Defect of characters of the symmetric group

Jean-Baptiste Gramain

(Communicated by G. Malle)

Abstract

Following the work of B. Külshammer, J. B. Olsson and G. R. Robinson on generalized blocks of the symmetric groups, we give a definition for the ℓ-defect of characters of the symmetric group \mathfrak{S}_{n}, where $\ell>1$ is an arbitrary integer. We prove that the ℓ-defect is given by an analogue of the hook-length formula, and use it to prove, when $n<\ell^{2}$, an ℓ-version of the McKay conjecture in Θ_{n}.

1 Introduction

B. Külshammer, J. B. Olsson and G. R. Robinson gave in [6] a definition of generalized blocks for a finite group. Let G be a finite group, and denote by $\operatorname{Irr}(G)$ the set of complex irreducible characters of G. Take a union \mathscr{C} of conjugacy classes of G containing the identity. Suppose furthermore that \mathscr{C} is closed, that is, if $x \in \mathscr{C}$, and if $y \in G$ generates the same subgroup of G as x, then $y \in \mathscr{C}$. For $\chi, \psi \in \operatorname{Irr}(G)$, we define the \mathscr{C}-contribution $\langle\chi, \psi\rangle_{\mathscr{C}}$ of χ and ψ by

$$
\langle\chi, \psi\rangle_{\mathscr{C}}:=\frac{1}{|G|} \sum_{g \in \mathscr{C}} \chi(g) \psi\left(g^{-1}\right) .
$$

The fact that \mathscr{C} is closed implies that, for any $\chi, \psi \in \operatorname{Irr}(G),\langle\chi, \psi\rangle_{\mathscr{C}}$ is a rational number.

We say that $\chi, \psi \in \operatorname{Irr}(G)$ belong to the same \mathscr{C}-block of G if there exists a sequence of irreducible characters $\chi_{1}=\chi, \chi_{2}, \ldots, \chi_{n}=\psi$ of G such that $\left\langle\chi_{i}, \chi_{i+1}\right\rangle_{\mathscr{C}} \neq 0$ for all $i \in\{1, \ldots, n-1\}$. The \mathscr{C}-blocks define a partition of $\operatorname{Irr}(G)$ (the fact that $1 \in \mathscr{C}$ ensures that each irreducible character of G belongs to a \mathscr{C}-block). If we take \mathscr{C} to be the set of p-regular elements of G (i.e. whose order is not divisible by p), for some prime p, then the \mathscr{C}-blocks are just the 'ordinary' p-blocks (cf. for example [8, Theorem 3.19]).

Let $\mathrm{CF}(G)$ be the set of complex class functions of G, and $\langle.,$.$\rangle be the ordinary$ scalar product on $\mathrm{CF}(G)$. For any $\chi \in \operatorname{Irr}(G)$, we define $\chi^{\mathscr{G}} \in \mathrm{CF}(G)$ by letting

$$
\chi^{\mathscr{C}}(g)= \begin{cases}\chi(g) & \text { if } g \in \mathscr{C} \\ 0 & \text { otherwise }\end{cases}
$$

Then, for $\chi \in \operatorname{Irr}(G)$, we have

$$
\chi^{\mathscr{C}}=\sum_{\psi \in \operatorname{Irr}(G)}\left\langle\chi^{\mathscr{C}}, \psi\right\rangle \psi=\sum_{\psi \in \operatorname{Irr}(G)}\langle\chi, \psi\rangle_{\mathscr{C}} \psi .
$$

Since $\langle\chi, \psi\rangle_{\mathscr{C}} \in \mathbb{Q}$ for all $\psi \in \operatorname{Irr}(G)$, there exists $d \in \mathbb{N}$ such that $d \chi^{\mathscr{C}}$ is a generalized character of G. We call the smallest such positive integer the \mathscr{C}-defect of χ, and denote it by $d_{\mathscr{C}}(\chi)$.

It is easy to check that $\chi \in \operatorname{Irr}(G)$ has \mathscr{C}-defect 1 if and only if χ vanishes outside \mathscr{C}. This is also equivalent to the fact that $\{\chi\}$ is a \mathscr{C}-block of G.

Writing 1_{G} for the trivial character of G, we see that, for any $\chi \in \operatorname{Irr}(G)$, $d_{\mathscr{G}}\left(1_{G}\right) \chi^{\mathscr{C}}=\chi \otimes\left(d_{\mathscr{G}}\left(1_{G}\right) 1_{G}^{\mathscr{G}}\right)$ is a generalized character, so that $d_{\mathscr{G}}(\chi)$ divides $d_{\mathscr{G}}\left(1_{G}\right)$. In particular, 1_{G} has maximal \mathscr{C}-defect.

Note that, if \mathscr{C} is the set of p-regular elements of G (p a prime), then, for all $\chi \in \operatorname{Irr}(G)$, we have (cf. for example [8, Lemma 3.23])

$$
d_{\mathscr{C}}(\chi)=\left(\frac{|G|}{\chi(1)}\right)_{p}=p^{d(\chi)}
$$

where $d(\chi)$ is the ordinary p-defect of χ.
One key notion defined in [6] is that of a generalized perfect isometry. Suppose that G and H are finite groups, and \mathscr{C} and \mathscr{D} are closed unions of conjugacy classes of G and H respectively. Take a union b of \mathscr{C}-blocks of G, and a union b^{\prime} of \mathscr{D}-blocks of G. A generalized perfect isometry between b and b^{\prime} (with respect to \mathscr{C} and \mathscr{D}) is a bijection with signs between b and b^{\prime}, which furthermore preserves contributions. That is, $I: b \mapsto b^{\prime}$ is a bijection such that, for each $\chi \in b$, there is a sign $\varepsilon(\chi)$ such that

$$
\langle I(\chi), I(\psi)\rangle_{\mathscr{D}}=\langle\varepsilon(\chi) \chi, \varepsilon(\psi) \psi\rangle_{\mathscr{C}} \text { for all } \chi, \psi \in b
$$

In particular, one sees that a generalized perfect isometry I preserves the defect, that is, for all $\chi \in b$, we have $d_{\mathscr{C}}(\chi)=d_{\mathscr{D}}(I(\chi))$.

Note that, if \mathscr{C} and \mathscr{D} are the sets of p-regular elements of G and H respectively, then this notion is a bit weaker than that of perfect isometry introduced by M. Broué (cf. [1]). If two p-blocks b and b^{\prime} are perfectly isometric in Broués sense, then there is a generalized perfect isometry (with respect to p-regular elements) between b and b^{\prime}. It is however possible to exhibit generalized perfect isometries in some cases where there is no perfect isometry in Broue's sense (cf. [3]).

Külshammer, Olsson and Robinson defined and studied in [6] the ℓ-blocks of the symmetric group, where $\ell \geqslant 2$ is any integer. They did this by taking \mathscr{C} to be the set of ℓ-regular elements, that is, which have no cycle (in their canonical cycle decomposition) of length divisible by ℓ (in particular, if ℓ is a prime p, then the ℓ-blocks are just the p-blocks).

In Section 2, we find the ℓ-defect of the characters of the symmetric group \mathfrak{S}_{n}. It turns out (Theorem 2.6) that it is given by an analogue of the hook-length formula
(for the degree of a character). In Section 3, we then use this to prove, when $n<\ell^{2}$, an ℓ-analogue of the McKay conjecture in \mathbb{S}_{n} (Theorem 3.4).

2 Hook-length formula

2.1ℓ-blocks of the symmetric group. Take two integers $1 \leqslant \ell \leqslant n$, and consider the symmetric group Ξ_{n} on n letters. The conjugacy classes and irreducible complex characters of \mathfrak{S}_{n} are parametrized by the set $\{\lambda \vdash n\}$ of partitions of n. We write $\operatorname{Irr}\left(\Im_{n}\right)=\left\{\chi_{\lambda}, \lambda \vdash n\right\}$. An element of Ξ_{n} is said to be ℓ-regular if none of its cycles has length divisible by ℓ. We let \mathscr{C} be the set of ℓ-regular elements of \mathscr{S}_{n}. The \mathscr{C} blocks of \mathfrak{S}_{n} are called ℓ-blocks, and they satisfy the following:

Theorem 2.1 (Generalized Nakayama conjecture [6, Theorem 5.13]). Two characters $\chi_{\lambda}, \chi_{\mu} \in \operatorname{Irr}\left(\mathfrak{S}_{n}\right)$ belong to the same ℓ-block if and only if λ and μ have the same ℓ-core.

The proof of this goes as follows. If $\left\langle\chi_{\lambda}, \chi_{\mu}\right\rangle \neq 0$, then an induction argument using the Murnaghan-Nakayama rule shows that λ and μ must have the same ℓ-core. In particular, the partitions labeling the characters in an ℓ-block all have the same ℓ-weight, and we can talk about the ℓ-weight of an ℓ-block.

Conversely, let B be the set of irreducible characters of Ξ_{n} labeled by those partitions of n which have a given ℓ-core, γ say, and ℓ-weight w. It is a well-known combinatorial fact (cf. for example [5, Theorem 2.7.30]) that the characters in B are parametrized by the ℓ-quotients, which can be regarded as the set of ℓ-tuples of partitions of w. For $\chi_{\lambda} \in B$, the quotient β_{λ} is a sequence $\left(\lambda^{(1)}, \ldots, \lambda^{(\ell)}\right)$ such that, for each $1 \leqslant i \leqslant \ell, \lambda^{(i)}$ is a partition of some $k_{i}, 0 \leqslant k_{i} \leqslant w$, and $\sum_{i=1}^{\ell} k_{i}=w$ (the quotient β_{λ} 'stores' the information about how to remove $w \ell$-hooks from λ to get γ). We write $\beta_{\lambda} \Vdash w$. To prove that B is an ℓ-block of \Im_{n}, Külshammer, Olsson and Robinson use a generalized perfect isometry between B and the wreath product $\mathbb{Z}_{\ell} \ell \mathbb{S}_{w}$ (where \mathbb{Z}_{ℓ} denotes a cyclic group of order ℓ).

The conjugacy classes of $\mathbb{Z}_{\ell} \swarrow \mathbb{\Xi}_{w}$ are parametrized by the ℓ-tuples of partitions of w as follows (cf. [5, Theorem 4.2.8]). Write $\mathbb{Z}_{\ell}=\left\{g_{1}, \ldots, g_{\ell}\right\}$ for the cyclic group of order ℓ. The elements of the wreath product $\mathbb{Z}_{\ell} \ell \mathfrak{S}_{w}$ are of the form $(h ; \sigma)=\left(h_{1}, \ldots, h_{w} ; \sigma\right)$, with $h_{1}, \ldots, h_{w} \in \mathbb{Z}_{\ell}$ and $\sigma \in \mathbb{S}_{w}$. For any such element, and for any k-cycle $\kappa=\left(j, j \kappa, \ldots, j \kappa^{k-1}\right)$ in σ, we define the cycle product of $(h ; \sigma)$ and κ by

$$
g((h ; \sigma), \kappa)=h_{j} h_{j \kappa^{-1}} h_{j \kappa^{-2}} \ldots h_{j \kappa^{-(k-1)}} \in \mathbb{Z}_{\ell} .
$$

If σ has cycle structure π say, then we form ℓ partitions $\left(\pi_{1}, \ldots, \pi_{\ell}\right)$ from π as follows: any cycle κ in π gives a cycle of the same length in π_{i} if $g((h ; \sigma), \kappa)=g_{i}$. The resulting ℓ-tuple of partitions of w describes the cycle structure of $(h ; \sigma)$, and two elements of $\mathbb{Z}_{\ell} \ell \mathfrak{S}_{w}$ are conjugate if and only if they have the same cycle structure. An element of $\mathbb{Z}_{\ell} \ell \mathfrak{S}_{w}$ is said to be regular if it has no cycle product equal to 1 .

The irreducible characters of $\mathbb{Z}_{\ell} \ell \mathbb{S}_{w}$ are also canonically parametrized by the ℓ-tuples of partitions of w in the following way. Write $\operatorname{Irr}\left(\mathbb{Z}_{\ell}\right)=\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$, and
take $\beta_{\lambda}=\left(\lambda^{(1)}, \ldots, \lambda^{(\ell)}\right) \Vdash w$, with $\lambda^{(i)} \vdash k_{i}$ as above $(1 \leqslant i \leqslant \ell)$. The irreducible character $\alpha_{1}^{k_{1}} \otimes \cdots \otimes \alpha_{\ell}^{k_{\ell}}$ of the base group \mathbb{Z}_{ℓ}^{w} can be extended in a natural way to its inertia subgroup $\left(\mathbb{Z}_{\ell} \ell \mathfrak{S}_{k_{1}}\right) \times \cdots \times\left(\mathbb{Z}_{\ell} \prec \mathfrak{S}_{k_{\ell}}\right)$, giving the irreducible character $\prod_{i=1}^{\ell} \widehat{\alpha_{i}^{k_{i}}}$. The tensor product $\prod_{i=1}^{\ell} \widehat{\alpha_{i}^{k_{i}}} \otimes \chi_{\lambda^{(i)}}$ is an irreducible character of

$$
\left(\mathbb{Z}_{\ell} \backslash \mathbb{S}_{k_{1}}\right) \times \cdots \times\left(\mathbb{Z}_{\ell} \prec \mathbb{S}_{k_{\ell}}\right)
$$

which extends $\prod_{i=1}^{\ell} \widehat{\alpha_{i}^{k_{i}}}$, and it remains irreducible when induced to $\mathbb{Z}_{\ell} \imath \mathfrak{\Im}_{w}$. We denote by $\chi_{\beta_{\lambda}}$ this induced character. Furthermore, any irreducible character of \mathbb{Z}_{ℓ} ८ Ξ_{w} can be obtained in this way.

In [6], the authors show that the map $\chi_{\lambda} \mapsto \chi_{\beta_{\lambda}}$ is a generalized perfect isometry between B and $\operatorname{Irr}\left(\mathbb{Z}_{\ell} \prec \mathfrak{S}_{w}\right)$, with respect to ℓ-regular elements of \mathfrak{S}_{n} and regular elements of $\mathbb{Z}_{\ell} \prec \mathfrak{S}_{w}$.

On the other hand, they show that, writing 'reg' for the set of regular elements of $\mathbb{Z}_{\ell} \ell \mathbb{S}_{w}$, we have, for all $\chi \in \operatorname{Irr}\left(\mathbb{Z}_{\ell}\right.$ 䖝 $)$,

$$
\begin{equation*}
\mathbb{Z} \ni \frac{\ell^{w} w!\left\langle\chi, 1_{\mathbb{Z}_{\ell} \Im_{w}}\right\rangle_{\mathrm{reg}}}{\chi(1)} \equiv(-1)^{w}(\bmod \ell) \tag{1}
\end{equation*}
$$

where $1_{\mathbb{Z}_{\ell} \mathfrak{\Im}_{w}}$ is the trivial character of $\mathbb{Z}_{\ell} \prec \mathfrak{\Im}_{w}$. In particular, $\left\langle\chi, 1_{\mathbb{Z}_{\ell} \mathfrak{\Im}_{w}}\right\rangle_{\text {reg }} \neq 0$. Using the generalized perfect isometry that we described above, we see that there exists a character $\chi_{\lambda} \in B$ such that, for all $\chi_{\mu} \in B$, we have $\left\langle\chi_{\lambda}, \chi_{\mu}\right\rangle_{\mathscr{C}} \neq 0$, where \mathscr{C} is the set of ℓ-regular elements of $\mathfrak{\Im}_{n}$. In particular, all characters in B belong to the same ℓ-block of $\mathfrak{\Im}_{n}$, which ends the proof of Theorem 2.1.
2.2ℓ-defect of characters. Using the ingredients in the proof of Theorem 2.1, we can now compute explicitly the ℓ-defects of the irreducible characters of \mathfrak{S}_{n} (that is, their \mathscr{C}-defect, where \mathscr{C} is the set of ℓ-regular elements of \mathscr{S}_{n}).

As we remarked earlier, if λ is a partition of n of ℓ-weight w, then, because of the generalized perfect isometry we described above, the ℓ-defect $d_{\ell}\left(\chi_{\lambda}\right)$ of $\chi_{\lambda} \in \operatorname{Irr}\left(\mathbb{S}_{n}\right)$ is the same as the reg-defect $d_{\text {reg }}\left(\chi_{\beta_{\lambda}}\right)$ of $\chi_{\beta_{\lambda}} \in \operatorname{Irr}\left(\mathbb{Z}_{\ell}\left\langle\mathbb{\Xi}_{w}\right)\right.$, where β_{λ} is the ℓ-quotient of λ. It is in fact these reg-defects that we will compute.

First note that, if $w=0$, then λ is its own ℓ-core, so that χ_{λ} is alone in its ℓ-block, and $d_{\ell}\left(\chi_{\lambda}\right)=1$. We therefore now fix $w \geqslant 1$.

We write π the set of primes dividing ℓ. Every positive integer m can be factorized uniquely as $m=m_{\pi} m_{\pi^{\prime}}$, where every prime factor of m_{π} belongs to π and no prime factor of $m_{\pi^{\prime}}$ is contained in π. We call m_{π} the π-part of m.

Using results of Donkin (cf. [2]) and equality (1), Külshammer, Olsson and Robinson proved the following:

Theorem 2.2 ([6, Theorem 6.2]). The reg-defect of the trivial character of $\mathbb{Z}_{\ell} 乙 \mathfrak{S}_{w}$ is $\ell^{w} w!_{\pi}$.

In particular, since $1_{\mathbb{Z}_{\ell} \Xi_{w}}$ has maximal reg-defect, we see that, for any $\chi \in \operatorname{Irr}\left(\mathbb{Z}_{\ell} \leftharpoonup \mathbb{\Xi}_{w}\right), d_{\text {reg }}(\chi)$ is a π-number.

We can now compute the reg-defect of any irreducible character χ of $\mathbb{Z}_{\ell} \prec \Im_{w}$. It turns out that it is sufficient to know the reg-contribution of χ with the trivial character, and this is given by (1). We have the following:

Proposition 2.3. Take any integers $\ell \geqslant 2$ and $w \geqslant 1$. Then

$$
d_{\mathrm{reg}}(\chi)=\frac{\ell^{w}(w!)_{\pi}}{\chi(1)_{\pi}}
$$

for any $\chi \in \operatorname{Irr}\left(\mathbb{Z}_{\ell} \curlywedge \mathbb{\Xi}_{w}\right)$.
Proof. Take $\chi \in \operatorname{Irr}\left(\mathbb{Z}_{\ell} 乙 \mathbb{\Xi}_{w}\right)$. Recall that, by (1),

$$
\mathbb{Z} \ni \frac{\ell^{w} w!}{\chi(1)}\langle\chi, 1\rangle_{\mathrm{reg}} \equiv(-1)^{w}(\bmod \ell)
$$

Now $d_{\mathrm{reg}}(\chi)$ is a π-number, so that $\langle\chi, 1\rangle_{\text {reg }}$ is a rational whose (reduced) denominator is a π-number. This implies that

$$
\frac{\ell^{w}(w!)_{\pi}}{\chi(1)_{\pi}}\langle\chi, 1\rangle_{\mathrm{reg}} \in \mathbb{Z}
$$

Furthermore, from (1), we also deduce that, for each $p \in \pi$,

$$
\frac{\ell^{w} w!}{\chi(1)}\langle\chi, 1\rangle_{\mathrm{reg}} \not \equiv 0(\bmod p)
$$

Thus, for any $p \in \pi$,

$$
\frac{\ell^{w}(w!)_{\pi}}{\chi(1)_{\pi}}\langle\chi, 1\rangle_{\mathrm{reg}} \not \equiv 0(\bmod p)
$$

Hence $\ell^{w}(w!)_{\pi} / \chi(1)_{\pi}$ is the smallest positive integer d such that $d\langle\chi, 1\rangle_{\text {reg }} \in \mathbb{Z}$. This implies that $\ell^{W}(w!)_{\pi} / \chi(1)_{\pi}$ divides $d_{\text {reg }}(\chi)$ (indeed, by definition, $d_{\mathrm{reg}}(\chi)\langle\chi, 1\rangle_{\mathrm{reg}} \in \mathbb{Z}$, and $d_{\mathrm{reg}}(\chi)$ is a π-number).

Now, conversely, if $\psi \in \operatorname{Irr}\left(\mathbb{Z}_{\ell} \zeta \mathfrak{S}_{w}\right)$, then $\langle\chi, \psi\rangle_{\text {reg }} \in \mathbb{Q}$, so (since $\chi(1)$ divides $\left.\left|\mathbb{Z}_{\ell} \ell \mathfrak{S}_{w}\right|=\ell^{w} w!\right)$ we also have

$$
\frac{\ell^{w} w!}{\chi(1)}\langle\chi, \psi\rangle_{\mathrm{reg}} \in \mathbb{Q} .
$$

However,

$$
\frac{\ell^{w} w!}{\chi(1)}\langle\chi, \psi\rangle_{\mathrm{reg}}=\frac{\ell^{w} w!}{\ell^{w} w!} \sum_{g \in \mathrm{reg} / \sim} \frac{K_{g} \chi(g)}{\chi(1)} \psi\left(g^{-1}\right)
$$

(where the sum is taken over representatives for the regular classes, and, for g such a representative, K_{g} is the size of the conjugacy class of g). Moreover, for each g in the sum, $K_{g} \chi(g) / \chi(1)$ and $\psi\left(g^{-1}\right)$ are both algebraic integers. Hence $\left(\ell^{w} w!/ \chi(1)\right)\langle\chi, \psi\rangle_{\text {reg }}$ is also an algebraic integer, and thus an integer. Hence

$$
\frac{\ell^{w} w!}{\chi(1)}\langle\chi, \psi\rangle_{\text {reg }} \in \mathbb{Z} \quad \text { for all } \psi \in \operatorname{Irr}\left(\mathbb{Z}_{\ell} \curlywedge \widetilde{\Im}_{w}\right)
$$

and this implies that $d_{\mathrm{reg}}(\chi)$ divides $\ell^{w} w!/ \chi(1)$, and, $d_{\mathrm{reg}}(\chi)$ being a π-number, $d_{\mathrm{reg}}(\chi)$ divides $\ell^{w}(w!)_{\pi} / \chi(1)_{\pi}$. Hence we finally get $d_{\mathrm{reg}}(\chi)=\ell^{w}(w!)_{\pi} / \chi(1)_{\pi}$.

We want to express the ℓ-defect of a character in terms of hook lengths. For any $\lambda \vdash n$, we write $\mathscr{H}(\lambda)$ for the set of hooks in λ, and $\mathscr{H}_{\ell}(\lambda)$ for the set of hooks in λ whose length is divisible by ℓ. Similarly, if $\beta_{\lambda}=\left(\lambda^{(1)}, \ldots, \lambda^{(\ell)}\right)$ It w, we define a hook in β_{λ} to be a hook in any of the $\lambda^{(i)}$'s, and write $\mathscr{H}\left(\beta_{\lambda}\right)$ for the set of hooks in β_{λ}. Finally, for any hook h (in a partition or a tuple of partitions), we write $|h|$ for the length of h.

We will use the following classical results about hooks (cf. for example [5, §2.3, §2.7]).

Theorem 2.4. Let $n \geqslant \ell \geqslant 2$ be any two integers, and let λ be any partition of n. Then the following assertions hold:
(i) (Hook-length formula, [5, Theorem 2.3.21]) We have

$$
\frac{\left|\Im_{n}\right|}{\chi_{\lambda}(1)}=\prod_{h \in \mathscr{H}(\lambda)}|h| .
$$

(ii) $([5,2.7 .40])$ If λ has ℓ-weight w, then $\left|\mathscr{H}_{\ell}(\lambda)\right|=w$.
(iii) ([5, Lemma 2.7.13 and Theorem 2.7.16]) If β_{λ} is the ℓ-quotient of λ, then $\left\{|h|, h \in \mathscr{H}_{\ell}(\lambda)\right\}=\left\{\ell\left|h^{\prime}\right|, h^{\prime} \in \mathscr{H}^{\prime}\left(\beta_{\lambda}\right)\right\}$.
We can now establish the following:
Proposition 2.5. If $n \geqslant \ell \geqslant 2$ are integers, π is the set of primes dividing ℓ, and $\lambda \vdash n$ has ℓ-weight $w \neq 0$ and ℓ-quotient β_{λ}, then

$$
\frac{\ell^{w}(w!)_{\pi}}{\chi_{\beta_{\lambda}}(1)_{\pi}}=\prod_{h \in \mathscr{H}_{t}(\lambda)}|h|_{\pi} .
$$

Proof. Write $\beta_{\lambda}=\left(\lambda^{(1)}, \ldots, \lambda^{(\ell)}\right)$, where $\lambda^{(i)} \vdash k_{i}$ for $1 \leqslant i \leqslant \ell$. First note that, by construction of $\chi_{\beta_{\lambda}}$, and since the irreducible characters of \mathbb{Z}_{ℓ} all have degree 1 , we have

$$
\chi_{\beta_{\lambda}}(1)=\frac{\ell^{w} w!}{\prod_{i=1}^{\ell} \ell^{k_{i} k_{i}}!} \chi_{\lambda^{(1)}}(1) \ldots \chi_{\lambda^{(t)}}(1)
$$

Thus, by the hook-length formula (Theorem 2.4 (i)),

$$
\chi_{\beta_{\lambda}}(1)=\frac{w!}{\prod_{h \in \mathscr{H}\left(\beta_{\lambda}\right)}|h|} \quad \text { and } \quad \frac{\left|\mathbb{Z}_{\ell} \imath \Im_{w}\right|}{\chi_{\beta_{\lambda}}(1)}=\ell^{w} \prod_{h \in \mathscr{H}\left(\beta_{\lambda}\right)}|h| .
$$

We therefore get

$$
\frac{\ell^{w}(w!)_{\pi}}{\chi_{\beta_{\lambda}}(1)_{\pi}}=\frac{\left|\mathbb{Z}_{\ell} \ell \Im_{w}\right|_{\pi}}{\chi_{\beta_{\lambda}}(1)_{\pi}}=\ell^{w} \prod_{h \in \mathscr{H}\left(\beta_{\lambda}\right)}|h|_{\pi}
$$

Now, by Theorem 2.4 (ii) and (iii), we have $\left|\mathscr{H}\left(\beta_{\lambda}\right)\right|=w$, so that
and, by Theorem 2.4 (iii), $\prod_{h \in \mathscr{H}\left(\beta_{\lambda}\right)} \ell|h|=\prod_{h \in \mathscr{H}_{\ell}(\lambda)}|h|$. Taking π-parts, we obtain $\ell^{w}(w!)_{\pi} / \chi_{\beta_{\lambda}}(1)_{\pi}=\prod_{h \in \mathscr{H}_{(}(\lambda)}|h|_{\pi}$, as announced.

Combining Propositions 2.3 and 2.5 , we finally get
Theorem 2.6. Let $n \geqslant \ell \geqslant 2$ be integers, and let B be an ℓ-block of \mathfrak{S}_{n} of weight w. Then the following assertions hold.
(i) If $w=0$, then $B=\left\{\chi_{\lambda}\right\}$ for some partition λ of n, and $d_{\ell}\left(\chi_{\lambda}\right)=1$.
(ii) If $w>0$, and if $\chi_{\lambda} \in B$, then $d_{\ell}\left(\chi_{\lambda}\right)=\prod_{h \in \mathscr{H}_{(}(\lambda)}|h|_{\pi}$, where π is the set of primes dividing $\ell\left(\right.$ that is, $d_{\ell}\left(\chi_{\lambda}\right)$ is the π-part of the product of the hook lengths divisible by ℓ in $\lambda)$.

3 McKay conjecture

3.1 McKay conjecture, generalization. In this section, we want to study an ℓ analogue of the following:

Conjecture 3.1 (McKay). Let G be a finite group, p be a prime, and P be a Sylow p-subgroup of G. Then the numbers of irreducible complex characters whose degree is not divisible by p are the same for G and $N_{G}(P)$.

The McKay conjecture was proved by Olsson [9] for the symmetric group. In order to generalize this to an arbitrary integer ℓ, we will use the results of [4], which we summarize here. Let $n \geqslant \ell \geqslant 2$ be integers. Suppose furthermore that $n<\ell^{2}$, and write $n=\ell w+r$, with $0 \leqslant w, r<\ell$. We define a Sylow ℓ-subgroup of \mathbb{S}_{n} to be any subgroup of \mathfrak{S}_{n} generated by w disjoint ℓ-cycles. In particular, if ℓ is a prime p, then the Sylow ℓ-subgroups of $\mathbb{\Xi}_{n}$ are just its Sylow p-subgroups. Then any two Sylow ℓ-subgroups of \mathfrak{S}_{n} are conjugate, and they are Abelian. Let \mathscr{L} be a Sylow ℓ-subgroup of \mathfrak{S}_{n}. In
[4], the notion of an ℓ-regular element is given, which coincides with the notion of a p-regular element if ℓ is a prime p. Using this, one can construct the ℓ-blocks of $N_{\Xi_{n}}(\mathscr{L})$, and show that they satisfy an analogue of Broué's Abelian defect conjecture (cf. [4, Theorem 4.1]). We will show that, still in the case where $n<\ell^{2}$, an analogue of the McKay conjecture also holds. However, if we just replace p by an arbitrary integer ℓ, and consider irreducible characters of degree not divisible by ℓ, or even coprime to ℓ, then the numbers differ in \Im_{n} and $N_{\Im_{n}}(\mathscr{L})$. Instead, we will use the notion of ℓ-defect, and prove that the numbers of irreducible characters of maximal ℓ-defect are the same in \Im_{n} and $N \Im_{n}(\mathscr{L})$ (note that, if ℓ is a prime, then both statements coincide).
3.2 Defect and weight. In order to study characters of $\mathbb{\Xi}_{n}$ of maximal ℓ-defect, we need the following result, which tells us where to look for them:

Proposition 3.2. Let $\ell \geqslant 2$ and $0 \leqslant w, r<\ell$ be integers, and let λ be a partition of $n=\ell w+r$. If $\chi_{\lambda} \in \operatorname{Irr}\left(\mathbb{S}_{n}\right)$ has maximal ℓ-defect, then λ has (maximal) ℓ-weight w.

Proof. First note that, if ℓ is a prime, then this can be proved in a purely arithmetic way (cf. [7]). This does not seem to be the case when ℓ is no longer a prime, and we will use the abacus instead. For a complete description of the abacus, we refer to [$5, \S 2.7]$ (note however that the abacus we use here is the horizontal mirror image of that described by James and Kerber).

Suppose, for a contradiction, that λ has ℓ-weight $v<w$. By the previous section, the ℓ-defect of χ_{λ} is the π-part of the product of the hook lengths divisible by ℓ in λ. Now these are visible on the ℓ-abacus of λ. This has ℓ runners, and a hook of length $k \ell(k \geqslant 1)$ corresponds to a bead situated on a runner, k places above an empty spot. In particular, the (ℓ)-hooks (i.e. those whose length is divisible by ℓ) in λ are stored on at most v runners. To establish the result, we will construct a partition μ of n of weight w, and such that $d_{\ell}\left(\chi_{\mu}\right)>d_{\ell}\left(\chi_{\lambda}\right)$.

Start with the ℓ-abacus of any partition v of r. On the (at most) v runners used by λ, take some beads up to encode the same (ℓ)-hooks as for λ. Then, on $w-v$ of the (at least) $\ell-v>w-v$ remaining runners, take the highest bead one place up. The resulting abacus then corresponds to a partition of $n=r+\ell w=r+\ell v+\ell(w-v)$, and we see that $d_{\ell}\left(\chi_{\mu}\right)=\ell^{w-v} d_{\ell}\left(\chi_{\lambda}\right)$ (indeed, the (ℓ)-hooks in μ are precisely those in λ, together with $w-v$ hooks of length ℓ). This proves the result.
3.3 Generalized perfect isometry. We describe here the analogue of Broués Abelian defect conjecture given in [4, Theorem 4.1]. We take any integers $\ell \geqslant 2$ and $0 \leqslant w, r<\ell$, and $G=\Theta_{\ell w+r}$. We take an Abelian Sylow ℓ-subgroup \mathscr{L} of G; that is, $\mathscr{L} \cong \mathbb{Z}_{\ell}^{w}$ is generated by w disjoint ℓ-cycles. Then \mathscr{L} is a natural subgroup of $\mathbb{G}_{\ell w}$, and we have $N_{G}(\mathscr{L}) \cong N_{\Theta_{\ell w}}(\mathscr{L}) \times \mathfrak{\Im}_{r}$ and $\operatorname{Irr}\left(N_{G}(\mathscr{L})\right)=\operatorname{Irr}\left(N_{\Theta_{k w}}(\mathscr{L})\right) \otimes \operatorname{Irr}\left(\Theta_{r}\right)$.
 generated by a single ℓ-cycle. As in the sketch of the proof of Theorem 2.1, we see that the conjugacy classes and irreducible characters of $N_{\Theta_{t v}}(\mathscr{L})$ are parametrized by the s-tuples of partitions of w, where s is the number of conjugacy classes of N.

Among these, there is a unique conjugacy class of ℓ-cycles, for which we take representative π. We take representatives $\left\{g_{1}=\pi, g_{2}, \ldots, g_{s}\right\}$ for the conjugacy classes of N. Considering as ℓ-regular any element of N not conjugate to the ℓ-cycle π, we can construct the ℓ-blocks of N, and show that the principal ℓ-block contains ℓ characters, which we label $\psi_{1}, \ldots, \psi_{\ell}$, and that each of the remaining $s-\ell$ characters, labeled $\psi_{l+1}, \ldots, \psi_{s}$, is alone in its ℓ-block (cf. [4, §2]). Using the construction presented after Theorem 2.1, we label the conjugacy classes and irreducible characters of $N<\mathfrak{S}_{w}$ by the s-tuples of partitions of w. An element of $N \imath \mathbb{S}_{w}$ of cycle type $\left(\pi_{1}, \ldots, \pi_{s}\right) \Vdash w$ is called ℓ-regular if $\pi_{1}=\emptyset$ (and ℓ-singular otherwise). Then one shows that the ℓ blocks of $N \imath \Im_{w}$ are the principal ℓ-block, $b_{0}=\left\{\chi^{\alpha}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{\ell}, \emptyset, \ldots, \emptyset\right)\right.$ ॥ $\left.w\right\}$, and blocks of size $1,\left\{\chi^{\alpha}\right\}$, whenever $\alpha \Vdash w$ is such that $\alpha_{k} \neq \emptyset$ for some $\ell<k \leqslant s$ (see [4, Theorem 3.7 and Corollary 3.11]).

Finally, an element of $N_{G}(\mathscr{L}) \cong N_{\ell w}(\mathscr{L}) \times \Theta_{r}$ is said to be ℓ-regular if its $N_{\Theta_{\ell w}}(\mathscr{L})$-part is ℓ-regular in the above sense (so that, if ℓ is a prime p, then the notions of ℓ-regular and p-regular coincide). We can summarize the results of [4] as follows:

Theorem 3.3 ([4, Theorem 4.1]). Let the notation be as above. Then any ℓ-block of $N_{G}(\mathscr{L})$ has size 1 or belongs to $\left\{b_{0} \otimes\{\psi\}, \psi \in \operatorname{Irr}\left(\mathfrak{\Xi}_{r}\right)\right\}$. Furthermore, for any $\psi \in \operatorname{Irr}\left(\mathfrak{\Im}_{r}\right)$, there is a generalized perfect isometry (with respect to ℓ-regular elements) between $b_{0} \otimes\{\psi\}$ and B_{ψ}, where B_{ψ} is the ℓ-block of $\Xi_{\ell w+r}$ consisting of the irreducible characters labeled by partitions with ℓ-core ψ.

Note that any partition of r does appear as ℓ-core of a partition of $\ell w+r$ (for example, if $\gamma \vdash r$, then γ is the ℓ-core of $\left.\left(\gamma, 1^{\ell w}\right) \vdash \ell w+r\right)$.
3.4 Analogues of the McKay conjecture. We can now give the analogue of the McKay conjecture that we announced. As before, let $\ell \geqslant 2$ and $0 \leqslant w, r<\ell$ be integers, $n=\ell w+r$, and \mathscr{L} be an Abelian Sylow ℓ-subgroup of \mathfrak{S}_{n}. By Proposition 3.2, any irreducible character of \mathfrak{S}_{n} of maximal ℓ-defect has (maximal) ℓ-weight w, hence belongs to some block B_{ψ}, with $\psi \in \operatorname{Irr}\left(\mathfrak{S}_{r}\right)$. Since any generalized perfect isometry preserves the defect, Theorem 3.3 provides a bijection between the sets of irreducible characters of maximal ℓ-defect and ℓ-weight w of \mathfrak{S}_{n} and of characters of maximal ℓ-defect in $N \Im_{n}(\mathscr{L})$. We therefore obtain the following result:

Theorem 3.4. With the above notation, the numbers of irreducible characters of maximal ℓ-defect are the same in \Im_{n} and $N_{\Xi_{n}}(\mathscr{L})$.

Remark. Furthermore, we have an explicit bijection, essentially given by taking ℓ quotients of partitions.

In fact, Theorem 3.3 gives something a bit stronger, namely:
Theorem 3.5. For any ℓ-defect $\delta \neq 1$, there is a bijection between the set of irreducible characters of Ξ_{n} of ℓ-weight w and ℓ-defect δ and the set of irreducible characters of $N \Xi_{n}(\mathscr{L})$ of ℓ-defect δ.

Now, McKay's conjecture is stated (and, in the case of symmetric groups, proved) without any hypothesis on the Sylow p-subgroups. One would therefore want to generalize the above results to the case where $n \geqslant \ell^{2}$. Examples seem to indicate that such analogues do indeed hold in this case, and that a bijection is given by taking, not only the ℓ-quotient of a partition, but its ℓ-tower (cf. [9]).

In order to prove these results, one would first need to generalize Proposition 3.2, showing that, for any $n \geqslant \ell \geqslant 2$, if $\chi_{\lambda} \in \operatorname{Irr}\left(\mathfrak{S}_{n}\right)$ has maximal ℓ-defect, then λ has maximal ℓ-weight, but also maximal ℓ^{2}-weight, maximal ℓ^{3}-weight, and so on. If ℓ is a prime, then this is known to be true (cf. [7]). However, it seems hard to prove in general, even when $n=\ell^{2}$. The particular case where ℓ is square-free is much easier.

Also, one would need to generalize the results of [4], while making sure that, when ℓ is a prime p, the notions of ℓ-regular and p-regular elements still coincide.

References

[1] M. Broué. Isométries parfaites, types de blocs, catégories dérivées. Astérisque 181-182 (1990), 61-92.
[2] S. Donkin. Representations of Hecke algebras and characters of symmetric groups. In Studies in memory of Issai Schur, Progress in Math. 210 (Birkhäuser, 2003), pp. 49-67.
[3] J.-B. Gramain. Generalized perfect isometries in some groups of Lie rank one. J. Algebra 299 (2006), 820-840.
[4] J.-B. Gramain. On defect groups for generalized blocks of the symmetric group. J. London Math. Soc. (2) 78 (2008), 155-171.
[5] G. James and A. Kerber. The representation theory of the symmetric groups. Encyclopedia Math. Appl. 16 (Addison-Wesley, 1981).
[6] B. Külshammer, J. B. Olsson and G. R. Robinson. Generalized blocks for symmetric groups. Invent. Math. 151 (2003), 513-552.
[7] I. G. MacDonald. On the degrees of the irreducible representations of symmetric groups. Bull. London Math. Soc. 3 (1971), 189-192.
[8] G. Navarro. Characters and blocks of finite groups. London Math. Soc. Lecture Note Ser. 250 (Cambridge University Press, 1998).
[9] J. B. Olsson. McKay numbers and heights of characters. Math. Scand. 38 (1976), 25-42.

Received 23 September, 2008; revised 9 January, 2009
Jean-Baptiste Gramain, École Polytechnique Fédérale de Lausanne, EPFL-IGAT, Bâtiment de Chimie (BCH), CH-1015 Lausanne, Switzerland
E-mail: jean-baptiste.gramain@epfl.ch

