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Abstract. Following the work of B. Külshammer, J. B. Olsson and G. R. Robinson on gener-
alized blocks of the symmetric groups, we give a definition for the l-defect of characters of the
symmetric group Sn, where l > 1 is an arbitrary integer. We prove that the l-defect is given by
an analogue of the hook-length formula, and use it to prove, when n < l2, an l-version of the
McKay conjecture in Sn.

1 Introduction

B. Külshammer, J. B. Olsson and G. R. Robinson gave in [6] a definition of gener-
alized blocks for a finite group. Let G be a finite group, and denote by IrrðGÞ the set
of complex irreducible characters of G. Take a union C of conjugacy classes of G

containing the identity. Suppose furthermore that C is closed, that is, if x a C, and
if y a G generates the same subgroup of G as x, then y a C. For w, c a IrrðGÞ, we
define the C-contribution 3w;c4C of w and c by

3w;c4C :¼ 1

jGj
X
g aC

wðgÞcðg�1Þ:

The fact that C is closed implies that, for any w, c a IrrðGÞ, 3w;c4C is a rational
number.

We say that w, c a IrrðGÞ belong to the same C-block of G if there exists a se-
quence of irreducible characters w1 ¼ w; w2; . . . ; wn ¼ c of G such that 3wi; wiþ14C A 0
for all i a f1; . . . ; n� 1g. The C-blocks define a partition of IrrðGÞ (the fact that
1 a C ensures that each irreducible character of G belongs to a C-block). If we take
C to be the set of p-regular elements of G (i.e. whose order is not divisible by p), for
some prime p, then the C-blocks are just the ‘ordinary’ p-blocks (cf. for example [8,
Theorem 3.19]).

Let CFðGÞ be the set of complex class functions of G, and 3 : ; : 4 be the ordinary
scalar product on CFðGÞ. For any w a IrrðGÞ, we define wC a CFðGÞ by letting

wCðgÞ ¼ wðgÞ if g a C,

0 otherwise.

�
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Then, for w a IrrðGÞ, we have

wC ¼
X

c a IrrðGÞ
3wC;c4c ¼

X
c a IrrðGÞ

3w;c4Cc:

Since 3w;c4C a Q for all c a IrrðGÞ, there exists d a N such that dwC is a generalized
character of G. We call the smallest such positive integer the C-defect of w, and
denote it by dCðwÞ.

It is easy to check that w a IrrðGÞ has C-defect 1 if and only if w vanishes outside C.
This is also equivalent to the fact that fwg is a C-block of G.

Writing 1G for the trivial character of G, we see that, for any w a IrrðGÞ,
dCð1GÞwC ¼ wn ðdCð1GÞ1C

GÞ is a generalized character, so that dCðwÞ divides dCð1GÞ.
In particular, 1G has maximal C-defect.

Note that, if C is the set of p-regular elements of G (p a prime), then, for all
w a IrrðGÞ, we have (cf. for example [8, Lemma 3.23])

dCðwÞ ¼
jGj
wð1Þ

� �
p

¼ pdðwÞ;

where dðwÞ is the ordinary p-defect of w.
One key notion defined in [6] is that of a generalized perfect isometry. Suppose that

G and H are finite groups, and C and D are closed unions of conjugacy classes of G
and H respectively. Take a union b of C-blocks of G, and a union b0 of D-blocks of
G. A generalized perfect isometry between b and b0 (with respect to C and D) is a
bijection with signs between b and b0, which furthermore preserves contributions.
That is, I : b N b0 is a bijection such that, for each w a b, there is a sign eðwÞ such that

3IðwÞ; IðcÞ4D ¼ 3eðwÞw; eðcÞc4C for all w;c a b:

In particular, one sees that a generalized perfect isometry I preserves the defect, that
is, for all w a b, we have dCðwÞ ¼ dDðIðwÞÞ.

Note that, if C and D are the sets of p-regular elements of G and H respectively,
then this notion is a bit weaker than that of perfect isometry introduced by M. Broué
(cf. [1]). If two p-blocks b and b0 are perfectly isometric in Broué’s sense, then there is
a generalized perfect isometry (with respect to p-regular elements) between b and b0.
It is however possible to exhibit generalized perfect isometries in some cases where
there is no perfect isometry in Broué’s sense (cf. [3]).

Külshammer, Olsson and Robinson defined and studied in [6] the l-blocks of the
symmetric group, where ld 2 is any integer. They did this by taking C to be the set
of l-regular elements, that is, which have no cycle (in their canonical cycle decompo-
sition) of length divisible by l (in particular, if l is a prime p, then the l-blocks are
just the p-blocks).

In Section 2, we find the l-defect of the characters of the symmetric group Sn. It
turns out (Theorem 2.6) that it is given by an analogue of the hook-length formula
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(for the degree of a character). In Section 3, we then use this to prove, when n < l2,
an l-analogue of the McKay conjecture in Sn (Theorem 3.4).

2 Hook-length formula

2.1 l-blocks of the symmetric group. Take two integers 1c lc n, and consider
the symmetric group Sn on n letters. The conjugacy classes and irreducible complex
characters of Sn are parametrized by the set fl ‘ ng of partitions of n. We write
IrrðSnÞ ¼ fwl; l ‘ ng. An element of Sn is said to be l-regular if none of its cycles
has length divisible by l. We let C be the set of l-regular elements of Sn. The C-
blocks of Sn are called l-blocks, and they satisfy the following:

Theorem 2.1 (Generalized Nakayama conjecture [6, Theorem 5.13]). Two characters

wl; wm a IrrðSnÞ belong to the same l-block if and only if l and m have the same l-core.

The proof of this goes as follows. If 3wl; wm4A 0, then an induction argument
using the Murnaghan–Nakayama rule shows that l and m must have the same
l-core. In particular, the partitions labeling the characters in an l-block all have the
same l-weight, and we can talk about the l-weight of an l-block.

Conversely, let B be the set of irreducible characters of Sn labeled by those par-
titions of n which have a given l-core, g say, and l-weight w. It is a well-known com-
binatorial fact (cf. for example [5, Theorem 2.7.30]) that the characters in B are
parametrized by the l-quotients, which can be regarded as the set of l-tuples of parti-
tions of w. For wl a B, the quotient bl is a sequence ðlð1Þ; . . . ; lðlÞÞ such that, for each
1c ic l, lðiÞ is a partition of some ki, 0c ki cw, and

Pl
i¼1 ki ¼ w (the quotient bl

‘stores’ the information about how to remove w l-hooks from l to get g). We write
blIw. To prove that B is an l-block of Sn, Külshammer, Olsson and Robinson use
a generalized perfect isometry between B and the wreath product Zl oSw (where Zl

denotes a cyclic group of order l).
The conjugacy classes of Zl oSw are parametrized by the l-tuples of partitions of w

as follows (cf. [5, Theorem 4.2.8]). Write Zl ¼ fg1; . . . ; glg for the cyclic group of order
l. The elements of the wreath product Zl oSw are of the form ðh; sÞ ¼ ðh1; . . . ; hw; sÞ,
with h1; . . . ; hw a Zl and s a Sw. For any such element, and for any k-cycle
k ¼ ð j; jk; . . . ; jkk�1Þ in s, we define the cycle product of ðh; sÞ and k by

gððh; sÞ; kÞ ¼ hjhjk�1hjk�2 . . . hjk�ðk�1Þ a Zl:

If s has cycle structure p say, then we form l partitions ðp1; . . . ; plÞ from p as follows:
any cycle k in p gives a cycle of the same length in pi if gððh; sÞ; kÞ ¼ gi. The resulting
l-tuple of partitions of w describes the cycle structure of ðh; sÞ, and two elements of
Zl oSw are conjugate if and only if they have the same cycle structure. An element of
Zl oSw is said to be regular if it has no cycle product equal to 1.

The irreducible characters of Zl oSw are also canonically parametrized by the
l-tuples of partitions of w in the following way. Write IrrðZlÞ ¼ fa1; . . . ; alg, and
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take bl ¼ ðlð1Þ; . . . ; lðlÞÞIw, with lðiÞ ‘ ki as above (1c ic l). The irreducible char-

acter ak1

1 n � � �n akll of the base group Zw
l can be extended in a natural way to its

inertia subgroup ðZl oSk1
Þ � � � � � ðZl oSklÞ, giving the irreducible character

Ql
i¼1

c
akiia
ki
i .

The tensor product
Ql

i¼1
c
akiia
ki
i n w

lðiÞ is an irreducible character of

ðZl oSk1
Þ � � � � � ðZl oSklÞ

which extends
Ql

i¼1
c
akiia
ki
i , and it remains irreducible when induced to Zl oSw. We de-

note by wbl this induced character. Furthermore, any irreducible character of Zl oSw

can be obtained in this way.
In [6], the authors show that the map wl N wbl is a generalized perfect isometry be-

tween B and IrrðZl oSwÞ, with respect to l-regular elements of Sn and regular ele-
ments of Zl oSw.

On the other hand, they show that, writing ‘reg’ for the set of regular elements of
Zl oSw, we have, for all w a IrrðZl oSwÞ,

Z b
lww!3w; 1ZloSw

4reg

wð1Þ C ð�1Þw ðmod lÞ; ð1Þ

where 1Zl oSw
is the trivial character of Zl oSw. In particular, 3w; 1Zl oSw

4reg A 0. Us-
ing the generalized perfect isometry that we described above, we see that there exists
a character wl a B such that, for all wm a B, we have 3wl; wm4C A 0, where C is the set
of l-regular elements of Sn. In particular, all characters in B belong to the same
l-block of Sn, which ends the proof of Theorem 2.1.

2.2 l-defect of characters. Using the ingredients in the proof of Theorem 2.1, we
can now compute explicitly the l-defects of the irreducible characters of Sn (that is,
their C-defect, where C is the set of l-regular elements of Sn).

As we remarked earlier, if l is a partition of n of l-weight w, then, because of the
generalized perfect isometry we described above, the l-defect dlðwlÞ of wl a IrrðSnÞ is
the same as the reg-defect dregðwblÞ of wbl a IrrðZl oSwÞ, where bl is the l-quotient of
l. It is in fact these reg-defects that we will compute.

First note that, if w ¼ 0, then l is its own l-core, so that wl is alone in its l-block,
and dlðwlÞ ¼ 1. We therefore now fix wd 1.

We write p the set of primes dividing l. Every positive integer m can be factorized
uniquely as m ¼ mpmp0 , where every prime factor of mp belongs to p and no prime
factor of mp0 is contained in p. We call mp the p-part of m.

Using results of Donkin (cf. [2]) and equality (1), Külshammer, Olsson and Robin-
son proved the following:

Theorem 2.2 ([6, Theorem 6.2]). The reg-defect of the trivial character of Zl oSw is

lww!p.

In particular, since 1Zl oSw
has maximal reg-defect, we see that, for any

w a IrrðZl oSwÞ, dregðwÞ is a p-number.
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We can now compute the reg-defect of any irreducible character w of Zl oSw. It
turns out that it is su‰cient to know the reg-contribution of w with the trivial charac-
ter, and this is given by (1). We have the following:

Proposition 2.3. Take any integers ld 2 and wd 1. Then

dregðwÞ ¼
lwðw!Þp
wð1Þp

for any w a IrrðZl oSwÞ.

Proof. Take w a IrrðZl oSwÞ. Recall that, by (1),

Z b
lww!

wð1Þ 3w; 14reg C ð�1Þw ðmod lÞ:

Now dregðwÞ is a p-number, so that 3w; 14reg is a rational whose (reduced) denomina-
tor is a p-number. This implies that

lwðw!Þp
wð1Þp

3w; 14reg a Z:

Furthermore, from (1), we also deduce that, for each p a p,

lww!

wð1Þ 3w; 14reg D 0 ðmod pÞ:

Thus, for any p a p,

lwðw!Þp
wð1Þp

3w; 14reg D 0 ðmod pÞ:

Hence lwðw!Þp=wð1Þp is the smallest positive integer d such that d3w; 14reg a Z. This
implies that lwðw!Þp=wð1Þp divides dregðwÞ (indeed, by definition, dregðwÞ3w; 14reg a Z,
and dregðwÞ is a p-number).

Now, conversely, if c a IrrðZl oSwÞ, then 3w;c4reg a Q, so (since wð1Þ divides
jZl oSwj ¼ lww!) we also have

lww!

wð1Þ 3w;c4reg a Q:

However,

lww!

wð1Þ 3w;c4reg ¼ lww!

lww!

X
g a reg=P

KgwðgÞ
wð1Þ cðg�1Þ
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(where the sum is taken over representatives for the regular classes, and, for g such a
representative, Kg is the size of the conjugacy class of g). Moreover, for each g in the
sum, KgwðgÞ=wð1Þ and cðg�1Þ are both algebraic integers. Hence ðlww!=wð1ÞÞ3w;c4reg

is also an algebraic integer, and thus an integer. Hence

lww!

wð1Þ 3w;c4reg a Z for all c a IrrðZl oSwÞ:

and this implies that dregðwÞ divides lww!=wð1Þ, and, dregðwÞ being a p-number, dregðwÞ
divides lwðw!Þp=wð1Þp. Hence we finally get dregðwÞ ¼ lwðw!Þp=wð1Þp. r

We want to express the l-defect of a character in terms of hook lengths. For any
l ‘ n, we write HðlÞ for the set of hooks in l, and HlðlÞ for the set of hooks in l

whose length is divisible by l. Similarly, if bl ¼ ðlð1Þ; . . . ; lðlÞÞIw, we define a hook

in bl to be a hook in any of the lðiÞ’s, and write HðblÞ for the set of hooks in bl.
Finally, for any hook h (in a partition or a tuple of partitions), we write jhj for the
length of h.

We will use the following classical results about hooks (cf. for example [5, §2.3,
§2.7]).

Theorem 2.4. Let nd ld 2 be any two integers, and let l be any partition of n. Then

the following assertions hold:

(i) (Hook-length formula, [5, Theorem 2.3.21]) We have

jSnj
wlð1Þ

¼
Y

h aHðlÞ
jhj:

(ii) ([5, 2.7.40]) If l has l-weight w, then jHlðlÞj ¼ w.
(iii) ([5, Lemma 2.7.13 and Theorem 2.7.16]) If bl is the l-quotient of l, then

fjhj; h a HlðlÞg ¼ fljh0j; h0 a HðblÞg.

We can now establish the following:

Proposition 2.5. If nd ld 2 are integers, p is the set of primes dividing l, and l ‘ n

has l-weight wA 0 and l-quotient bl, then

lwðw!Þp
wblð1Þp

¼
Y

h aHlðlÞ
jhjp:

Proof. Write bl ¼ ðlð1Þ; . . . ; lðlÞÞ, where lðiÞ ‘ ki for 1c ic l. First note that, by con-
struction of wbl , and since the irreducible characters of Zl all have degree 1, we have

wblð1Þ ¼
lww!Ql
i¼1 l

kiki!
w
lð1Þ ð1Þ . . . wlðlÞ ð1Þ:
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Thus, by the hook-length formula (Theorem 2.4 (i)),

wblð1Þ ¼
w!Q

h aHðblÞ jhj
and

jZl oSwj
wblð1Þ

¼ lw
Y

h aHðblÞ
jhj:

We therefore get

lwðw!Þp
wblð1Þp

¼ jZl oSwjp
wblð1Þp

¼ lw
Y

h aHðblÞ
jhjp:

Now, by Theorem 2.4 (ii) and (iii), we have jHðblÞj ¼ w, so that

lw
Y

h aHðblÞ
jhj ¼

Y
h aHðblÞ

ljhj;

and, by Theorem 2.4 (iii),
Q

h aHðblÞ ljhj ¼
Q

h aHlðlÞ jhj. Taking p-parts, we obtain
lwðw!Þp=wblð1Þp ¼

Q
h aHlðlÞ jhjp, as announced. r

Combining Propositions 2.3 and 2.5, we finally get

Theorem 2.6. Let nd ld 2 be integers, and let B be an l-block of Sn of weight w.

Then the following assertions hold.

(i) If w ¼ 0, then B ¼ fwlg for some partition l of n, and dlðwlÞ ¼ 1.
(ii) If w > 0, and if wl a B, then dlðwlÞ ¼

Q
h aHlðlÞ jhjp, where p is the set of primes

dividing l (that is, dlðwlÞ is the p-part of the product of the hook lengths divisible

by l in l).

3 McKay conjecture

3.1 McKay conjecture, generalization. In this section, we want to study an l-
analogue of the following:

Conjecture 3.1 (McKay). Let G be a finite group, p be a prime, and P be a Sylow
p-subgroup of G. Then the numbers of irreducible complex characters whose degree
is not divisible by p are the same for G and NGðPÞ.

The McKay conjecture was proved by Olsson [9] for the symmetric group. In order
to generalize this to an arbitrary integer l, we will use the results of [4], which we sum-
marize here. Let nd ld 2 be integers. Suppose furthermore that n < l2, and write
n ¼ lwþ r, with 0cw; r < l. We define a Sylow l-subgroup of Sn to be any subgroup
of Sn generated by w disjoint l-cycles. In particular, if l is a prime p, then the Sylow
l-subgroups of Sn are just its Sylow p-subgroups. Then any two Sylow l-subgroups
of Sn are conjugate, and they are Abelian. Let L be a Sylow l-subgroup of Sn. In
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[4], the notion of an l-regular element is given, which coincides with the notion of a
p-regular element if l is a prime p. Using this, one can construct the l-blocks of
NSn

ðLÞ, and show that they satisfy an analogue of Broué’s Abelian defect conjecture
(cf. [4, Theorem 4.1]). We will show that, still in the case where n < l2, an analogue
of the McKay conjecture also holds. However, if we just replace p by an arbitrary
integer l, and consider irreducible characters of degree not divisible by l, or even
coprime to l, then the numbers di¤er in Sn and NSn

ðLÞ. Instead, we will use the
notion of l-defect, and prove that the numbers of irreducible characters of maximal
l-defect are the same in Sn and NSn

ðLÞ (note that, if l is a prime, then both state-
ments coincide).

3.2 Defect and weight. In order to study characters of Sn of maximal l-defect, we
need the following result, which tells us where to look for them:

Proposition 3.2. Let ld 2 and 0cw; r < l be integers, and let l be a partition of

n ¼ lwþ r. If wl a IrrðSnÞ has maximal l-defect, then l has (maximal) l-weight w.

Proof. First note that, if l is a prime, then this can be proved in a purely arithmetic
way (cf. [7]). This does not seem to be the case when l is no longer a prime, and we
will use the abacus instead. For a complete description of the abacus, we refer to
[5, §2.7] (note however that the abacus we use here is the horizontal mirror image of
that described by James and Kerber).

Suppose, for a contradiction, that l has l-weight v < w. By the previous section,
the l-defect of wl is the p-part of the product of the hook lengths divisible by l in l.
Now these are visible on the l-abacus of l. This has l runners, and a hook of length
kl (kd 1) corresponds to a bead situated on a runner, k places above an empty spot.
In particular, the ðlÞ-hooks (i.e. those whose length is divisible by l) in l are stored
on at most v runners. To establish the result, we will construct a partition m of n of
weight w, and such that dlðwmÞ > dlðwlÞ.

Start with the l-abacus of any partition n of r. On the (at most) v runners used by
l, take some beads up to encode the same ðlÞ-hooks as for l. Then, on w� v of the
(at least) l� v > w� v remaining runners, take the highest bead one place up. The
resulting abacus then corresponds to a partition of n ¼ rþ lw ¼ rþ lvþ lðw� vÞ,
and we see that dlðwmÞ ¼ lw�vdlðwlÞ (indeed, the ðlÞ-hooks in m are precisely those
in l, together with w� v hooks of length l). This proves the result. r

3.3 Generalized perfect isometry. We describe here the analogue of Broué’s
Abelian defect conjecture given in [4, Theorem 4.1]. We take any integers ld 2 and
0cw; r < l, and G ¼ Slwþr. We take an Abelian Sylow l-subgroup L of G; that is,
LGZw

l is generated by w disjoint l-cycles. Then L is a natural subgroup of Slw,
and we have NGðLÞGNSlw

ðLÞ �Sr and Irr(NGðLÞÞ ¼ IrrðNSlw
ðLÞÞn IrrðSrÞ.

Now NSlw
ðLÞGN oSw ¼ NSl

ðLÞ oSw, where L ¼ 3p4GZl is (a subgroup of Sl)
generated by a single l-cycle. As in the sketch of the proof of Theorem 2.1, we see
that the conjugacy classes and irreducible characters of NSlw

ðLÞ are parametrized
by the s-tuples of partitions of w, where s is the number of conjugacy classes of N.
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Among these, there is a unique conjugacy class of l-cycles, for which we take repre-
sentative p. We take representatives fg1 ¼ p; g2; . . . ; gsg for the conjugacy classes of
N. Considering as l-regular any element of N not conjugate to the l-cycle p, we can
construct the l-blocks of N, and show that the principal l-block contains l charac-
ters, which we label c1; . . . ;cl, and that each of the remaining s� l characters, labeled
clþ1; . . . ;cs, is alone in its l-block (cf. [4, §2]). Using the construction presented after
Theorem 2.1, we label the conjugacy classes and irreducible characters of N oSw by
the s-tuples of partitions of w. An element of N oSw of cycle type ðp1; . . . ; psÞIw is
called l-regular if p1 ¼ j (and l-singular otherwise). Then one shows that the l-
blocks of N oSw are the principal l-block, b0 ¼ fwa; a ¼ ða1; . . . ; al; j; . . . ; jÞIwg,
and blocks of size 1, fwag, whenever aIw is such that ak A j for some l < kc s

(see [4, Theorem 3.7 and Corollary 3.11]).
Finally, an element of NGðLÞGNSlw

ðLÞ �Sr is said to be l-regular if its
NSlw

ðLÞ-part is l-regular in the above sense (so that, if l is a prime p, then the
notions of l-regular and p-regular coincide). We can summarize the results of [4] as
follows:

Theorem 3.3 ([4, Theorem 4.1]). Let the notation be as above. Then any l-block of

NGðLÞ has size 1 or belongs to fb0 n fcg;c a IrrðSrÞg. Furthermore, for any

c a IrrðSrÞ, there is a generalized perfect isometry (with respect to l-regular elements)
between b0 n fcg and Bc, where Bc is the l-block of Slwþr consisting of the irreduc-

ible characters labeled by partitions with l-core c.

Note that any partition of r does appear as l-core of a partition of lwþ r (for
example, if g ‘ r, then g is the l-core of ðg; 1lwÞ ‘ lwþ r).

3.4 Analogues of the McKay conjecture. We can now give the analogue of the
McKay conjecture that we announced. As before, let ld 2 and 0cw; r < l be inte-
gers, n ¼ lwþ r, and L be an Abelian Sylow l-subgroup of Sn. By Proposition 3.2,
any irreducible character of Sn of maximal l-defect has (maximal) l-weight w, hence
belongs to some block Bc, with c a IrrðSrÞ. Since any generalized perfect isometry
preserves the defect, Theorem 3.3 provides a bijection between the sets of irreducible
characters of maximal l-defect and l-weight w of Sn and of characters of maximal
l-defect in NSn

ðLÞ. We therefore obtain the following result:

Theorem 3.4. With the above notation, the numbers of irreducible characters of maxi-

mal l-defect are the same in Sn and NSn
ðLÞ.

Remark. Furthermore, we have an explicit bijection, essentially given by taking l-
quotients of partitions.

In fact, Theorem 3.3 gives something a bit stronger, namely:

Theorem 3.5. For any l-defect dA 1, there is a bijection between the set of irreducible

characters of Sn of l-weight w and l-defect d and the set of irreducible characters of

NSn
ðLÞ of l-defect d.
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Now, McKay’s conjecture is stated (and, in the case of symmetric groups, proved)
without any hypothesis on the Sylow p-subgroups. One would therefore want to gen-
eralize the above results to the case where nd l2. Examples seem to indicate that
such analogues do indeed hold in this case, and that a bijection is given by taking,
not only the l-quotient of a partition, but its l-tower (cf. [9]).

In order to prove these results, one would first need to generalize Proposition 3.2,
showing that, for any nd ld 2, if wl a IrrðSnÞ has maximal l-defect, then l has
maximal l-weight, but also maximal l2-weight, maximal l3-weight, and so on. If l
is a prime, then this is known to be true (cf. [7]). However, it seems hard to prove in
general, even when n ¼ l2. The particular case where l is square-free is much easier.

Also, one would need to generalize the results of [4], while making sure that, when
l is a prime p, the notions of l-regular and p-regular elements still coincide.
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