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Cell biology is in transition from reductionism to a more integrated science. Large-scale analysis of
genome structure, gene expression, and metabolites are new technologies available for studying
cardiac metabolism in diseases known to modify cardiac function. These technologies have several
limitations and this review aims both to assess and take a critical look at some important results
obtained in genomics restricted to molecular genetics, transcriptomics and metabolomics of cardiac
metabolism in pathophysiological processes known to alter myocardial function. Therefore, our goal
was to delineate new signalling pathways and new areas of research from the vast amount of data
already published on genomics as applied to cardiac metabolism in diseases such as coronary heart
disease, heart failure, and ischaemic reperfusion.
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1. Introduction

This review aims both to assess and critically review the
main results obtained in genomics of cardiac metabolism
by the end of 2007. Although genomics have been differen-
tially defined, we use the most widely accepted one, which
was utilized by Gibson and Muse.1 Genomics covers the
overall structure or expression of our genetic inheritance
including molecular genetics, transcriptomics, proteomics,
and metabolomics.

The present work aims to delineate new signalling path-
ways and new areas of research from the vast amount of
data already published on genomics as applied to cardiac
metabolism in diseases, such as coronary heart disease
(CHD) and heart failure (HF). This review was clearly
limited by the fact that both the new molecular genetics,
based on genome-wide association studies (GWAS) and
metabolomics are still in their infancy, at least in the car-
diovascular (CV) field. In contrast, the science of transcrip-
tomics in the CV arena is more mature and had been
developed in more detail.

From the growing flow of new data, a selection was made
to illustrate better the potential of such a global approach.
(i) Genetics has presently reached a new era based on GWAS.
GWAS is, in principle, more liable to identify low-effect
genes operative in pathological pathways and disease sus-
ceptibility in common diseases.2 (ii) Transcriptomics is the

study of gene expression of either transcripts or proteins.
Gene expression is a short-term approach and is based on
two main techniques, namely microarrays analysis and pro-
teomics.1 Two different aspects of transcriptomics have
been developed herein: (a) modifications observed during
the time course of a chronic disease of the heart and (b)
pre- and post-conditioning and changes induced by short-
term metabolic interventions (such as anaesthesia) that
confer cardioprotection. (iii) The final chapter is on metabo-
lomics that aims to quantify still more rapid modifications in
metabolic compounds, but again on a genome-wide scale
with the potential of medical applications.

It is worthy to note that with regards to the importance of
the research area, we have selected studies, which were the
most informative in the field of cardiology.

It has to be underscored that the majority of the studies
reported herein, imply a technical approach, which is both
costly and frequently requires large groups of investigators,
patient cohorts (for GWAS) and multidisciplinary approaches
(for metabolomics). Briefly, GWAS is principally based on
high-density genotyping arrays that combine the power of
association studies with the systematic nature of genome-
wide research. Transcriptomics is mainly based on micro-
array analysis, i.e. a high-throughput method for screening
a collection of microscopic DNA spots attached to a solid
surface and to measure the expression levels of large
numbers of genes in different samples simultaneously. Pro-
teomics commonly utilized two-dimensional polyacrylamide
gel electrophoresis to separate proteins, but there are also* Corresponding author. Tel: þ33 1 5321 6760; fax: þ33 1 53 21 67 39.
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many other technical approaches available including protein
microarrays. Finally, metabolomics is mainly a multidisci-
plinary approach based on the combination of pyrolysis
and different spectrometry.

2. Are genome-wide association studies ready
for common diseases?

Medical genetics not only involves the identification of one
specific gene associated with a severe risk of having a
given disease, but also provides information on associations
of gene variants, each providing a moderate risk.3–6 GWAS is
based on (i) the availability of dense genotyping chips made
with single-nucleotide polymorphisms (SNPs) (100 000–
500 000, and recently, one million) covering most of the
genome unequally; (ii) the growing resources of the Inter-
national HapMap consortium (2007) which documents
linkage disequilibrium (LD—a non-random association
between alleles in a population due to their tendency to
be co-inherited because of reduced recombination
between them. Haplotype is the combination of alleles at
neighbouring SNPs. Haplotypes blocks are the apparent hap-
lotype structures of recombining portions of the genome in
which blocks of consecutive co-inherited alleles are separ-
ated by short boundary regions), and is a public resource
of common SNPs capturing most of the common genome
sequence variability. In the human genome, there are
3.2 billion base pairs and approximately 15 million SNPs,
indicating that kits using 500 000 SNPs should cover ,0.2%
of the genome.4 The second generation human haplotype
map now covers over 3.1 million SNPs.7 Nevertheless, the
statistical association among groups of SNPs, i.e. haplotype
blocks, suggests that the identification of a few of the SNPs
within the blocks can unambiguously identify all associated
SNPs without the need to measure them directly. Recent
studies have shown that the human genome is organized
into a succession of ancestrally conserved distinct haplotype
blocks. On the basis of this assumption, it is assumed that a
500 000 SNP scan should cover approximately 90% of the
genome.8 This chapter on genetics has been deliberately
limited to GWAS and aims both to take a critical look at
the main results obtained by the end of 2007 in CV research
and to generate a new working hypothesis.

2.1 Main results, new insights into metabolic
genomics

GWAS is, for the moment, dominated by the results of big
groups such as The Wellcome Trust consortium (WTCCC)9

and the Framingham Heart Study (FHS).10 The WTCCC
focuses on seven common diseases and includes CHD, dia-
betes, and hypertension. Most of these results were dupli-
cated, especially those concerning CHD in a collaborative
study with the German MI Family Study.10,11 FHS comprises
several working groups each describing specific associations
with various traits [biomarkers, body mass index (BMI), and
so on]. Several of these results were also duplicated. The
WTCCC and FHS utilized approximately 500 000 and
100 000 SNPs, respectively. In addition, there are others
groups that usually used smaller SNP density than the
WTCCC.

To summarize (Table 1), GWAS has generated, for the time
being, three groups of results.

(i) Diseases with phenotypic variance mainly due to
genetic factors such as type 1 diabetes. GWAS docu-
mented at least a dozen genes strongly associated
with type 1 diabetes (HLA class genes, insulin gene,
CTLA4 locus, PTPN22, and the IFIH1 region) that
mostly belong to the immune system which are the
most important targets for research on type 1 diabetes.

(ii) On the other hand, diseases such as arterial hyperten-
sion and hyperlipidaemias remained poorly associated
to simple genetic factors. Despite a considerable
hope, genetic influence is weak and there are few
risk alleles of large size effects and GWAS has been
unable to identify with certainty susceptibility genes
of modest effect size and we need, in the least, geno-
typic resources of increased density.12 Long-term
averages of low-density lipoprotein cholesterol, high-
density lipoprotein cholesterol, triglycerides, and
blood pressure are highly heritable. Nevertheless,
there are no significant associations that could help
further research.

(iii) Type 2 diabetes, obesity, and atherosclerosis are in an
intermediary position. GWAS has succeeded in detect-
ing new loci of interest, which were strongly and repro-
ducibly linked to the phenotype. Several new loci and
genes of interest have now been identified:

(a) The association of the 9p21 locus with CHD has been
found by every GWAS published so far which
suggests, at least, that this association is widely dis-
tributed. The locus contains two cyclin-dependent
kinase inhibitors, which regulate cell cycles. Inter-
estingly, the cell cycle pathway, including cyclins,
was also over-represented in a large-scale gene
expression study, which analysed pathways involved
in atherogenesis using a modular approach. For
these authors, their data suggest that smooth
muscle de-differentiation is a key determinant in
atherogenesis, which is new and unexpected.13

(b) FHS has uncovered unexpected genetic associ-
ations with various markers of arterial stiffness,
including large arteries calcium content and the
reflected wave with candidate genes such as
LOXL2, an oxidase involved in collagen cross-
linking and arterial elasticity.

(c) More than 100 publications have reported associ-
ations between genetic variants and BMI, and/or
type 2 diabetes, but few have been reproduced
so far. The two phenotypes are highly multigenic.
Several associated genes such as TCF7L2,
KCNJ11, SLC30A8, EXT1 have been linked to pan-
creatic development and function.

2.2 Critical evaluation of genome-wide
association studies

GWASs are still in their infancy and many technical and stat-
istical problems remain to be solved. The results of promis-
ing studies such as FHS are still fragmented and require
replication. Nevertheless, GWAS is probably the best tool
now available to validate candidate gene associations and
to enable unbiased searches for novel variants.

There are approximately seven million variants at a
frequency .5%, hence rare alleles may be overlooked.
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Good examples may be found in both the WTCCC (for APOE
and INS) and FHS (for GCKR).9,10 GWAS is based on both SNPs
density and haplotype map, and can be improved by increas-
ing SNP scan density or improving the haplotype map. The
second-generation human haplotype map now covers over
3.1 million SNPs instead of one, and would provide the
solution (see http://www.hapmap.org).

The second limitation lies in the fact that GWAS has many
caveats when studies were conducted in less severe and
more multifactorial diseases, and, in fact, the real
problem is probably that GWAS did not catch RNA genes or
regulatory segments (see Conclusions) that have not
already been identified and could be major determinants
in traits generation.

Table 1 Genome-wide analyses in diseases known to modify cardiac function directly or indirectly

Chromosome Genes present in the locus References

Myocardial infarction
9p21.3 CDKN2A and B (cyclins of the cell cycle) 9–11,69,70
6q25.1 MTHFDH (methionine metabolism) 9,11
1p13.3; 1q41; 10q11.21;

15q22.33
No genes of interest 9,11

Subclinical markers of atherosclerosis
Associations found

Carotid thickness with AB12, PCSK2, and NOS3 10
Aortic calcium with LRRC18
Ankle brachial index with PFTK1

Type 1 Diabetes
2q24 IFIH1/MDA5 71,72
2q33 CTLA-4 9
1p13 PTPN22a 9,71,73
4q27 IL-2 and 21 9,73
6p21 Major histocompatibility complex (MHC) (HLA-DRB1) 9,73
10p15 CD25 9
11p15 INS (insulin) 73
12q13 More than 10 genes with presumed roles in immune signalling: SH2B3 (P 10212); ERBB3; SH2B

adaptor protein-3; TRAFD1; PTPN11a; CD69; CLEC; R262W
9,71

12q24 9,71
16p13 KIAA0350b block, flanked by CIITA and SOCS1 9,71,73
16p13 PTPN2a 9,71
18p11 PTPN2a 9,71
18q22 PTPN2a; CD226 71

Type 2 Diabetes
3p25 PPARG, P12A 9
11p15 PPARG, P12A 10
10q25 TCF7L2 9,10,74
16q FTO 9,75
6p22 CDKAL1
Clusters on Chromosome 10 HHEX; IDE 9,74
8 SLC30A8, EXT2; LOC387761 (genes involved in pancreas development) 9,74
9p21.3 CDKN2A and B 9

Associations with diabetic traits in 416 SNPs; verify replicated associations with ABCC8 10

Obesity and body mass index – Heritability around 60%
Associations with BMI and waist circumference in two SNPs; several candidate genes: ESRI,

PPARG, ADIPOQ, INSIG2, LEP, ESRI, SSTR2 and also LRP1B, VIP, ADRB1, NPY2R, HSD3B1,
ADRA1B, IL6R, AGTR1, FSHR

10

16 FTO 18e

Arterial hypertension
None 9

Associations with blood pressure or arterial stiffness in seven SNPs; a few candidate genes:
MEF2C, SYNE1, LOXL2, TNFSF11

10

Hyperlipidaemia
Associations with LDL-C, HDL-C, and triglycerides in seven SNPs; no new locus identifiable 10

Gene nomenclature can be found on ‘genecards.org’. The papers from FHS are quoted in the work of Cupples et al.10

aThe PTPN family plays a major role in insulin, immune signalling, and autoimmune diseases. PTPN can indirectly dephosphorylate STAT1, a major regulator
of immune signalling.

bKIAA0350 is a widely expressed gene of unknown function. Exon 12 may encode an immune receptor—ITAM—that binds the SH2B3 lymphocyte adaptor
protein.
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3. Metabolic gene expression in cardiac
hypertrophy and failure

Most of the work, which has been published so far in this
area has been mainly descriptive and because they are
dealing with the whole genome expression, only a few of
them have clearly isolated the metabolic family of genes
from the others. However, we now collect these data and
attempt to draw some conclusions.

3.1 Transcriptomics

Genomic approaches such as transcriptional profiling by DNA
microarrays allow the simultaneous analysis of some 55 000
transcripts in a single assay14–16 and provides both qualitative
(switched on/off genes) and quantitative data (transcrip-
tional level of single genes), so that subtle differences on
gene activation can be detected. Today, transcriptional
analysis can be performed on minute tissue samples and,
one of the limits due to cellular heterogeneity can now be
resolved by laser microdissection, which allowed studies of
one cell population. Nevertheless, profiling whole CV tissue
samples may generate novel hypotheses, and help to identify
unexpected cell components and reveal novel marker genes.
As reviewed by Nanni et al.,17 a growing number of transcrip-
tome microarray studies have been applied to CV diseases
with the aim of recognition of specific disease phenotypes
to improve both prognosis and therapeutic assessment.

The comparative study performed by Gao et al.18 between
canine tachy-pacing, mouse transgenic, and human HF
reveals that, in humans, the disease involves a downregula-
tion of genes in a broad range of biological processes. In con-
trast to this, in experimental models of HF, downregulation
of energy metabolic pathways is observed. Human ischaemic
HF and canine HF share a similar over-representation of
transcriptional pathways in the upregulated genes.
However, in this study, no induction of prominent HF
markers, e.g. atrial natriuretic peptides (ANP) and brain
natriuretic peptides (BNP) was detected.19 In the rat heart
following coronary ligation, Laframboise et al.20 demon-
strated that transcripts for signal transduction and inflam-
mation gene expression dominated in the infarct zone
during late-term recovery. There was recruitment of genes
for transcription, metabolism, and detoxification—all
classes were depressed in the day 1 infarct zone. In contrast,
within one day, the remote zone exhibited an upregulation
in many genes particularly in those of the metabolism
family or those associated with developmental processes.
In contrast, transcripts for contractile proteins matched
control values. In the late-term, the metabolic responses
of the remote zone was attenuated.

In humans, Kittleson et al.,16 developed a strategy to
identify genes differentially expressed between ischaemic
(ICM) and non-ischaemic (NICM) cardiomyopathy. When com-
pared with controls, 257 genes (over the 22 000 transcripts
present on the Affymetrix microarray platform) were differ-
entially expressed in NICM and 72 genes in ICM. Only 41
genes were shared between NICM and ICM, and they were
mainly involved in cell growth and signal transduction
(Table 2). Those specifically expressed in NICM were fre-
quently involved in metabolism and included ACE2 and
genes involved in fatty acid (FA) and cholesterol metab-
olism. The genes specifically upregulated in ICM more

often had catalytic activity, such as SERPINB1, SERPINE1,
ATP1B3. Besides these results, using a CardioShip (Cardio-
Chip is a custom-made CV-based tag glass slide cDNA micro-
array formed by non-redundant 10 848-element human
CV-based expressed sequence) in human HF, Barrans
et al.21 found more than 100 transcripts upregulated,
including stress-response proteins, transcription/translation
regulators together with the classical HF genes like ANP, and
selected sarcomeric and extracellular matrix (ECM) pro-
teins. Conversely, they found a downregulation of cell-
signalling channels and mediators, particularly those
involved in the Ca2þ pathways of crucial importance. In
patients with moderate HF and dilated cardiomyopathy
(DCM), the transcriptional profiles demonstrated a switch
in the cardiomyocyte energy pathways (higher rate of lipid
oxidation), apoptosis, and a downregulation of cell cycle-
controlling genes.22 In addition, alterations in the intracellu-
lar signalling functions were already present in the early
stages of the disease. The genes regulating muscle contrac-
tion were deregulated in intermediate stages, whereas
apoptosis and the cell cycle regulator gene expression
were altered in the late stages.

Different results were obtained by Sanoudou et al.23 The
genes of energy metabolism were predominantly underex-
pressed in DCM and hypertrophic cardiomyopathy (HCM), but
overexpressed in ICM.23 For instance, activation of the
cardiac Peroxisome Proliferator-Activated Receptor-alpha
(PPAR-alpha) by Peroxisome Proliferator-Activated Receptor-
gamma Coactivator 1-alpha (PGC1-alpha) induces the
expression of genes encoding for proteins involved in FA
uptake, transport into mitochondria, and beta-oxidation.24

The increased FA utilization leads reciprocally to a decrease
in glucose metabolism. On the other hand, the well-known
hypoxia-inducible transcription factor 1-alpha (HIF1-alpha)
targets approximately 70 genes and among them those that
increase oxygen delivery and survival during hypoxia (such
as genes involved in the upregulation of glucose metab-
olism).25 HIF1 alpha is one of the few transcription factors
promoting upregulation of the glucose pathway. The downre-
gulation of PPAR-alpha and PGC1-alpha in hypertrophy and in
HF could also be considered beneficial, because it indirectly

Table 2 Distribution of genes significantly altered in human
cardiac disease

Family genes Up Down

Nucleus 1
Metabolism 4 1
Cytoskeleton 1 1
Cell adhesion, extracellular matrix 1 1
Inflammatory and immune response 2 None
Binding 3 None
Signal transduction 5 None
Cell growth 4 None
Development 2 None
Catalytic activity 1 None
Apoptosis 1 None

Significant changes in gene expression specific to either ischaemic or
non-ischaemic cardiomyopathies matching sham cohort verified in differ-
ent independent studies (reviewed in Kittleson et al.16). The columns
indicated the activated (up) and inhibited (down) genes comprising
each individual gene classification.
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favours glucose utilization instead of FA oxidation. Finally, the
increased cytoplasmic Ca2þ during diastole in most forms of
end-stage HF permeates the mitochondrial matrix, where it
stimulates Ca2þ-regulated key enzymes in the tricarboxylic
acid cycle as well as ATP synthase, thus accelerating the
energy-producing metabolism.26

In vivo measurements of high-energy phosphate com-
pounds have shown that the failing heart is an engine out of
fuel.24,27 No consent exists, however, whether the FAs or
the glucose pathway predominates in end-stage HF. This
may, in part, be due to the different pathophysiological
aetiologies leading to a final common HF syndrome exhibiting
more generalized metabolic dysfunction, rather than altera-
tions of specific substrate preference regulating genes.24

Transcriptomic analysis assesses that HF, independent of its
aetiology, is characterized by some common final patterns of
gene expression, including those coding for a high rate of lipid
oxidation with low glycolysis, a dysregulated apoptosis, cell-
cycle regulator genes, and ECM remodelling. It was suggested
that different gene expression patterns were associated with
clinical HF severity14 and some patterns characteristic of
clinical syndromes16 may open the road for aetiology-specific
therapies in NICM-targeting metabolic pathways. In most of
these genome-wide analyses, no firm correlation has been
established between the altered expression of specific
genes with functional parameters.

3.2 Transcriptomics and signalling

Most of the extracellular stimuli (ions, hormones, cell
mediators, and mechanical signal) are integrated and
transmitted by various intracellular signalling pathways to
the cell nucleus, ultimately affecting gene-expression pat-
terns.26,28 The signalling pattern in response to stimuli may
represent an early and sensitive disease-specific fingerprint
before the final cellular phenotype has fully developed.

A large body of literature based on ex vivo and in vivo
animal models indicates that pathological myocardial
remodelling is mainly induced by neurohormonal factors
(including angiotensin-II, endothelin-1, and catecholamines)
through Gq-coupled (G-protein-coupled receptors, GPCRs)
signalling pathways.28,29 Downstream of Gq, the pathway
involves phospholipase-C beta, which hydrolyses phospha-
tidylinositol bisphosphate (PIP2) into diacylglycerol (DAG)
and inositol trisphosphate (IP3). IP3 releases calcium from
intracellular stores, which may activate the phosphatase
calcineurin-NFAT pathway. In concert, DAG activates
protein kinase C (PKC) family members, some of which con-
tribute to hypertrophic gene expression.30 In contrast,
exercise-induced hypertrophy appears to be regulated
through the PI3K (phosphoinositide-3 kinase)—PKB/Akt—
GSK3alpha/beta (glycogen synthase kinases) pathway.
Growth (GH) hormone and insulin-like growth factor (IGF)
are the major stimuli for physiological hypertrophy.31–33 Of
note, these signalling pathways are complemented by a
panoply of interconnected routes including the mitogen-
activated protein kinase (MAPK) cascades and the Janus
kinase/signal transducer and activator of transcription
JAK/Stat pathway.26,34 Additional signalling components
also contribute to the final phenotype.

Genome-wide transcriptomic analysis of differentially
regulated genes in physiological (dubbed ‘adaptive’) and
pathological (or ‘maladaptive’) hypertrophy, as well as in

HF of rats was recently reported.35,36 Taken together, the
gene activity profiles obtained with Affymetrix Rat
Genome U34A microarrays pointed out that (i) gene clusters
typically changing in adaptive hypertrophy predominantly
comprised genes involved in metabolism and cell growth;
(ii) maladaptive hypertrophy was characterized by changes
in gene clusters associated with oxidative stress responses,
inflammation, and apoptosis; (iii) transition to overt HF
was accompanied by an increase in those genes already
affected in compensated pathological hypertrophy, by
recruitment of additional signalling genes, such as GATA4,
RAB7, NRAS, GNA12, STAT3, STAT5B, FYN, CRKO, MYCN,
PTEN, AKT1, and IL6ST/gp130.

The most striking and potentially physiologically meaning-
ful observation concerns the shift in metabolic gene
expression.35 Several genes involved in beta-oxidation of
lipids are upregulated in adaptive, but downregulated in
maladaptive hypertrophy. On the other hand, a number of
genes stimulating glucose metabolism are selectively upre-
gulated in adaptive but not in maladaptive hypertrophy.
Furthermore, the uncoupling protein UCP2 is downregulated
in adaptive and upregulated in maladaptive hypertrophy
implying that ATP production through oxidative phosphoryla-
tion might be more effective in exercise-trained hearts.
Collectively, these findings support the notion that tran-
scriptomic changes comprise the basis for functional
improvement of cardiac capacity in glucose utilization by
adaptation to exercise. It remains to be established
whether some or all of the expression changes typical for
pathological cardiac hypertrophy can be observed and
therapeutically addressed in humans. One major obstacle
presents the much slower development in most clinical
heart diseases coupled with small alteration in the early
phases, which might escape detection.

3.3 Proteomics

There are approximately 10 times more proteins than genes,
and expression arrays should preferably be complemented
by proteomic evaluation because the transcripts are not
always reflected in corresponding protein accumulation,
and also because protein may undergo variable co- and post-
translational modifications, the information for which is not
contained in the original transcript. Therefore, new findings
discovered by transcript profiling, may serve as leads but
require subsequent functional characterization.23 For both
the microarray analysis and proteomics, an unbiased
approach requires sophisticated bioinformatics tools and a
large panel of controls which will not be detailed in this
review (see details in Gibson and Muse,1 Ruiz and Witt,19

da Silva et al.,37 and Lucchinetti et al.38).
Proteomic biomarkers differ from traditional biochemical

markers, in which multiple interacting protein species are
evaluated simultaneously to reflect the response of a
cell or an organism to disease. Proteomics might then be
utilized to investigate rapid changes in signalling pathways.
A resource of web-based two-dimensional electrophoretic
maps annotated for healthy and diseased cardiac tissues
has recently been highlighted.39 Proteomics includes other
approaches such as gel-free separation (LC, liquid IEF, CE,
FFE) and identification of the purified protein can be per-
formed through mass spectrometry (MS or MS/MS).
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Lindsey et al.,40 using a multi-dimensional proteomic
approach, identified 123 proteins that were differentially
expressed during left ventricular hypertrophy in mouse,
including LIM proteins, thioredoxin, myoglobin, FA-binding
protein 3 (FABP), and myofibrillar proteins. The classification
into seven categories is as follows: (1) cell structure and
motility; (2) cell signalling and communication; (3) metab-
olism; (4) transcription, translation, and trafficking; (5)
cell division; (6) cell and organism defense; (7) unknown
provides more information. Among the 95% that could be
assigned to one of the six known functions, 36% and 21% of
the identified proteins belongs to metabolism, cell struc-
ture, and motility classes, respectively. Some of these
changes were not confirmed using western blotting, as
changes in myoglobin. Besides, through a subproteomic
analysis, Banfi et al.41 demonstrated, among the metabolic
changes observed in human HF, a decreased FA oxidation
as indicated by the FABP content.

3.4 Critical evaluation of transcriptomics and
proteomics

Both transcriptomics and proteomics are no more in their
infancy and require many technical and statistical problems
to be solved. As already pointed out above, the results are
still fragmented and require further development. One
might pay attention to the cell heterogeneity of the heart,
and consider the part of non-muscle cell (endothelial cell,
fibroblast) into cell signalling changes. Nevertheless, proteo-
mics emerges as one of the best tool to bring new insight into
applied genomics of cardiac metabolism, mainly through the
analysis of post-translational modifications. Yet, proteomics
remains to be a field strongly based on technologies.

4. Metabolomics

The study of the collection of small molecular-weight
organic and inorganic species present in a biological
system is defined as metabolomics.42,43 These collection of
metabolites can provide a phenotypic oversight of the
organism, either as a snapshot in time or as an integrated
picture of biology over a period of time. The human metabo-
lome is estimated to contain approximately 1500 endogen-
ous metabolites not including many lipids and gut
microflora-derived metabolites,44 and is chemically and
physically diverse.45 Metabolites are the final downstream
product of gene transcription and so reflect more closely
the cell activity (or phenotype) at a functional level. Fur-
thermore, metabolic control analysis (MCA) describes that
small changes in enzyme activity (and the transcripts
which encode these) may have minimal influence on meta-
bolic fluxes, but large influences on the concentrations of
metabolites. Consequently, the metabolome is thought to
be a potentially more sensitive marker of cellular processes
both in normal physiology and disease.42

The science of metabolomics operates to a workflow or
pipeline approach46 and involves multi-disciplinary teams
with the objective to create valid and experimentally
robust data and convert this data into biological knowl-
edge.47 Analogous to the human genome project, there
are numerous approaches to define the human metabo-
lome44 (http://www.husermet.org; http://www.hmdb.ca).

4.1 Biomarker detection

The application of metabolomics to human disease studies is
an emerging science, in which patterns of metabolites in the
disease state are compared with those of ‘healthy’ individ-
uals to allow identification of potential biomarkers of the
disease process.48,49 An advantage of using metabolomics
for the identification of biomarkers of a disease state are
the inductive approaches applied to studying these
complex systems, where many diseases are characterized
as multiple disorders or display multiple phenotypes across
a population.

In a recent study from our group, the serum of 52 patients
with documented HF (left ventricular ejection fraction
,40%) was subjected to metabolomic analyses. Multiple bio-
markers were detected, of which 2-oxoglutarate and pseu-
douridine were the metabolites showing greatest
statistical differences between the case and matched
control classes. The combination of both provided a
greater sensitivity and specificity for the diagnosis of HF in
this patient cohort than the current gold standard biomarker
BNP.50 Pseudouridine is a modified nucleoside that is found
in ribosomal and transfer RNA, is produced post-
transcriptionally and is considered to be an excellent
measure for RNA degradation, and hence the cell turnover.
Tumour cells exhibit an unusually high turnover, and conse-
quently has also been proposed as a tumour marker51

where it can have significant prognostic value. In HF its
raised level may, in part, reflect the remodelling process
in the heart itself or increased catabolic activity in periph-
eral tissues.

2-Oxoglutarate is an important intermediate of the
Krebs cycle and one of the 12 major precursors for the
synthesis of most biochemical substances. In recent
years, it has become increasingly clear that alterations
in energy metabolism may contribute to the pathophysiol-
ogy of HF.52,53 The raised levels of 2-oxoglutarate seen
in HF may reflect a decreased flux through the Krebs
cycle in HF and overflow of some metabolites into the
circulation.

In another study in which blood samples were analysed
from subjects undergoing exercise stress testing, a
number of biomarkers were identified in those patients
whose stress test demonstrated evidence of cardiac ischae-
mia54 and noted that six of the metabolites in the Krebs
cycle were significantly over-represented in the 23
markers of cardiac ischaemia identified. Indeed, in exper-
imental animal models of cardiac ischaemia it has been
demonstrated that there is a significant reduction (80%) in
efflux of Krebs cycle intermediates from the myocardium
with maintenance of intracardiac tissue levels and it is
thought that this may be an important pathophysiolocal
mechanism to preserve Krebs cycle metabolic intermediates
and therefore protect ATP production within the
myocardium.

Metabolomic analyses in CV medicine may not only be
potentially useful in the identification of potential bio-
markers of CV disease in the future, but may provide infor-
mation regarding prognosis, response to therapy, and
underlying mechanisms of the disease process. It is worthy
to note that to reach this goal, the relative specificity for
CV diseases of the current metabolomics approaches need
to be improved.
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5. Genomics and proteomics applied to
myocardial ischaemia and cardioprotection

5.1 Genomics applied to cardioprotection

5.1.1 Cardioprotection obtained by ether-derived
halogenated volatile anaesthetics
Ischaemia, and more recently anaesthesia, are known to
confer cardioprotection on either a short- or a long-term
basis through different mechanisms. The well documented
pre- and post-conditionings (Pre-C and Post-C) are good
examples of how genomics can be applied to CV research.
The induction of short- and long-term gene reprogramming

was examined by genome-wide gene activity profiling after
either ischaemia or anaesthesia obtained with ether-derived
halogenated volatile anaesthetics (VAs).37,55 Alterations in
gene expression induced by anaesthetic conditioning were
compared with the well-known ischaemic conditioning pro-
cedures (Figure 1). Subsequently, the insight gained from
the experimental approaches could be directly translated
into clinical applications. Thereby, the volatile cardiopro-
tective sevoflurane in comparison with the widely used
intravenous propofol, reduced the expression of genes
involved in noxious pathways and shifted the energy metab-
olism away from FA oxidation more to glucose utilization.38

Important differences were observed in signalling between
ischaemia and VAs-induced conditioning.37,56 The two major
signalling routes for VAs-Pre-C were the phospholipase-C path-
ways and a direct activation of nitric oxide synthase. Both sig-
nalling routes converge on activating the mitoKATP channels
and blockade of these channels by 5-hydroxydecanoate
results in complete inhibition of cardioprotection. Conversely,
application of the specific channel opener diazoxide induces
cardioprotection just like the VAs.

In contrast, signalling by the ischaemic Pre-C trigger also
involves the MAPK pathways in addition to those activated
by VAs.37,57 Differences in signalling between the two
modes of Pre-C were expected, because the ischaemic
trigger exerts a noxious cellular stress for induction of pro-
tective responses, while the VAs trigger rather sedates the
cells without causing any lesions,58 and as a corollary, the
two trigger mechanisms affect the gene activity profile in
different ways (Figure 1).37,59

The major signalling routes by anaesthetic and ischaemic
Post-C comprise the so-called reperfusion injury salvage
kinase pathways (RISK).60–63 The RISK pathways comprise
several signalling routes all of which converge on inhibiting
the mitochondrial permeability transition pore (mPTP) by an
as yet unknown mechanism. Therefore, the functionally
coupled mitoKATP channel and mPTP represent the major
mitochondrial target structures for pre- and post-
conditioning, respectively.58,64 Finally, functional impairment
of either or both structures can initiate apoptosis/necrosis.

5.1.2 Transcriptomic profile during VAs-induced
cardioprotection
From visual inspection of the heat map (Figure 1A, first two
column groups), one can conclude that both triggers regu-
late a number of genes in parallel (same colour in horizontal
rows), while a large portion of genes were differentially
regulated as indicated by non-corresponding colour rows.
On the other hand, a large portion of genes display a
similar pattern after test ischaemia alone and after ischae-
mic Pre-C followed by test ischaemia (Figure 1A, last two
column groups). Finally, a similar correspondence of com-
monly regulated genes appears in time-matched perfusion
controls when compared with VA Pre-C followed by test
ischaemia (Figure 1A, middle two column groups). The
different activity profiles between the two conditioning trig-
gers and the substantial overlapping of the profiles between
(i) VAs Pre-C and untreated controls and (ii) ischaemic Pre-C
and unprotected ischaemia are visualized in Figure 1B.37

These findings indicate different gene-activity profiles for
the two trigger mechanisms. Although ischaemic Pre-C is
able to afford cardioprotection, the subsequent ischaemic
cell damage incurred by the test ischaemia brings the

Figure 1 Transcriptome profiles of isolated beating rat hearts after con-
ditioning trigger alone and after test ischaemia. (A) Global gene expression
matrix (heat map) of 2212 ANOVA-filtered genes (with P-value ¼ 0.01). Hori-
zontal rows correspond to genes and vertical columns correspond to samples
(numbers of chips on the abscissa of heat map) in the six treatment groups.
Colours (dark blue indicates least and red indicates highest degree of
expression) represent quantification for gene expression based on normalized
and centered robust multichip average values. Coupled two-way clustering
for all the six treatment groups (not shown) yielded eight stable gene clus-
ters. (B) Principal component analysis of the six treatment groups represent-
ing two-dimensional vector projection of individual chip data. APC-TRI,
application of 15 min isoflurane (in clinically relevant concentrations)
without following test ischaemia (anaesthetic trigger); IPC-TRI, application
of three cycles of 5 min ischaemia interspersed by 5 min reperfusion
periods without following test ischaemia (ischaemic preconditioning
trigger); APC, anaesthetic preconditioning followed by 40 min of global
ischaemia; controls (CTL), time-matched perfusion without any treatment;
IPC, ischaemic preconditioning followed by 40 min of global ischaemia;
ischaemia (ISCH), 40 min global ischaemia without preconditioning. Tissue
samples for chip analysis were taken after 3 h of additional perfusion time
subsequent to the treatments. Treatment groups are encircled. Note: over-
lapping and nearby located treatment groups are encircled in red. Modified
from da Silva et al.37
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profiles surprisingly close to those of unprotected hearts
subjected to severe ischaemia. One may speculate that a
number of the cell reactions induced by ischaemic Pre-C
are similar or identical to those induced by severe ischaemia
in unprotected hearts, thus contributing to the similar tran-
scriptome profiles. This constitutes a compelling reason to
not apply ischaemic Pre-C therapeutically in the clinical
setting for patients with an already compromised vascular
system. On the other hand, the completely overlapping pro-
files of VAs Pre-C with those of untreated perfused control
hearts (Figure 1B) indicates that this procedure does not
afflict cell damage in order to induce cardioprotection and
may well have clinical potential in perioperative medicine.

5.2 Proteomics and ischaemia reperfusion

Proteomic investigations have been used to reveal altera-
tions in mitochondrial signalling mechanisms in different
cardiac phenotypes.65 Proteomic analysis of ischaemic/
reperfused rabbit hearts revealed multiple changes associ-
ated with stress responses and energy metabolism in mito-
chondria. Interestingly, the mitochondrial subproteomic
alterations correlated with susceptibility to injury,
suggesting that mitochondrial signalling might also serve as
biomarker of CV impairments.65 Proteomics studies of the
mitochondria have provided novel evidences for kinase sig-
nalling cascades localized in the mitochondria, some of
which are known to involve various isoforms of PKC.66

Finally, post-translational modifications of proteins,
protein–protein interactions and the identity, localization
and function of signalling complexes can be monitored by
proteomic techniques. Agnetti et al.66 provided new con-
cepts related to novel cardiac post-translational modifi-
cations including (i) PKC-mediated phosphorylation of a
myofilament component, troponin I, and of intermediate
filaments, desmin; (ii) novel protein modifications that are
related to maladaptive cellular processes.

6. Limitations and perspectives

Large-scale quantitative analysis of gene expression,
genome structure, and metabolic by-products are now
applied to the CV field. Genomics is now producing billions
of new data and there is an urgent need for classification,
ordering, and finally functional interpretation. At this
moment, we are facing two types of problems: (i) how to
sort such a flood of new data; (ii) how to explain the fact
that GWAS, despite its enormous potential, fails to find
more readily disease-related variants of interest.

Traditional approaches have been based upon reduction-
ism, whereby small parts of a larger complex system can
be investigated by hypothesis-driven experiments.
However, in systems of high complexity, a data-driven
approach is now applied where an experiment is designed
to collect data from which a hypothesis can be deduced.43

Based on the various results coming from the different
aspects of genomics, this inductive approach is applied
extensively in the post-genomic era. One possibility,
among others, to better link these new results to
functional interpretation is modular biology. Biological
systems are scale-free networks made from genes, proteins,
or traits that interact with one another and form
functional modules. Networks emerge according to the

‘rich-gets-richer’ mechanism with hubs and nexus as attrac-
tive candidate for targeting new pathways.15,67 Such an
approach has still been rarely applied.13

Presently, the changing definition of ‘what is a gene’ may
contribute to the difficulty in capturing new variants of
interest by the GWAS. To account for both the complex pat-
terns of dispersed regulation and pervasive transcription
uncovered by the ENCODE project and the abundance of
non-coding regulatory RNA genes (as miRNA), it was pro-
posed to define a gene as ‘a union of genomic sequences
encoding a coherent set of potentially overlapping func-
tional products’.68 Such a definition ‘manifests how integral
is the concept of biological function’ and also highlights the
limits of the new genetics. In that sense, we could predict
that ENCODE, when fully available, will probably modify
our approaches to genomic studies like how the two gene-
rations of the HapMap programme did.

7. Conclusions

Cell biology is in transition from a reductionistic approach to
a more integrated science. Large-scale analysis of genome
structure, gene expression, and metabolites are new tech-
nologies available for studying cardiac metabolism, includ-
ing diseases known to modify cardiac function. These
technologies have several limitations, which will hopefully
be overcome in the near future. (i) GWAS are a revolution
in molecular genetics and have allowed identification of
new variants associated with cardiac metabolism in
common CV diseases, including variants in the immune
system in type 2 diabetes and markers of the cell cycle in
atheroma. (ii) The transcriptome is modified in HF with a
global change in gene families involved in signal transduc-
tion, cell growth, and metabolism with the shift in the meta-
bolic genes being predominant irrespective of the disease
aetiology. (iii) The VA-induced pre- and post-conditioning is
a good example of how genomics can help to decipher the
metabolic pathways involved in cardioprotection. (iv) Meta-
bolomics is an emerging technique, which has already been
able to identify biomarkers of interest, such as pseudo-
uridine and 2-oxoglutarate in HF for example.
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