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A string graph is the intersection graph of a collection of continuous arcs in the plane.

We show that any string graph with m edges can be separated into two parts of roughly

equal size by the removal of O(m3/4
√

logm) vertices. This result is then used to deduce

that every string graph with n vertices and no complete bipartite subgraph Kt,t has at most

ctn edges, where ct is a constant depending only on t. Another application shows that

locally tree-like string graphs are globally tree-like: for any ε > 0, there is an integer g(ε)

such that every string graph with n vertices and girth at least g(ε) has at most (1 + ε)n

edges. Furthermore, the number of such labelled graphs is at most (1 + ε)nT (n), where

T (n) = nn−2 is the number of labelled trees on n vertices.

1. Introduction

A large part of computational geometry deals with representation and manipulation of

various geometric objects. Special attention is paid to pairs of objects that are in contact

with each other: detecting intersections among line segments, for example, belongs to the

oldest and best-studied chapter of computational geometry, already addressed in the first

monograph devoted to the subject [37]. Yet, even in the special case of segments, little

is known about elementary structural properties of the arising intersection patterns. The

recognition of such intersection patterns (intersection graphs) is known to be NP-hard

[21, 22].
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372 J. Fox and J. Pach

Given a collection C = {γ1, . . . , γn} of arcwise connected sets in the plane, their intersec-

tion graph G = G(C) is a graph on the vertex set C , where γi and γj (i �= j) are connected

by an edge if and only if γi ∩ γj �= ∅. It is easy to show that every such intersection graph

can be obtained as an intersection graph of a collection of (simple) continuous curves in

the plane. Therefore, the intersection graphs of arcwise connected sets in the plane are

often called string graphs.

Given a graph G = (V , E) with vertex set V and edge set E, a weight function w : V →
R�0 is a non-negative function on the vertex set such that the sum of the weights is at

most 1. The weight of a subset S ⊆ V , denoted by w(S), is defined as
∑

v∈S w(v).

A separator in a graph G = (V , E) with respect to a weight function w is a subset

S ⊆ V for which there is a partition V = S ∪ V1 ∪ V2 such that w(V1), w(V2) � 2/3 and

there is no edge between V1 and V2. If the weight function is not specified, it is assumed

that w(v) = 1/|V | for every vertex v ∈ V .

The Lipton–Tarjan separator theorem [26] states that, for every planar graph G with n

vertices and for every weight function w for G, there is a separator of size O(n1/2). This

has been generalized in various directions: to graphs embedded in a surface of bounded

genus [16], graphs with a forbidden minor [1], intersection graphs of balls in R
d [29],

intersection graphs of Jordan regions [11], and intersection graphs of convex sets in the

plane [11]. Our main result is a separator theorem for string graphs.

Theorem 1.1. For every string graph G with m edges and for every weight function w for

G, there is a separator of size O
(
m3/4

√
logm

)
with respect to w.

We do not believe that the bound on the separator size in Theorem 1.1 is tight. In fact,

as in [14], we make the following conjecture.

Conjecture 1.2. Every string graph with m edges has a separator of size O(
√
m).

This conjecture is known to be true in several special cases: (1) for intersection graphs

of convex sets in the plane with bounded clique number [11], (2) for intersection graphs

of curves, any pair of which has a bounded number of intersection points [11], and (3) for

outerstring graphs , that is, intersection graphs of collections C of curves with the property

that there is a suitable curve γ such that each member of C has one endpoint on γ, but is

otherwise disjoint from it [12].

Separator theorems have many important applications (see, e.g., [25] and [27]). Despite

the apparent weakness of the bound in Theorem 1.1, it is still strong enough to yield some

interesting corollaries.

For any graph H , a graph G is called H-free if it does not have a (not necessarily

induced) subgraph isomorphic to H . Given H and a positive integer n, the extremal

number ex(H, n) is defined as the maximum number of edges over all H-free graphs on

n vertices. The study of this parameter is a classical area of Turán-type extremal graph

theory: see [3]. The problem of investigating the same maximum restricted to intersection

graphs of arcwise connected sets, convex bodies, segments, etc., was initiated in [34]. For

partial results in this directions, see [34], [38], [11].
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A Separator Theorem for String Graphs and its Applications 373

In the present paper, we use Theorem 1.1 to prove that for any bipartite graph H ,

there is a constant cH such that every H-free intersection graph of n arcwise connected

sets in the plane has at most cHn edges. Clearly, it is sufficient to prove this statement for

balanced complete bipartite graphs H = Kt,t, as every bipartite graph with t vertices is a

subgraph of Kt,t.

Theorem 1.3. For any positive integer t, every Kt,t-free string graph with n vertices has at

most tc log log tn edges, where c is an absolute constant.

A graph G is called d-degenerate if every subgraph of G has a vertex of degree at

most d. Every d-degenerate graph has chromatic number at most d + 1. Theorem 1.3

implies that every Kt,t-free intersection graph of arcwise connected sets in the plane is

2tc log log t-degenerate. Thus, we obtain the following result.

Corollary 1.4. For any positive integer t, the chromatic number of every Kt,t-free intersection

graph of n arcwise connected sets in the plane is at most 2tc log log t + 1.

In [11], it was shown that every Kt,t-free intersection graphs of n curves, no pair of

which has more than a fixed constant number of points in common, has at most ctn edges,

where the dependence on t is exponential. In this case, our separator-based approach gives

a tight bound. In Section 6, we establish the following result.

Theorem 1.5. Let k and t be positive integers. There exists a constant Ck depending only

on k, such that the maximum number of edges of any Kt,t-free intersection graph G of n

curves in the plane, no pair of which has more than k points in common, is at most Cktn.

Apart from the value of the constant Ck , this bound cannot be improved.

A collection of curves in the plane is called a collection of pseudo-segments if no two

of them has more than one point in common. The girth of a graph is the length of its

shortest cycle. Kostochka and Nešetřil [19] proved that for any ε > 0, there is a positive

integer g(ε) such that the intersection graph of any collection of pseudo-segments with

girth at least g(ε) has at most (1 + ε)n edges. Using our separator theorem, Theorem 1.1,

this statement can be extended to all string graphs.

Theorem 1.6. For any ε > 0, there is a positive integer g(ε) such that every string graph on

n vertices with girth at least g(ε) has at most (1 + ε)n edges.

In particular, this theorem implies that there exists a positive integer g0 such that every

string graph with girth at least g0 has chromatic number at most 3. It would be interesting

to determine the smallest such integer g0.

We mention another application of Theorem 1.1. The bandwidth of a graph G with n

vertices is the minimum b for which there is a labelling of the vertices of G by distinct

integers such that the labels of adjacent vertices differ by at most b. Chung [6] showed

that every tree with n vertices and maximum degree Δ has bandwidth O(n/ logΔ n).
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374 J. Fox and J. Pach

Böttcher, Pruessmann, Taraz and Würfl [4] used the separator theorem for planar graphs

to extend this result to show that every planar graph with n vertices and maximum degree

Δ has bandwidth O(n/ logΔ n). Replacing the separator theorem for planar graphs by

Theorem 1.1 in the proof of this result and using the bound in Theorem 1.3, we obtain

the following extension to all string graphs with a forbidden bipartite subgraph.

Corollary 1.7. Every Kt,t-free string graph with n vertices and maximum degree Δ has

bandwidth at most ctn/ logΔ n, where ct only depends on t.

In the next section, we prove an inequality bounding the pair-crossing number of a

string graph by the number of short paths in the graph. We use this to deduce an

upper bound on the bisection width of a string graph, and to obtain a proof of our

separator theorem, Theorem 1.1, for the uniform weight function w ≡ 1/|V |. We then give

a different proof for the full version of the separator theorem in Section 3. In Section 4, we

apply the (weak) separator theorem to prove a qualitative version of Theorem 1.3, which

states that Kt,t-free string graphs with n vertices have at most ctn edges. The proof of

Theorem 1.3 is given in Section 5. In Section 6, we prove Theorem 1.5 and a similar result

for intersection graphs of convex sets in the plane. In Section 7, we deduce Theorem 1.6

and two other results that can be obtained similarly. In the concluding remarks, we discuss

the strength of the constant factor dependence on t in Theorem 1.3 and the asymptotic

number of string graphs with a forbidden bipartite subgraph. Throughout the paper, we

systematically omit floor and ceiling signs, whenever they are not crucial for the sake of

clarity of the presentation. All logarithms in this paper are base 2 unless otherwise noted.

2. Crossing number, bisection width, and separators for string graphs

A topological graph is a graph drawn in the plane with vertices as points and edges as

curves connecting its vertices. These curves are disjoint from the vertices except for their

endpoints. The pair-crossing number pcr(G) of a graph G is the minimum number of pairs

of edges that intersect in a drawing of G. The length of a path in a graph is the number

of its edges. We prove the following upper bound on the pair-crossing number of string

graphs.

Lemma 2.1. If G is a string graph, then pcr(G) is at most the number of paths of length 2

or 3 in G.

Proof. Let C be a collection of curves whose intersection graph is G. For each curve

γ ∈ C , let p(γ) be an arbitrary point on γ. For each pair q = {γ, γ′} of distinct intersecting

curves in C , let α(q) denote a curve which starts at p(γ), goes along γ until it comes to

an intersection point of γ and γ′, and then continues along γ′ until it ends at p(γ′). Note

that this provides a drawing of G in the plane, in which the vertices are the points p(γ)

and the edges are the curves α(q). Suppose that two edges α(q1) and α(q2) in this drawing

intersect. Since α(qi) lies along the union of the two curves of which qi is composed, one

of the curves in q1 intersects one of the curves in q2. If q1 and q2 have a curve γ in
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common, then we obtain a path of length two in G with middle vertex γ. Otherwise, q1

and q2 consist of distinct curves, and one of the curves in q1 intersects one of the curves

in q2, which gives rise to a path of length three in G with these intersecting curves as the

two middle vertices.

The crossing number cr(G) of a graph G is the minimum number of edge crossings in any

drawing of G. It is a challenging open problem [35] to determine whether pcr(G) = cr(G)

holds for every graph G. We can prove an inequality similar to Lemma 2.1 for intersection

graphs of convex sets in the plane, replacing pair-crossing number by crossing number.

Lemma 2.2. If G is an intersection graph of convex sets in the plane, then cr(G) is at most

four times the number of paths of length 2 or 3 in G.

Proof. Let C be a collection of convex sets in the plane whose intersection graph is G.

For each convex set γ ∈ C , let p(γ) be an arbitrary point in γ. For each pair q = {γ, γ′} of

convex sets in C that intersects, let α(q) be a curve which is a polygonal path consisting

of two segments, the first segment starts at p(γ) and ends at an intersection point of γ

and γ′, and the second segment starts at this intersection point and ends at p(γ′). Note

that this provides a drawing of G in the plane: the vertices are the points of the form p(γ)

and the edges are the curves α(q). Just as in Lemma 2.1, the number of pairs of crossing

edges in this drawing is at most the number of paths of length 2 or 3 in G. Since each

edge in this drawing is a union of two segments, and pairs of segments can cross at most

once, each pair of crossing edges has at most four crossings.

The bisection width b(G) of a graph G = (V , E) is the least integer for which there is

a partition V = V1 ∪ V2 such that |V1|, |V2| � 2|V |/3 and the number of edges between

V1 and V2 is b(G). For any graph G, let ssqd(G) =
∑

v∈V (G)(deg(v))2. Pach, Shahrokhi and

Szegedy [33] used the Lipton–Tarjan separator theorem to show that

b(G)2 = O
(
cr(G) + ssqd(G)

)
.

Kolman and Matoušek [18] use a result of Leighton and Rao [24] on multicommodity

flows to obtain the following analogous result for pair-crossing number.

Lemma 2.3 (Kolman and Matoušek [18]). Every graph G on n vertices satisfies

b(G) � c log n
(√

pcr(G) +
√

ssqd(G)
)
,

where c is an absolute constant.

Noting that ssqd(G) is twice the number of paths of length 1 or 2 in G, we have the

following corollary of Lemmas 2.1 and 2.3.

Corollary 2.4. Let G be a string graph on n vertices and let p denote the number of paths

of length at most 3 in G. Then the bisection width of G satisfies

b(G) = O(p1/2 log n).
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Replacing Lemma 2.1 by Lemma 2.2 and Lemma 2.3 by the result of Pach, Shahrokhi

and Szegedy, we have that for G an intersection graph of convex sets in the plane,

b(G) = O(p1/2). This bound and Corollary 2.4 (up to the logarithmic factor) cannot be

improved. Indeed, for the complete graph on n vertices, which is an intersection graph of

segments, the number of paths of length at most three is Θ(n4) while the bisection width

is Θ(n2).

Every graph G = (V , E) has a separator with at most b(G) vertices. Indeed, let V =

V1 ∪ V2 be a vertex partition with |V1|, |V2| � 2|V |/3 and b(G) edges between V1 and V2.

Let V0 denote those vertices in V1 which are adjacent to a vertex in V2, so |V0| � b(G).

Since V = V0 ∪ (V1 \ V0) ∪ V2 is a vertex partition, |V1 \ V0|, |V2| � 2|V |/3, and there are

no edges between V1 \ V0 and V2, then V0 is a separator for G.

Let m denote the number of edges of G and let Δ � 1 denote the maximum degree of

G. The number of paths of length 2 in G is

∑
v∈V (G)

(
deg(v)

2

)
� Δ − 1

2

∑
v∈V (G)

deg(v) = m(Δ − 1).

Each edge of G is the middle edge of at most (Δ − 1)2 paths of length 3 in G, so the

number of paths of length 3 in G is at most m(Δ − 1)2. Putting these bounds together, the

number of paths of length at most 3 is at most m + m(Δ − 1) + m(Δ − 1)2 � mΔ2.

From Corollary 2.4 and the discussion in the previous two paragraphs, we get the

following separator theorem for string graphs. We may assume that the string graph has

no isolated vertices, so log n and logm are within a constant factor of each other.

Theorem 2.5. Every string graph with m � 2 edges and maximum degree Δ has a separator

of size

O
(
Δm1/2 logm

)
.

We can quickly deduce an unweighted version of Theorem 1.1 from this result. Indeed,

let G be a string graph with m edges and d = m1/4/
√

logm. Let V0 consist of those

vertices of degree at least d together with the vertices of a smallest separator in the

remaining induced subgraph. The number of vertices of degree at least d is at most

2m/d = 2m3/4
√

logm. The remaining induced subgraph has at most m edges and maximum

degree at most d, so Theorem 2.5 implies it has a separator of size O
(
dm1/2 logm

)
=

O(m3/4
√

logm). The set V0 is a separator for G of size O(m3/4
√

logm).

3. Proof of Theorem 1.1

The bisection width bw(G) of a graph G = (V , E) with respect to a weight function w is

the least integer for which there is a partition V = V1 ∪ V2 such that w(V1), w(V2) � 2/3

and the number of edges between V1 and V2 is bw(G). Note that b(G) = bw(G) if w is the

uniform weight function defined by w(v) = 1/|V | for all v ∈ V .

By iterating Lemma 2.3, we obtain the following result.
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Theorem 3.1. Let G be a topological graph with n vertices and maximum degree d, and

assume that every edge of G intersects at most D other edges. For any weight function w,

we have

bw(G) = O
((√

dD + d
)√

n log n
)
.

Proof. The maximum degree is d, so the number of edges of G is at most dn/2. Since

each edge of G intersects at most D other edges, the pair-crossing number of G is at most
dn
2

D
2

= dDn/4.

Let A0 denote the vertex set of G. By Lemma 2.3, there is a partition A0 = A1 ∪ B1 such

that |A1|, |B1| � 2
3
n, and the number of edges with one vertex in A1 and the other in B1

is at most

c log n
(√

pcr(G) +
√

ssqd(G)
)

� c log n
(√

dDn/4 +
√
d2n

)
.

Without loss of generality, we may assume that w(A1) � w(B1).

After i iterations, we have a vertex subset Ai with at most
(

2
3

)i
n vertices. By Lemma 2.3

applied to the subgraph G[Ai] of G induced by Ai, there is a partition Ai = Ai+1 ∪ Bi+1

such that |Ai+1|, |Bi+1| � 2
3
|Ai| �

(
2
3

)i+1
n, and the number of edges with one vertex in Ai+1

and the other in Bi+1 is at most

c log n
(√

pcr(G[Ai]) +
√

ssqd(G[Ai])
)

� c log

((
2

3

)i

n

)(√
dD

(
2

3

)i

n/4 +

√
d2

(
2

3

)i

n

)

�
(

2

3

)i/2

c(
√
dD + d)

√
n log n.

Without loss of generality, we may assume that w(Ai+1) � w(Bi+1).

We stop the iterative process with i0 if w(Ai0 ) � 2
3
. Since w(Ai0 ) + w(Bi0 ) = w(Ai0−1) >

2/3, we have 1/3 < w(Ai0 ) � 2/3. Let X = Ai0 and Y = A0 \ Ai0 = B1 ∪ · · · ∪ Bi0 . By

construction, the number of edges of G with one vertex in X and the other vertex

in Y is less than
∞∑
i=0

(
2

3

)i/2

c
(√

dD + d
)√

n log n � 6c
(√

dD + d
)√

n log n.

Thus, A0 = X ∪ Y is a partition of the vertex set demonstrating that the bisection width

of G with respect to w is O
((√

dD + d
)√

n log n
)
.

We next prove a separator theorem for string graphs of maximum degree Δ.

Theorem 3.2. Let C be a collection of curves in the plane whose intersection graph G has m

edges and maximum degree Δ, and let w be a weight function on G. Then G has a separator

of size O
(
Δm1/2 logm

)
with respect to w.

Proof. By slightly perturbing the curves in C , if necessary, we can assume that no three

curves in C share a point in common. We may also assume without loss of generality that

every element of C intersects at least one other element.
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For each pair of intersecting curves, pick an arbitrary point of intersection, and let

P be the set of these m points. Define the topological graph T on the vertex set P by

connecting a pair of points of P with an edge if and only if they are consecutive points

of P along a curve in C . The number of vertices of T is m. Since no three curves in C

have a point in common, the maximum degree of the vertices of T is at most four. Each

curve in C gives rise to a path in the topological graph T with at most Δ vertices and

at most Δ − 1 edges. Since each curve in C intersects at most Δ other curves, each edge

of T crosses at most Δ curves, besides the one in which it is contained. Each of these at

most Δ curves contains at most Δ − 1 edges of T . Therefore, each edge of T intersects

altogether at most Δ(Δ − 1) < Δ2 other edges.

For any γ ∈ C , let d(γ) denote the number of points of P on γ, i.e., the number of

curves in C that intersect γ. To each vertex v of T that is the intersection of two elements

γ1, γ2 ∈ C , assign the weight

w′(v) =
w(γ1)

d(γ1)
+

w(γ2)

d(γ2)
.

Notice that w′(P ) = w(C) = 1.

We now apply Theorem 3.1 to the topological graph T and to the weight function w′.

Recall that T has m vertices, maximum degree at most four , and every edge intersects

at most Δ2 other edges. So there is a partition P = P1 ∪ P2 with w′(P1), w
′(P2) � 2/3 and

the number of edges with one vertex in P1 and the other in P2 is

O
(
(Δ2m)1/2 logm

)
= O

(
Δm1/2 logm

)
.

Let C0 consist of those curves in C that contain an edge of the topological graph T with

one vertex in P1 and the other in P2. There are O
(
Δm1/2 logm

)
such edges, therefore we

have |C0| = O
(
Δm1/2 logm

)
.

For i ∈ {1, 2}, let Ci consist of those curves of C all of whose intersection points in P

belong to Pi. Note that, by construction, w(Ci) � w′(Pi) � 2/3 and the sets C0, C1, C2 are

pairwise disjoint.

No curve in C1 intersects a curve in C2 as otherwise they have an intersection point in

P , and this point must be in both P1 and P2, a contradiction. To show that every curve

in C belongs to exactly one of the sets C0, C1, C2, it is enough to notice that any curve

γ ∈ C which contains a point in P1 and one in P2 must belong to C0. Indeed, such a curve

gives rise to a path in T , and hence contains an edge from P1 to P2. Therefore, C0 is a

separator with respect to w of the desired size.

Just as we deduced the unweighted version of Theorem 1.1 from Theorem 2.5,

Theorem 1.1 follows from Theorem 3.2.

4. H-free string graphs have linearly many edges

In this section, we show how to deduce quickly from our separator theorem a qualitative

version of Theorem 1.3.
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A weaker version of Theorem 1.3, established in [34], states that every Kt,t-free string

graph on n vertices has at most n logc
′
t n edges. Combining this theorem with Theorem 1.1,

we obtain the following corollary.

Corollary 4.1. For every Kt,t-free string graph G on n vertices and for every weight function

w for G, there is a separator of size n3/4 logc
′′
t n with respect to w, where ct is a constant

depending only on t.

A family of graphs is hereditary if it is closed under taking induced subgraphs. The

following lemma of Lipton, Rose, and Tarjan [25] shows that if all members of a hereditary

family of graphs have small separators, then the number of edges of these graphs is at

most linear in the number of vertices. Another proof with a slightly better bound can be

found in [11].

Lemma 4.2 (Lipton, Rose and Tarjan [25]). Let ε > 0, and let F be a hereditary family of

graphs such that every member of F with n vertices has a separator of size O(n/(log n)1+ε).

Then every graph in F on n vertices has at most cFn edges, where cF is a suitable constant.

Clearly, the family of Kt,t-free string graphs is hereditary. Therefore, Corollary 4.1

combined with Lemma 4.2 immediately implies that every Kt,t-free string graph on n

vertices has at most ctn edges, where ct only depends on t.

5. Proof of Theorem 1.3

The aim of this section is to prove Theorem 1.3. (A proof disregarding the dependence of

the constant on t was given in Section 4.)

The first ingredient of the proof of Theorem 1.3 is a weaker upper bound on the number

of edges of a Kt,t-free string graph on n vertices. Pach and Sharir [34] proved that every

Kt,t-free string graph on n vertices has at most n logct n edges. Their proof shows that we

may take ct = 2ct for some absolute constant c. We first show how to modify their proof

technique, in combination with other extremal results on string graphs, to show that the

result also holds with ct = c log t.

Lemma 5.1. Every string graph G with n vertices and more than n logc1 log t n edges has Kt,t

as a subgraph, where c1 is an absolute constant.

To prove this lemma, we need the following two auxiliary results. The first of these

results, from [13], shows that every n-vertex string graph with positive constant edge

density contains a balanced complete bipartite graph with Ω(n/ log n) vertices.

Lemma 5.2 ([13]). Every string graph with n vertices and εn2 edges has Kt,t as a subgraph

with t = εc3n/ log n for some absolute constant c3.

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0963548309990459
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 20:51:38, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0963548309990459
https:/www.cambridge.org/core


380 J. Fox and J. Pach

The following lemma guarantees that topological graphs on n vertices with sufficiently

many edges contain s pairwise crossing edges with distinct vertices. The same result was

proved in [12], except that the s pairwise crossing edges were allowed to share endpoints.

As we will need the slightly stronger version for the proof of Theorem 1.3, we include its

proof here.

Lemma 5.3. There is an absolute constant c2 such that every topological graph with n � 2

vertices and more than n(log n)c2 log s edges has s pairwise crossing edges with distinct vertices.

We will use the following lemma, which shows that for every graph G with n vertices

and m � n edges, almost all induced subgraphs of G have roughly m/4 edges.

Lemma 5.4. Let G be a graph with n vertices and m � n edges. Let H be an induced

subgraph of G taken uniformly at random and let X be the random variable denoting number

of edges of H . For every λ > 0,

P[|X − m/4| � λ
√
mn/2] � 1/λ2.

Proof. The proof uses the second moment method (see, e.g., Section 4 of [2]).

We first show that the expected value of the random variable X is m/4. We pick a

vertex to be in H with probability 1/2 independently of the other vertices. For each edge e

of G, let Xe be the indicator random variable of the event that e is an edge of H . That is,

Xe = 1 if e is an edge of H and Xe = 0 otherwise. We have E[Xe] = 1/4, and by linearity

of expectation, E[X] =
∑

e∈E(G) E[Xe] = m/4.

We next compute the variance of the random variable X. Since X =
∑

e∈E(G) Xe, we

have

Var[X] =
∑

e∈E(G)

Var[Xe] +
∑
e�=e′

Cov[Xe,Xe′ ],

where the variance is defined by Var[X] = E[X2] − E[X]2 and the covariance is defined

by Cov[Xe,Xe′ ] = E[XeXe′] − E[Xe]E[Xe′]. Since Xe is an indicator random variable, we

have Var[Xe] = E[X2
e ] − E[Xe]

2 = E[Xe] − E[Xe]
2 = 3/16. The covariance of independent

variables is 0. In particular, if e and e′ do not share a vertex, then Cov[Xe,Xe′ ] = 0. If e and

e′ share a vertex, then XeXe′ = 1 if and only if the three vertices of e or e′ are all vertices

of H . Hence, in this case, E[XeXe′] = 1/8 and Cov[Xe,Xe′ ] = E[XeXe′] − E[Xe]E[Xe′] =

1/8 − 1/16 = 1/16. Let d1, . . . , dn be the degree sequence of G. The number of pairs of

distinct edges that share an edge, by counting over the vertex in common of the two

edges, is precisely
∑n

i=1

(
di
2

)
. Putting this together and using linearity of expectation,

Var[X] =
∑

e∈E(G)

Var[Xe] +
∑
e�=e′

Cov[Xe,Xe′ ] =
3

16
m +

2

16

n∑
i=1

(
di

2

)

=
1

16

(
m +

n∑
i=1

d2
i

)
� 1

16

(
m +

2m

n
n2

)
=

1

16
(m + 2mn) � mn/4,
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where the first inequality uses the convexity of the function f(y) = y2 together with

the inequalities 0 � di � n and the equation
∑n

i=1 di = 2m. The desired inequality is just

Chebyshev’s inequality substituting in the above upper bound on the variance of X.

The next statement is an easy consequence of Lemma 5.4.

Lemma 5.5. Let G1 and G2 be graphs on the same vertex set V of cardinality n and

denote the number of edges of Gi by mi. If mi � 64n for i = 1, 2, then there is a partition

V = V1 ∪ V2 such that the subgraph Gi[Vi] of Gi induced by Vi has at least mi/8 edges, for

i = 1, 2.

Proof. Let λ = 2. Pick V1 ⊂ V uniformly at random, and let V2 = V \ V1. For each

i = 1, 2, since λ
√
min/2 � mi/8, Lemma 5.4 implies that the probability that the number

of edges of Gi[Vi] is less than mi/8 is at most 1/4. Hence, with probability at least 1/2,

for each i = 1, 2, the number of edges of Gi[Vi] is at least mi/8. Since this event occurs

with positive probability, there is a partition V = V1 ∪ V2 such that the number of edges

of Gi[Vi] is at least mi/8, for i = 1, 2.

We have now established the necessary lemmas to present the proof of Lemma 5.3. Our

proof is similar to the proof of Theorem 11 from [12], but it also guarantees that the s

pairwise crossing edges have distinct vertices.

Proof of Lemma 5.3. Let P (n, s) denote the maximum number of edges of a topological

graph on n vertices with no s pairwise crossing edges with distinct vertices. We will prove

by induction on n and s the upper bound

P (n, s) � n(log n)c2 log s,

which implies Lemma 5.3. For n � 2, the inequality follows from P (n, s) �
(
n
2

)
and for

s = 1 from P (n, 1) = 0. These are our base cases. The induction hypothesis is that if

s′ � s and n′ � n are positive integers and (n′, s′) �= (n, s), then P (n′, s′) � n′(log n′)c2 log s′
.

Let G = (V , E) be a topological graph with n vertices, m = P (n, s) edges, and no s pairwise

crossing edges with distinct vertices. Let F be the intersection graph of the edges of

G, and x denote the number of edges of F , i.e., G has x pairs of crossing edges. Let

y = 100c2 log4 n, where c is the absolute constant from Lemma 2.3.

Case 1: x < m2/y. Note that x is an upper bound on the pair-crossing number of G. By

Lemma 2.3, there is a partition V = V1 ∪ V2 into non-empty subsets such that |V1|, |V2| �
2
3
|V | and the number of edges with one vertex in V1 and the other in V2 satisfies

e(V1, V2) = b(G) � c log n
(√

pcr(G) +
√

ssqd(G)
)
.

Note that ssqd(G) � 2m
n
n2 = 2mn because the function f(z) = z2 is convex, the degrees of

the vertices in G lie between 0 and n, and the sum of the degrees of the vertices in G

is 2m. If m < 2ny = 200c2n log4 n, then we are done. Thus, we may assume that m � 2ny
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and it follows that
√
x +

√
ssqd(G) � 2my−1/2. Hence, e(V1, V2) � c log n · 2my−1/2 = m

5 log n
.

For i = 1, 2, the subgraph of G induced by Vi also has no s pairwise crossing edges with

distinct vertices. Hence,

m � P (|V1|, s) + P (|V2|, s) +
m

5 log n
.

Using the induction hypothesis, the inequality |V1|, |V2| � 2n/3, and that c2 is a sufficiently

large constant, we have

P (n, s) = m �
(

1 − 1

5 log n

)−1(
P (|V1|, s) + P (|V2|, s)

)

�
(

1 − 1

5 log n

)−1(
|V1|(log |V1|)c2 log s + |V2|(log |V2|)c2 log s

)

�
(

1 − 1

5 log n

)−1

n
(
log(2n/3)

)c2 log s
< n(log n)c2 log s,

which completes this case.

Case 2: x � m2/y. So F , the intersection graph of the edges of G, has at least m2/y edges.

Since F is a string graph, Lemma 5.2 implies that there is an absolute constant c3 such

that F contains Kt,t as a subgraph with

t = y−c3m/ logm = 100−c3c−2c3 (log n)−4c3m/ logm � m(log n)−c′
,

for some absolute constant c′. Hence, there are two edge subsets E1, E2 of G, each of

size at least t, such that every edge in E1 crosses every edge in E2. Applying Lemma 5.5,

there are edge subsets E ′
1 ⊂ E1 and E ′

2 ⊂ E2, each of cardinality at least t/8, such that the

vertices of the edges in E ′
1 are distinct from the vertices in E ′

2. Since G has no s pairwise

crossing edges with distinct vertices, there exists i ∈ {1, 2} such that E ′
i does not contain

s/2 pairwise crossing edges with distinct vertices. Hence,

m(log n)−c′
/8 � t/8 � |E ′

i | � P (n, �s/2�) � n(log n)c2 log�s/2�,

which implies m � n(log n)c2 log s since c2 was chosen to be a sufficiently large absolute

constant. This completes the proof.

Having gathered the required lemmas, we now prove Lemma 5.1. A Jordan region is a

closed region of the plane, bounded by a simple closed Jordan curve. In other words, a

Jordan region is homeomorphic to the closed unit disk.

Proof of Lemma 5.1. Let s be the smallest positive integer such that (1/16)c3 (2s)/ log 2s �
t, where c3 is the absolute constant from Lemma 5.2. Let ct = c2 log s = Θ(log t), where

c2 is the absolute constant from Lemma 5.3.

Let G be a string graph with n vertices and more than n(log n)ct edges. Let C =

{C1, . . . , Cn} be a collection of n Jordan regions whose intersection graph is the string

graph G and which has the property that any two intersecting Jordan regions in C intersect

in their interiors (it is easy to see that, by slightly fattening compact connected sets, every
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string graph is the intersection graph of such a collection of Jordan regions). Fix distinct

points pi in the interior of Ci for i = 1, . . . , n. For each intersecting pair Ci, Cj ∈ C with

i < j, let pij be a point in Ci ∩ Cj such that all the points in {p1, . . . , pn} ∪ {pij : Ci ∪ Cj �= ∅}
are distinct, and let γij be a simple (non-intersecting) curve contained in Ci ∪ Cj such that:

(1) γij has endpoints pi and pj ,

(2) γij does not contain any other p�,

(3) γij can be split into two subcurves γ0
ij and γ1

ij such that γ0
ij is contained in Ci and has

endpoints pi and pij and γ1
ij is contained in Cj and has endpoints pij and pj .

The points {p1, . . . , pn} are the vertex set and curves {γij : Ci ∩ Cj �= ∅} are the edge set

of a topological graph T with n vertices and more than n(log n)ct edges. Since ct = c2 log s,

by Lemma 5.3, there are at least s pairwise intersecting edges in T with distinct vertices.

Each edge consists of two subcurves and these 2s subcurves have at least
(
s
2

)
� 1

16
(2s)2

intersecting pairs. By Lemma 5.2, the intersection graph of these 2s subcurves contains

Kh,h with h = (1/16)c3 (2s)/ log 2s � t. It follows from the construction that G contains Kt,t.

The second ingredient of the proof of Theorem 1.3 is our separator theorem, Theo-

rem 1.1, which, together with Lemma 5.1, implies that every Kt,t-free string graph has

m < n(log n)ct edges and hence a separator of size O(m3/4
√

logm) < O(n3/4 log3ct/4+1/2 n).

Thus, for n0 = 2O(ct log ct) � tc
′ log log t (where c′ is an absolute constant), every Kt,t-free string

graph with n � n0 vertices has a separator of size n7/8. This fact, together with the

following lemma from [11] (which is a more precise version of Lemma 4.2), immediately

implies Theorem 1.3.

Lemma 5.6 ([11]). Let φ(n) be a monotone decreasing non-negative function defined on

the set of positive integers, and let n0 and C be positive integers such that

φ(n0) � 1

12
and

∞∏
i=0

(
1 + φ

(
�(4/3)in0�

))
� C.

If F is an nφ(n)-separable hereditary family of graphs, then every graph in F on n � n0

vertices has fewer than Cn0

2
n edges.

6. Stronger versions of Theorem 1.3

First we establish Theorem 1.5, that is, we show how to improve Theorem 1.3 considerably

for intersection graphs of collections of curves in which every pair of curves intersects in

at most a fixed constant number k of points.

In [11], we proved the following lemma.

Lemma 6.1. The intersection graph of a collection of curves with x crossings has a separ-

ator of size O(
√
x).

If each pair in a collection of curves intersects in at most k points, then the number

m of edges of the intersection graph is at least x/k, and we obtain a separator of size

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0963548309990459
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 20:51:38, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0963548309990459
https:/www.cambridge.org/core
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O(
√
km). In [14], the following result was established, which is an analogue of Lemma 5.2

for families of curves in which each pair intersects in at most a constant number k of

points.

Lemma 6.2. Let G be the intersection graph of a collection of n curves in the plane, any

pair of which intersects in at most k points. If G has at least εn2 edges, then it contains a

complete bipartite subgraph Kt,t with t � ckε
cn, where c is an absolute constant and ck is a

constant that only depends on k.

We now have the necessary tools to prove Theorem 1.5. This theorem states that for

positive integers k and t, there exists a constant Ck depending only on k, such that any

Kt,t-free intersection graph G of n curves in the plane, no pair of which has more than k

points in common, has at most Cktn edges.

Proof of Theorem 1.5. Suppose that G has εn2 edges. By Lemma 6.2, we have t � ckε
cn,

that is, ε �
(
c−1
k

t
n

)1/c
. Thus, according to Lemma 6.1, G has a separator of size

O(
√
km) < O

(√
k

(
c−1
k

t

n

)1/c

· n2

)
< c′

k(t/n)
c1n,

where c1 = 1/(2c) > 0 and c′
k only depends on k.

Letting φ(n) = c′
k(t/n)

c1 and n0 = (12c′
k)

1/c1 t, Lemma 5.6 implies that G has at most

Cktn edges for some constant Ck only depending on k.

We similarly prove the following result.

Theorem 6.3. Every Kt,t-free intersection graph G of n convex sets in the plane has O(t3n)

edges.

Proof. Suppose that G has εn2 edges. In [15], it was shown that every intersection graph

of n convex sets in the plane with εn2 edges contains a complete bipartite subgraph Kt,t

with t � cε2n for some absolute constant c > 0. Hence, ε �
(

t
cn

)1/2
. A separator lemma

from [11] states that every Ks-free intersection graph of convex sets in the plane with m

edges has a separator of size at most c′√sm for some absolute constant c′. Hence, G has

a separator of size c′√2tm � 2c′√tε1/2n � 2c′c−1/4t3/4n3/4. Letting φ(n) = 2c′c−1/4t3/4n−1/4

and n0 = 244c′4c−1t3, Lemma 5.6 implies that G has O(t3n) edges.

7. Proof of Theorem 1.6 and related results

Theorem 1.6 is a direct corollary of Theorem 1.1 and the following lemma, which shows

that all graphs of large girth that belong to a hereditary family of graphs with small

separators are quite sparse.
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Lemma 7.1. Let α > 0, and let F be a hereditary family of graphs such that every member

of F with n vertices has a separator of size O(n/(log n)1+α). Then for each ε > 0 there is a

positive integer g = gF (ε) such that every graph in F on n vertices and girth at least g has

at most (1 + ε)n edges.

The aim of this section is to prove Lemma 7.1 and to discuss some of its consequences.

The similarity between Lemma 7.1 and 4.2 is no coincidence; their proofs are very similar.

Before turning to the proof, we briefly outline its main idea. Consider a hereditary

family F of graphs in which every graph has a small separator. We show that every graph

G in F with n vertices has an induced subgraph with at most 3
4
n vertices, whose average

degree is not much smaller than the average degree of G. We repeatedly use this fact until

we find an induced subgraph of G with fewer than g vertices, whose average degree is not

much smaller than that of G. But if the girth of G is at least g, then this induced subgraph

of G with fewer than g vertices is a forest and so has average degree less than 2. If g is

chosen sufficiently large, we conclude that G has average degree at most 2 + 2ε and hence

at most (1 + ε)n edges.

Now we work out the details of the proof of Lemma 7.1. Given a non-negative function

f defined on the set of positive integers, we say that a family F of graphs is f-separable

if every graph in F with n vertices has a separator of size at most f(n).

Lemma 7.2. Let φ(n) be a monotone decreasing non-negative function defined on the set

of positive integers, let g be a positive integer, and let ε > 0 be such that

φ(g) � 1

12
and

∞∏
i=0

(
1 + φ

(
�(4/3)ig�

))
� 1 + ε.

If F is an nφ(n)-separable hereditary family of graphs, then every graph in F on n vertices

with girth at least g has fewer than (1 + ε)n edges.

Proof. Let G0 = (V , E) be a member of the family F with n vertices, girth at least g,

and average degree d. If n < g, then G0 is a forest and hence has at most n − 1 edges. We

may therefore assume that n � g. By definition, there is a partition V = V0 ∪ V1 ∪ V2 with

|V0| � nφ(n), |V1|, |V2| � 2
3
n, such that no vertex in V1 is adjacent to any vertex in V2.

Let d′ and d′′ denote the average degree of the vertices in the subgraphs of G0 induced

by V0 ∪ V1 and V0 ∪ V2, respectively. Every edge of G0 is contained in at least one of these

two induced subgraphs. Hence,

d′(|V0| + |V1|) + d′′(|V0| + |V2|) � 2|E| = d|V |,

so

d′ |V0| + |V1|
|V | + |V0| + d′′ |V0| + |V2|

|V | + |V0| � d
|V |

|V | + |V0| .

Since |V | = |V0| + |V1| + |V2|, then

|V0| + |V1|
|V | + |V0| +

|V0| + |V2|
|V | + |V0| = 1
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and the left-hand side of the above inequality is a weighted mean of d′ and d′′.

Consequently, d′ or d′′ is at least

d
|V |

|V | + |V0| � d
1

1 + φ(n)
.

Suppose without loss of generality that d′ is at least as large as this number, and let G1

denote the subgraph of G induced by V0 ∪ V1. By assumption, we have that φ(n) � 1
12

and |V0| � nφ(n). Therefore, G1 has |V0| + |V1| � 1
12
n + 2

3
n = 3

4
n vertices.

Proceeding like this, we find a sequence of induced subgraphs G0 ⊃ G1 ⊃ G2 ⊃ · · · with

the property that, if Gi has ni � g vertices and average degree di, then Gi+1 has at most
3
4
ni vertices and average degree at least 1

1+φ(ni)
di. We stop with Gj if the number of vertices

of Gj is less than g.

Since Gj is an induced subgraph of G, it also has girth at least g. The number of

vertices of Gj is less than g, so Gj must be a forest and therefore has average degree less

than 2. The above argument also shows that the average degree of Gj is at least 1
1+ε

d, so

d < 2(1 + ε), and the number of edges of G is dn/2 < (1 + ε)n, completing the proof.

Taking logarithms and approximating ln(1 + x) by x, we obtain that

∞∏
i=0

(1 + φ(�(4/3)ig�)) �= ∞

if and only if
∑∞

i=0 φ(�(4/3)i�) �= ∞ if and only if
∑∞

i=0 φ(2i) �= ∞. (For a formal proof

of the elementary fact that
∏∞

i=1(1 + ai) with each ai > 0 converges if and only if
∑∞

i=1 ai
converges, see, e.g., Theorem 3 of Section 3.7 in [20].) Therefore, Lemma 7.2 has the

following corollary.

Corollary 7.3. Let F be an nφ(n)-separable hereditary family of graphs, where φ(n) is a

monotone decreasing non-negative function such that
∑∞

i=0 φ(2i) �= ∞. Then, for each ε > 0

there exists gF (ε) such that every graph in F on n vertices and girth at least g has at most

(1 + ε)n edges.

Since
∑∞

i=1 1/i1+α converges for all α > 0, Lemma 7.1 is an immediate consequence of

Corollary 7.3.

The condition that a connected graph has large girth means that the graph is locally

‘tree-like’. In general, this local condition does not imply that the graph also has some

global tree-like properties. For instance, in 1959 Erdős [9] proved the existence of graphs

with arbitrarily large girth and chromatic number. However, according to Lemma 7.1, if

every member of a hereditary family F of graphs has a small separator, then the condition

that a connected graph in F has large girth does imply that the graph is globally tree-like.

Indeed, if ε < 1/2, then every graph in F with girth at least gF (ε) is 2-degenerate and

hence has chromatic number at most 3.

Furthermore, any graph G in F on n vertices with girth at least max(gF (ε/3), 3/ε) can

be turned into a forest by the removal of at most εn edges. Indeed, we may assume that

G has minimum degree at least 2 since we can remove vertices of degree less than 2
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as they are in no cycles. Also, G has e(G) � (1 + ε/3)n edges. Let d1, . . . , dn denote the

degree sequence of G. We have
∑

i di − 2 = 2e(G) − 2n � 2
3
εn. Delete di − 2 edges from

each vertex i, so the remaining subgraph G0 has vertices of degree at most 2. The number

of edges deleted so far is at most 2
3
εn. The connected components of G0 are trees and

cycles of length at least the girth of G, which is at least 3/ε. Hence, the number of cycles

of G0 is at most ε
3
n. Delete one edge from each of these cycles. The total number of edges

deleted is at most εn, and the remaining subgraph is a forest.

We end this section by presenting two other corollaries of Lemma 7.1. The separator

theorem for graphs with an excluded minor [1], together with Lemma 7.1, imply the

following.

Corollary 7.4. For any ε > 0 and positive integer t, there exists a positive integer g(ε, t)

such that every Kt-minor-free graph on n vertices with girth at least g(ε, t) has at most

(1 + ε)n edges.

A well-known result of Thomassen [39] (see also Chapter 8.2 in [7]) states that for any

positive integer t, there exists another integer g(t) such that every graph with minimum

degree at least 3 and girth at least g(t) contains Kt as a minor. Obviously, Corollary 7.4

implies Thomassen’s result. In fact, it can be shown by a simple argument that the two

statements are equivalent. In the special case of planar graphs and, more generally, for

graphs with bounded genus, the statement easily follows from Euler’s polyhedral formula.

The separator theorem for intersection graphs of balls in R
d [29] together with Lemma

7.1 imply the following result.

Corollary 7.5. For any ε > 0 and positive integer d, there exists a positive integer g(ε, d)

such that every intersection graph of balls in R
d with girth at least g(ε, d) has at most

(1 + ε)n edges.

8. Concluding remarks: a conjecture and counting string graphs

Theorem 1.3, with a much worse dependence of the coefficient of n on t, can also be

deduced from the following result of Kuhn and Osthus [23]. For any graph H and any

positive integer t, there is a constant c(H, t) such that every graph with n vertices and at

least c(H, t)n edges contains an induced subdivision of H or Kt,t as a subgraph. Let H0

be the graph obtained from the complete graph K5 by replacing each edge by a path of

length two. Using the non-planarity of K5, it is easy to see that no subdivision of H0 is a

string graph. Since the family of string graphs is closed under taking induced subgraphs,

no string graph contains an induced subdivision of H0. Thus, the result of Kuhn and

Osthus implies that any Kt,t-free string graph on n vertices has at most c(H0, t)n edges.

However, this proof only shows that

c(H0, t) < 2222ct log t

,

for some absolute constant c.
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The dependence of the coefficient of n on t in Theorem 1.3 could be further improved if

we could prove Conjecture 1.2. Indeed, Conjecture 1.2 combined with Lemmas 5.2 and 5.6

would imply the following.

Conjecture 8.1. Every Kt,t-free string graph with n vertices has O((t log t)n) edges.

Conjecture 8.1, if true, would be tight up to the constant factor. According to a

construction in [10] and [36], there are string graphs with n vertices and (1 − o(1))n2/2

edges, in which the size of the largest balanced bipartite subgraph is O(n/ log n).

Another consequence of Conjecture 1.2 would be that, together with Lemma 5.2, it

would imply that every Kt-free string graph with n vertices has chromatic number at most

(log n)c log t for some absolute constant c. This was shown in [12] for intersection graphs

of curves in which each pair of curves intersects in at most a fixed constant number

of points. It is not even known if every triangle-free string graph with n vertices has

chromatic number no(1).

A family of graphs is small if it contains at most n!αn labelled graphs on n vertices,

for some constant α. For example, a classical result of Cayley asserts that the number of

labelled trees on n vertices is nn−2, so the family of trees is small. A family F of graphs is

addable if G ∈ F if and only if all connected components of G are in F , and if G1, G2 ∈ F

and vi is a vertex of Gi for i ∈ {1, 2} implies that the graph obtained from the disjoint

union of G1 and G2 by adding the edge {v1, v2} is also in F . It was shown by McDiarmid,

Steger and Welsh [28] that if F is small and addable, then there is a constant α = α(F)

such that the number of graphs in F on n vertices is n!α(1+o(1))n.

Norine, Seymour, Thomas and Wollan [30] showed that all proper minor closed graphs

are small, which answered a question of Welsh. Norine and Dvořák [8] recently found a

much simpler proof with a divide-and-conquer approach using the separator theorem [1]

for graphs with a forbidden minor. They show that if F is an f(n)-separable hereditary

family of graphs with f(n) � cn/
(
log n log log n

)2
for some constant c, then F is small.

Pach and Tóth [36] showed that the number of string graphs on n vertices is 2( 3
4 +o(1))(n2).

The above result of Norine and Dvořák [8], together with Theorems 1.1 and 1.3, show

that if H is bipartite, then the family of H-free string graphs is small. It is easy to check

that if H is 2-connected, then the family of H-free string graphs is addable. We thus get

the following corollary.

Corollary 8.2. If H is a 2-connected bipartite graph, then there is a constant c = c(H) such

that the number of labelled H-free string graphs on n vertices is n!c(1+o(1))n.

Notice that every tree is a string graph. In the other direction, we have the following

result, which says that there are not many more string graphs of large girth than trees on

a given number of vertices. It can be proved by the same divide-and-conquer approach.

Corollary 8.3. For each ε > 0, there exists g = g(ε) such that the number of labelled string

graphs on n vertices with girth at least g is at most (1 + ε)nT (n), where T (n) = nn−2 is the

number of labelled trees on n vertices.

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0963548309990459
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 20:51:38, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0963548309990459
https:/www.cambridge.org/core


A Separator Theorem for String Graphs and its Applications 389

Acknowledgement

We would like to thank Benny Sudakov for the simple proof of Lemma 5.4, and Oliver

Riordan and the referee for helpful comments.

References

[1] Alon, N., Seymour, P. and Thomas, R. (1990) A separator theorem for nonplanar graphs.

J. Amer. Math. Soc. 3 801–808.

[2] Alon, N. and Spencer, J. (2000) The Probabilistic Method, 2nd edn, Wiley.

[3] Bollobás, B. (1998) Modern Graph Theory, Springer.
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[22] Kratochvı́l, J. and Matoušek, J. (1994) Intersection graphs of segments. J. Combin. Theory

Ser. B 62 289–315.
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