ of $\chi_{\beta_{\lambda}} \in \operatorname{Irr}(\mathbb{Z}_{\ell} \wr \mathfrak{S}_w)$, where β_{λ} is the ℓ -quotient of λ . It is in fact these reg-defects that we will compute.

First note that, if w = 0, then λ is its own ℓ -core, so that χ_{λ} is alone in its ℓ -block, and $d_{\ell}(\chi_{\lambda}) = 1$. We therefore now fix $w \ge 1$.

We write π the set of primes dividing ℓ . Every positive integer *m* can be factorized uniquely as $m = m_{\pi}m_{\pi'}$, where every prime factor of m_{π} belongs to π and no prime factor of $m_{\pi'}$ is contained in π . We call m_{π} the π -part of *m*.

Using results of Donkin (cf. [2]) and equality (1), Külshammer, Olsson and Robinson proved the following:

Theorem 2.2 ([6, Theorem 6.2]). The reg-defect of the trivial character of $\mathbb{Z}_{\ell} \wr \mathfrak{S}_{w}$ is $\ell^{w} w!_{\pi}$.

In particular, since $1_{\mathbb{Z}_{\ell} \wr \mathfrak{S}_w}$ has maximal reg-defect, we see that, for any $\chi \in \operatorname{Irr}(\mathbb{Z}_{\ell} \wr \mathfrak{S}_w), d_{\operatorname{reg}}(\chi)$ is a π -number.

We can now compute the reg-defect of any irreducible character χ of $\mathbb{Z}_{\ell} \wr \mathfrak{S}_{w}$. It turns out that it is sufficient to know the reg-contribution of χ with the trivial character, and this is given by (1). We have the following:

Proposition 2.3. *Take any integers* $\ell \ge 2$ *and* $w \ge 1$ *. Then*

$$d_{\rm reg}(\chi) = \frac{\ell^w(w!)_{\pi}}{\chi(1)_{\pi}}$$

for any $\chi \in \operatorname{Irr}(\mathbb{Z}_{\ell} \wr \mathfrak{S}_w)$.

Proof. Take $\chi \in Irr(\mathbb{Z}_{\ell} \wr \mathfrak{S}_w)$. Recall that, by (1),

$$\mathbb{Z} \ni \frac{\ell^{w} w!}{\chi(1)} \langle \chi, 1 \rangle_{\text{reg}} \equiv (-1)^{w} \; (\text{mod } \ell).$$

Now $d_{\text{reg}}(\chi)$ is a π -number, so that $\langle \chi, 1 \rangle_{\text{reg}}$ is a rational whose (reduced) denominator is a π -number. This implies that

$$\frac{\ell^{w}(w!)_{\pi}}{\chi(1)_{\pi}}\langle \chi,1\rangle_{\text{reg}}\in\mathbb{Z}.$$

Furthermore, from (1), we also deduce that, for each $p \in \pi$,

$$\frac{\ell^{w}w!}{\chi(1)}\langle \chi,1\rangle_{\rm reg} \not\equiv 0 \;({\rm mod}\,p)$$

Thus, for any $p \in \pi$,

$$\frac{\ell^{w}(w!)_{\pi}}{\chi(1)_{\pi}}\langle \chi,1\rangle_{\text{reg}} \neq 0 \;(\text{mod}\,p).$$

Hence $\ell^w(w!)_{\pi}/\chi(1)_{\pi}$ is the smallest positive integer d such that $d\langle \chi, 1 \rangle_{\text{reg}} \in \mathbb{Z}$. This implies that $\ell^w(w!)_{\pi}/\chi(1)_{\pi}$ divides $d_{\text{reg}}(\chi)$ (indeed, by definition, $d_{\text{reg}}(\chi)\langle \chi, 1 \rangle_{\text{reg}} \in \mathbb{Z}$, and $d_{\text{reg}}(\chi)$ is a π -number).

Now, conversely, if $\psi \in \operatorname{Irr}(\mathbb{Z}_{\ell} \wr \mathfrak{S}_w)$, then $\langle \chi, \psi \rangle_{\operatorname{reg}} \in \mathbb{Q}$, so (since $\chi(1)$ divides $|\mathbb{Z}_{\ell} \wr \mathfrak{S}_w| = \ell^w w!$) we also have

$$\frac{\ell^{w}w!}{\chi(1)}\langle \chi,\psi\rangle_{\mathrm{reg}}\in\mathbb{Q}.$$

However,

$$\frac{\ell^{w}w!}{\chi(1)}\langle\chi,\psi\rangle_{\mathrm{reg}} = \frac{\ell^{w}w!}{\ell^{w}w!} \sum_{g \in \mathrm{reg}/\sim} \frac{K_{g}\chi(g)}{\chi(1)}\psi(g^{-1})$$

J.-B. Gramain

(where the sum is taken over representatives for the regular classes, and, for g such a representative, K_g is the size of the conjugacy class of g). Moreover, for each g in the sum, $K_g \chi(g)/\chi(1)$ and $\psi(g^{-1})$ are both algebraic integers. Hence $(\ell^w w!/\chi(1))\langle \chi, \psi \rangle_{\text{reg}}$ is also an algebraic integer, and thus an integer. Hence

$$\frac{\ell^{w}w!}{\chi(1)}\langle \chi,\psi\rangle_{\mathrm{reg}}\in\mathbb{Z}\quad\text{for all }\psi\in\mathrm{Irr}(\mathbb{Z}_{\ell}\wr\mathfrak{S}_{w}).$$

and this implies that $d_{\text{reg}}(\chi)$ divides $\ell^w w!/\chi(1)$, and, $d_{\text{reg}}(\chi)$ being a π -number, $d_{\text{reg}}(\chi)$ divides $\ell^w (w!)_{\pi}/\chi(1)_{\pi}$. Hence we finally get $d_{\text{reg}}(\chi) = \ell^w (w!)_{\pi}/\chi(1)_{\pi}$.

We want to express the ℓ -defect of a character in terms of hook lengths. For any $\lambda \vdash n$, we write $\mathscr{H}(\lambda)$ for the set of hooks in λ , and $\mathscr{H}_{\ell}(\lambda)$ for the set of hooks in λ whose length is divisible by ℓ . Similarly, if $\beta_{\lambda} = (\lambda^{(1)}, \ldots, \lambda^{(\ell)}) \Vdash w$, we define a *hook* in β_{λ} to be a hook in any of the $\lambda^{(i)}$'s, and write $\mathscr{H}(\beta_{\lambda})$ for the set of hooks in β_{λ} . Finally, for any hook *h* (in a partition or a tuple of partitions), we write |h| for the length of *h*.

We will use the following classical results about hooks (cf. for example [5, §2.3, §2.7]).

Theorem 2.4. Let $n \ge \ell \ge 2$ be any two integers, and let λ be any partition of n. Then the following assertions hold:

(i) (Hook-length formula, [5, Theorem 2.3.21]) We have

$$\frac{|\mathfrak{S}_n|}{\chi_{\lambda}(1)} = \prod_{h \in \mathscr{H}(\lambda)} |h|.$$

- (ii) ([5, 2.7.40]) If λ has ℓ -weight w, then $|\mathscr{H}_{\ell}(\lambda)| = w$.
- (iii) ([5, Lemma 2.7.13 and Theorem 2.7.16]) If β_{λ} is the ℓ -quotient of λ , then $\{|h|, h \in \mathcal{H}_{\ell}(\lambda)\} = \{\ell | h' |, h' \in \mathcal{H}(\beta_{\lambda})\}.$

We can now establish the following:

Proposition 2.5. If $n \ge \ell \ge 2$ are integers, π is the set of primes dividing ℓ , and $\lambda \vdash n$ has ℓ -weight $w \ne 0$ and ℓ -quotient β_{λ} , then

$$\frac{\ell^{w}(w!)_{\pi}}{\chi_{\beta_{\lambda}}(1)_{\pi}} = \prod_{h \in \mathscr{H}_{\ell}(\lambda)} |h|_{\pi}.$$

Proof. Write $\beta_{\lambda} = (\lambda^{(1)}, \dots, \lambda^{(\ell)})$, where $\lambda^{(i)} \vdash k_i$ for $1 \leq i \leq \ell$. First note that, by construction of χ_{β_i} , and since the irreducible characters of \mathbb{Z}_{ℓ} all have degree 1, we have

$$\chi_{\beta_{\lambda}}(1) = \frac{\ell^{w} w!}{\prod_{i=1}^{\ell} \ell^{k_i} k_i!} \chi_{\lambda^{(1)}}(1) \dots \chi_{\lambda^{(\ell)}}(1).$$

808

Thus, by the hook-length formula (Theorem 2.4 (i)),

$$\chi_{\beta_{\lambda}}(1) = \frac{w!}{\prod_{h \in \mathscr{H}(\beta_{\lambda})} |h|} \quad \text{and} \quad \frac{|\mathbb{Z}_{\ell} \wr \mathfrak{S}_{w}|}{\chi_{\beta_{\lambda}}(1)} = \ell^{w} \prod_{h \in \mathscr{H}(\beta_{\lambda})} |h|.$$

We therefore get

$$\frac{\ell^{w}(w!)_{\pi}}{\chi_{\beta_{\lambda}}(1)_{\pi}} = \frac{|\mathbb{Z}_{\ell} \wr \mathfrak{S}_{w}|_{\pi}}{\chi_{\beta_{\lambda}}(1)_{\pi}} = \ell^{w} \prod_{h \in \mathscr{H}(\beta_{\lambda})} |h|_{\pi}.$$

Now, by Theorem 2.4 (ii) and (iii), we have $|\mathscr{H}(\beta_{\lambda})| = w$, so that

$$\ell^w \prod_{h \in \mathscr{H}(eta_\lambda)} |h| = \prod_{h \in \mathscr{H}(eta_\lambda)} \ell |h|,$$

and, by Theorem 2.4 (iii), $\prod_{h \in \mathscr{H}(\beta_{\lambda})} \ell |h| = \prod_{h \in \mathscr{H}_{\ell}(\lambda)} |h|$. Taking π -parts, we obtain $\ell^{w}(w!)_{\pi}/\chi_{\beta_{\lambda}}(1)_{\pi} = \prod_{h \in \mathscr{H}_{\ell}(\lambda)} |h|_{\pi}$, as announced. \Box

Combining Propositions 2.3 and 2.5, we finally get

Theorem 2.6. Let $n \ge \ell \ge 2$ be integers, and let B be an ℓ -block of \mathfrak{S}_n of weight w. Then the following assertions hold.

- (i) If w = 0, then $B = \{\chi_{\lambda}\}$ for some partition λ of n, and $d_{\ell}(\chi_{\lambda}) = 1$.
- (ii) If w > 0, and if χ_λ ∈ B, then d_ℓ(χ_λ) = Π_{h∈ℋ_ℓ(λ)} |h|_π, where π is the set of primes dividing ℓ (that is, d_ℓ(χ_λ) is the π-part of the product of the hook lengths divisible by ℓ in λ).

3 McKay conjecture

3.1 McKay conjecture, generalization. In this section, we want to study an ℓ -analogue of the following:

Conjecture 3.1 (McKay). Let G be a finite group, p be a prime, and P be a Sylow p-subgroup of G. Then the numbers of irreducible complex characters whose degree is not divisible by p are the same for G and $N_G(P)$.

The McKay conjecture was proved by Olsson [9] for the symmetric group. In order to generalize this to an arbitrary integer ℓ , we will use the results of [4], which we summarize here. Let $n \ge \ell \ge 2$ be integers. Suppose furthermore that $n < \ell^2$, and write $n = \ell w + r$, with $0 \le w, r < \ell$. We define a *Sylow* ℓ -subgroup of \mathfrak{S}_n to be any subgroup of \mathfrak{S}_n generated by w disjoint ℓ -cycles. In particular, if ℓ is a prime p, then the Sylow ℓ -subgroups of \mathfrak{S}_n are just its Sylow p-subgroups. Then any two Sylow ℓ -subgroups of \mathfrak{S}_n are conjugate, and they are Abelian. Let \mathscr{L} be a Sylow ℓ -subgroup of \mathfrak{S}_n . In [4], the notion of an ℓ -regular element is given, which coincides with the notion of a *p*-regular element if ℓ is a prime *p*. Using this, one can construct the ℓ -blocks of $N_{\mathfrak{S}_n}(\mathscr{L})$, and show that they satisfy an analogue of Broué's Abelian defect conjecture (cf. [4, Theorem 4.1]). We will show that, still in the case where $n < \ell^2$, an analogue of the McKay conjecture also holds. However, if we just replace *p* by an arbitrary integer ℓ , and consider irreducible characters of degree not divisible by ℓ , or even coprime to ℓ , then the numbers differ in \mathfrak{S}_n and $N_{\mathfrak{S}_n}(\mathscr{L})$. Instead, we will use the notion of ℓ -defect, and prove that the numbers of irreducible characters of maximal ℓ -defect are the same in \mathfrak{S}_n and $N_{\mathfrak{S}_n}(\mathscr{L})$ (note that, if ℓ is a prime, then both statements coincide).

3.2 Defect and weight. In order to study characters of \mathfrak{S}_n of maximal ℓ -defect, we need the following result, which tells us where to look for them:

Proposition 3.2. Let $\ell \ge 2$ and $0 \le w, r < \ell$ be integers, and let λ be a partition of $n = \ell w + r$. If $\chi_{\lambda} \in Irr(\mathfrak{S}_n)$ has maximal ℓ -defect, then λ has (maximal) ℓ -weight w.

Proof. First note that, if ℓ is a prime, then this can be proved in a purely arithmetic way (cf. [7]). This does not seem to be the case when ℓ is no longer a prime, and we will use the abacus instead. For a complete description of the abacus, we refer to [5, §2.7] (note however that the abacus we use here is the horizontal mirror image of that described by James and Kerber).

Suppose, for a contradiction, that λ has ℓ -weight v < w. By the previous section, the ℓ -defect of χ_{λ} is the π -part of the product of the hook lengths divisible by ℓ in λ . Now these are visible on the ℓ -abacus of λ . This has ℓ runners, and a hook of length $k\ell$ ($k \ge 1$) corresponds to a bead situated on a runner, k places above an empty spot. In particular, the (ℓ)-hooks (i.e. those whose length is divisible by ℓ) in λ are stored on at most v runners. To establish the result, we will construct a partition μ of n of weight w, and such that $d_{\ell}(\chi_{\mu}) > d_{\ell}(\chi_{\lambda})$.

Start with the ℓ -abacus of any partition v of r. On the (at most) v runners used by λ , take some beads up to encode the same (ℓ)-hooks as for λ . Then, on w - v of the (at least) $\ell - v > w - v$ remaining runners, take the highest bead one place up. The resulting abacus then corresponds to a partition of $n = r + \ell w = r + \ell v + \ell (w - v)$, and we see that $d_{\ell}(\chi_{\mu}) = \ell^{w-v} d_{\ell}(\chi_{\lambda})$ (indeed, the (ℓ)-hooks in μ are precisely those in λ , together with w - v hooks of length ℓ). This proves the result.

3.3 Generalized perfect isometry. We describe here the analogue of Broué's Abelian defect conjecture given in [4, Theorem 4.1]. We take any integers $\ell \ge 2$ and $0 \le w, r < \ell$, and $G = \mathfrak{S}_{\ell w+r}$. We take an Abelian Sylow ℓ -subgroup \mathscr{L} of G; that is, $\mathscr{L} \cong \mathbb{Z}_{\ell}^w$ is generated by w disjoint ℓ -cycles. Then \mathscr{L} is a natural subgroup of $\mathfrak{S}_{\ell w}$, and we have $N_G(\mathscr{L}) \cong N_{\mathfrak{S}_{\ell w}}(\mathscr{L}) \times \mathfrak{S}_r$ and $\operatorname{Irr}(N_G(\mathscr{L})) = \operatorname{Irr}(N_{\mathfrak{S}_{\ell w}}(\mathscr{L})) \otimes \operatorname{Irr}(\mathfrak{S}_r)$. Now $N_{\mathfrak{S}_{\ell w}}(\mathscr{L}) \cong N \wr \mathfrak{S}_w = N_{\mathfrak{S}_\ell}(L) \wr \mathfrak{S}_w$, where $L = \langle \pi \rangle \cong \mathbb{Z}_\ell$ is (a subgroup of \mathfrak{S}_ℓ) generated by a single ℓ -cycle. As in the sketch of the proof of Theorem 2.1, we see that the conjugacy classes and irreducible characters of $N_{\mathfrak{S}_{\ell w}}(\mathscr{L})$ are parametrized by the *s*-tuples of partitions of w, where s is the number of conjugacy classes of N.

Among these, there is a unique conjugacy class of ℓ -cycles, for which we take representative π . We take representatives $\{g_1 = \pi, g_2, \ldots, g_s\}$ for the conjugacy classes of N. Considering as ℓ -regular any element of N not conjugate to the ℓ -cycle π , we can construct the ℓ -blocks of N, and show that the principal ℓ -block contains ℓ characters, which we label $\psi_1, \ldots, \psi_\ell$, and that each of the remaining $s - \ell$ characters, labeled $\psi_{l+1}, \ldots, \psi_s$, is alone in its ℓ -block (cf. [4, §2]). Using the construction presented after Theorem 2.1, we label the conjugacy classes and irreducible characters of $N \wr \mathfrak{S}_w$ by the *s*-tuples of partitions of w. An element of $N \wr \mathfrak{S}_w$ of cycle type $(\pi_1, \ldots, \pi_s) \Vdash w$ is called ℓ -regular if $\pi_1 = \emptyset$ (and ℓ -singular otherwise). Then one shows that the ℓ -blocks of $N \wr \mathfrak{S}_w$ are the principal ℓ -block, $b_0 = \{\chi^{\alpha}, \alpha = (\alpha_1, \ldots, \alpha_\ell, \emptyset, \ldots, \emptyset) \Vdash w\}$, and blocks of size 1, $\{\chi^{\alpha}\}$, whenever $\alpha \Vdash w$ is such that $\alpha_k \neq \emptyset$ for some $\ell < k \leq s$ (see [4, Theorem 3.7 and Corollary 3.11]).

Finally, an element of $N_G(\mathscr{L}) \cong N_{\mathfrak{S}_{\ell w}}(\mathscr{L}) \times \mathfrak{S}_r$ is said to be ℓ -regular if its $N_{\mathfrak{S}_{\ell w}}(\mathscr{L})$ -part is ℓ -regular in the above sense (so that, if ℓ is a prime p, then the notions of ℓ -regular and p-regular coincide). We can summarize the results of [4] as follows:

Theorem 3.3 ([4, Theorem 4.1]). Let the notation be as above. Then any ℓ -block of $N_G(\mathscr{L})$ has size 1 or belongs to $\{b_0 \otimes \{\psi\}, \psi \in \operatorname{Irr}(\mathfrak{S}_r)\}$. Furthermore, for any $\psi \in \operatorname{Irr}(\mathfrak{S}_r)$, there is a generalized perfect isometry (with respect to ℓ -regular elements) between $b_0 \otimes \{\psi\}$ and B_{ψ} , where B_{ψ} is the ℓ -block of $\mathfrak{S}_{\ell w+r}$ consisting of the irreducible characters labeled by partitions with ℓ -core ψ .

Note that any partition of *r* does appear as ℓ -core of a partition of $\ell w + r$ (for example, if $\gamma \vdash r$, then γ is the ℓ -core of $(\gamma, 1^{\ell w}) \vdash \ell w + r$).

3.4 Analogues of the McKay conjecture. We can now give the analogue of the McKay conjecture that we announced. As before, let $\ell \ge 2$ and $0 \le w, r < \ell$ be integers, $n = \ell w + r$, and \mathscr{L} be an Abelian Sylow ℓ -subgroup of \mathfrak{S}_n . By Proposition 3.2, any irreducible character of \mathfrak{S}_n of maximal ℓ -defect has (maximal) ℓ -weight w, hence belongs to some block B_{ψ} , with $\psi \in \operatorname{Irr}(\mathfrak{S}_r)$. Since any generalized perfect isometry preserves the defect, Theorem 3.3 provides a bijection between the sets of irreducible characters of maximal ℓ -defect and ℓ -weight w of \mathfrak{S}_n and of characters of maximal ℓ -defect in $N_{\mathfrak{S}_n}(\mathscr{L})$. We therefore obtain the following result:

Theorem 3.4. With the above notation, the numbers of irreducible characters of maximal ℓ -defect are the same in \mathfrak{S}_n and $N_{\mathfrak{S}_n}(\mathscr{L})$.

Remark. Furthermore, we have an explicit bijection, essentially given by taking ℓ -quotients of partitions.

In fact, Theorem 3.3 gives something a bit stronger, namely:

Theorem 3.5. For any ℓ -defect $\delta \neq 1$, there is a bijection between the set of irreducible characters of \mathfrak{S}_n of ℓ -weight w and ℓ -defect δ and the set of irreducible characters of $N_{\mathfrak{S}_n}(\mathscr{L})$ of ℓ -defect δ .

Now, McKay's conjecture is stated (and, in the case of symmetric groups, proved) without any hypothesis on the Sylow *p*-subgroups. One would therefore want to generalize the above results to the case where $n \ge \ell^2$. Examples seem to indicate that such analogues do indeed hold in this case, and that a bijection is given by taking, not only the ℓ -quotient of a partition, but its ℓ -tower (cf. [9]).

In order to prove these results, one would first need to generalize Proposition 3.2, showing that, for any $n \ge \ell \ge 2$, if $\chi_{\lambda} \in \operatorname{Irr}(\mathfrak{S}_n)$ has maximal ℓ -defect, then λ has maximal ℓ -weight, but also maximal ℓ^2 -weight, maximal ℓ^3 -weight, and so on. If ℓ is a prime, then this is known to be true (cf. [7]). However, it seems hard to prove in general, even when $n = \ell^2$. The particular case where ℓ is square-free is much easier.

Also, one would need to generalize the results of [4], while making sure that, when ℓ is a prime *p*, the notions of ℓ -regular and *p*-regular elements still coincide.

References

- [1] M. Broué. Isométries parfaites, types de blocs, catégories dérivées. *Astérisque* 181–182 (1990), 61–92.
- [2] S. Donkin. Representations of Hecke algebras and characters of symmetric groups. In *Studies in memory of Issai Schur*, Progress in Math. 210 (Birkhäuser, 2003), pp. 49–67.
- [3] J.-B. Gramain. Generalized perfect isometries in some groups of Lie rank one. J. Algebra 299 (2006), 820–840.
- [4] J.-B. Gramain. On defect groups for generalized blocks of the symmetric group. J. London Math. Soc. (2) 78 (2008), 155–171.
- [5] G. James and A. Kerber. *The representation theory of the symmetric groups*. Encyclopedia Math. Appl. 16 (Addison-Wesley, 1981).
- [6] B. Külshammer, J. B. Olsson and G. R. Robinson. Generalized blocks for symmetric groups. *Invent. Math.* 151 (2003), 513–552.
- [7] I. G. MacDonald. On the degrees of the irreducible representations of symmetric groups. Bull. London Math. Soc. 3 (1971), 189–192.
- [8] G. Navarro. *Characters and blocks of finite groups*. London Math. Soc. Lecture Note Ser. 250 (Cambridge University Press, 1998).
- [9] J. B. Olsson. McKay numbers and heights of characters. Math. Scand. 38 (1976), 25–42.

Received 23 September, 2008; revised 9 January, 2009

Jean-Baptiste Gramain, École Polytechnique Fédérale de Lausanne, EPFL-IGAT, Bâtiment de Chimie (BCH), CH-1015 Lausanne, Switzerland E-mail: jean-baptiste.gramain@epfl.ch