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We give simple explicit formulas for deformation quantization of Poisson–Lie groups

and of similar Poisson manifolds which can be represented as moduli spaces of flat con-

nections on surfaces. The star products depend on a choice of Drinfeld associator and

are obtained by applying certain monoidal functors (fusion and reduction) to commuta-

tive algebras in Drinfeld categories. From a geometric point of view, this construction

can be understood as a quantization of the quasi-Poisson structures on moduli spaces

of flat connections.

1 Introduction

This note is based on the observation made in [8] that Poisson–Lie groups, and many

related Poisson manifolds, can be realized as moduli spaces of flat connections on sur-

faces with boundary and marked points, which makes the problem of their deformation

quantization rather straightforward.

Alekseev et al. [1] noted that moduli spaces of flat g-connections on surfaces with

boundary and marked points carry a quasi-Poisson structure, and that they can be con-

structed out of simple building blocks using the operation of fusion. In [8], we extended
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their result to surfaces with several marked points on each boundary component (which

simplified the basic building block to just the Lie group G, with zero quasi-Poisson

bracket), and also observed how coisotropic reduction can be used to produce various

Poisson manifolds, and Poisson–Lie groups in particular.

Enriquez and Etingof [4] realized that the quantization of a g-quasi-Poisson man-

ifold should be an associative algebra in Drinfeld’s braided monoidal category Ug-ModΦ ,

where Φ is a Drinfeld associator.

Our strategy is to start with a commutative algebra in a Drinfeld category

and then apply to it a monoidal functor to form an associative algebra in the cate-

gory of vector spaces. The monoidal functor is a composition of a quantum analog

of the quasi-Poisson operations of fusion (basically an obvious monoidal struc-

ture on the tensor product functor in a braided monoidal category) and coisotropic

reduction.

We should stress that our aim is rather modest. We just provide a star product

for certain Poisson manifolds. We do not discuss how it depends on additional choices

(of how we decompose the surface into a union of disks). More importantly, we do not

prove that our quantization procedure preserves algebraic structures on the Poisson

manifolds; for example, we do not prove that we get Hopf algebras out of Poisson–Lie

groups (though the star product is equal (at the origin) to the quantum coproduct of

Etingof and Kazhdan [5]). We plan to address these problems, as well as the quantization

of quasi-Poisson moment maps (needed for quantization of certain Poisson manifolds),

in a future work.

2 Commutative Algebras in the Drinfeld Category

Let g be a Lie algebra with a chosen invariant element t ∈ (S2g)g, and let Φ ∈ C〈〈x, y〉〉
be a Drinfeld associator. The element t and the associator Φ may be used to deform

the symmetric monoidal structure on the category Ug-Mod to a braided monoidal

structure. More precisely, let Ug-ModΦ be the category with same objects as Ug-Mod,

and with

HomUg-ModΦ (X,Y)= HomUg-Mod(X,Y)[[h̄]].

The tensor products are the same in both categories, but the braiding in Ug-ModΦ is

the symmetry in Ug-Mod composed with the action of exp(h̄t1,2/2), and the associativity

constraint is given by the action of Φ(h̄t1,2, h̄t2,3). See [3] for details.
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Proposition 1. Let A be a commutative associative algebra in Ug-Mod with product

m : A⊗ A→ A, such that

m ◦ (t1,2·)= 0.

Then A, with its original product, is a commutative associative algebra in Ug-ModΦ . �

Proof. We need to show that

m ◦ (exp(h̄t1,2/2) · )= m and m(3) ◦ (Φ(h̄t1,2, h̄t2,3) · )= m(3),

where m(3) = m ◦ (m ⊗ 1)= m ◦ (1 ⊗ m). Both follow from m ◦ (t1,2·)= 0. �

We shall call a Lie subalgebra c ⊂ g coisotropic if the image of t ∈ S2g in S2(g/c)

vanishes.

Corollary 1. Let M be a manifold with an action of g, such that the stabilizers of points

are coisotropic Lie subalgebras of g. Then C ∞(M), with its original product, is a com-

mutative associative algebra in Ug-ModΦ . �

Example 1. Let G be a Lie group with the Lie algbera g and C ⊂ G a closed Lie subgroup

with a coisotropic Lie algebra c ⊂ g. Then C ∞(G/C ) is a commutative associative algebra

in Ug-ModΦ .

If ḡ denotes g with t replaced by −t, then the diagonal Lie subalgebra gdiag ⊂
g ⊕ ḡ is coisotropic. We have a natural identification (G × Ḡ)/Gdiag = G. The algebra

C ∞(G) is thus a commutative associative algebra in U (g ⊕ ḡ)-ModΦ . The action is given

explicitly by

(ξ, η) · f = (ηL − ξ R) f, f ∈ C ∞(G), (ξ, η) ∈ g ⊕ ḡ,

where ξ L/ηR denote the left/right-invariant vector fields on G equal to ξ/η at

the identity. �

Proposition 2. Let g and h be Lie algebras with chosen elements tg ∈ (S2g)g, th ∈ (S2h)h.

Let c ⊂ g be a coisotropic Lie subalgebra. The functor

c-invariants : U (g ⊕ h)-ModΦ → Uh-ModΦ

is braided monoidal with the coherence maps Xc ⊗ Yc → (X ⊗ Y)c being the natural

inclusion. �
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Proof. On tensor products of c-invariants the element tg acts by 0. �

Corollary 2. If A is an associative algebra in U (g ⊕ h)-ModΦ, then Ac, with the product

inherited from A, is an associative algebra in Uh-ModΦ . �

We shall call the algebra Ac the reduction of A by c.

Example 2. If we take A= C ∞(G) in U (g ⊕ ḡ)-ModΦ and take the c-invariants for a

coisotropic c ⊂ ḡ, we obtain Ac = C ∞(G/C ), an algebra in Ug-ModΦ . �

3 Fusion

We shall produce noncommutative algebras using monoidal functors which are not

braided monoidal, and applying them to (possibly commutative) associative algebras.

Theorem 1. Let C be a braided monoidal category. The functor

⊗ : C × C → C

is a strong monoidal functor, with the monoidal structure

(X1 ⊗ Y1)⊗ (X2 ⊗ Y2)→ (X1 ⊗ X2)⊗ (Y1 ⊗ Y2) (∀X1, X2,Y1,Y2 ∈ C)

given by the parenthesized braid

(1)
�

Proof. Recall that a strong monoidal structure on a functor F between two monoidal

categories is a natural isomorphism F (X ⊗ Y)→ F (X)⊗ F (Y) such that the diagram

(2)
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commutes. In our case (F = ⊗), both ways of composing the morphisms from top left

to the bottom right correspond to the same parenthesized braid, where all the strands

moving to the right are above the strands moving to the left. �

Corollary 3. If A, B ∈ C are monoids (and thus (A, B) is a monoid in C × C), then A⊗ B ∈
C is also a monoid, with the product

�

In the case of C = Ug-ModΦ, there exists a universal element J ∈ (Ug)⊗4[[h̄]] such

that the morphism (1) is equal to

(1 ⊗ sY1,X2 ⊗ 1) ◦ (J·),

where sY1,X2 : Y1 ⊗ X2 → X2 ⊗ Y1 is the symmetry morphism. The property of J given by

Theorem 1 also implies the following (slightly stronger) result.

Theorem 2. Let g and h be Lie algebras with chosen elements tg ∈ (S2g)g, th ∈ (S2h)h.

Let

F : U (g ⊕ g ⊕ h)-ModΦ → U (g ⊕ h)-ModΦ, F (X)= X

be the functor coming from the morphism of Lie algebras

g ⊕ h → g ⊕ g ⊕ h, (u, v) 
→ (u,u, v).

Then F is a monoidal functor where the coherence map is the natural transformation

defined by the action of J ∈ (Ug)⊗4[[h̄]] = (U (g ⊕ g))⊗2[[h̄]]. �

Proof. To simplify the notation, we assume h is trivial. The key thing to notice is that

for C = Ug-ModΦ , the coherence map described in Theorem 1 is given by the universal



On Quantization of Poisson–Lie Groups and Moduli Spaces 6739

element J ∈ (Ug)⊗4[[h̄]], which in turn, satisfies a universal intertwining equation. Specif-

ically, the element J satisfies the relation

Φ1,3,5Φ2,4,6 J13,24,5,6 J1,2,3,4 = J1,2,35,46 J3,4,5,6Φ12,34,56 ∈ (Ug)⊗6[[h̄]],

as both sides of this identity come from the same parenthesized braid with six strands:

the braid corresponding to either chain of morphisms from top left to bottom right of

(2). This equation is precisely the identity which the coherence map is required to satisfy

for Theorem 2. �

If A∈ U (g ⊕ g ⊕ h)-ModΦ is an associative algebra, we shall call the asso-

ciative algebra F (A) ∈ U (g ⊕ h)-ModΦ a (quantum) fusion of A. Note that F is

not a braided monoidal functor, hence F (A) can be noncommutative even if A is

commutative.

If m : A⊗ A→ A is the original product in A and m′ the fused product, then

m′ = m ◦ (J·). (3a)

Since

J = 1 + h̄

2
t2,3 + O(h̄2),

we obtain

m′ = m + h̄

2
m ◦ (t2,3·)+ O(h̄2). (3b)

4 Quasi-Poisson Algebras

Let g and t ∈ (S2g)g be as above. Let φ ∈ ∧3 g ⊂ g⊗3 be defined by

φ = 1
4 [t1,2, t2,3],

that is,

φ(α, β, γ )= − 1
4 〈[t	α, t	β], γ 〉 ∀α, β, γ ∈ g∗,

where t	 : g∗ → g is given by contraction with t. Every associator Φ satisfies

Φ(h̄t1,2, h̄t2,3)= 1 + h̄2

6
φ + O(h̄3). (4)
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Definition 1 ([1]). A g-quasi-Poisson algebra is a g-module A with a g-invariant commu-

tative associative product, and with a g-invariant skew-symmetric bilinear map

{ , } : A× A→ A,

which is a derivation in both components, such that

{a1, {a2,a3}} + c.p.= −m(3)(φ · (a1 ⊗ a2 ⊗ a3)), (5)

for all a1,a2,a3 ∈ A, where m(3) : A⊗3 → A is the product. �

The following proposition is from [4]; for completeness, we include a proof.

Proposition 3. Let Abe an associative algebra in Ug-ModΦ with product mh̄ : A⊗ A→ A.

Suppose that the reduction m0 of mh̄ modulo h̄ is a commutative product. Let

{ , } : A× A→ A

be defined by
{a,b} = mh̄(a ⊗ b − b ⊗ a)/h̄ mod h̄.

Then (A,m0, { , }) is a g-quasi-Poisson algebra. �

Proof. The associativity of mh̄ means

mh̄ ◦ (1 ⊗ mh̄) ◦ΦA = mh̄ ◦ (mh̄ ⊗ 1),

where
ΦA : A⊗3 → A⊗3

is the action of Φ(h̄t1,2, h̄t2,3) on A⊗3.

Let [a,b] := mh̄(a ⊗ b − b ⊗ a). Using (4), we obtain

[a1, [a2,a3]] + c.p.= (mh̄ ◦ (1 ⊗ mh̄)− mh̄ ◦ (mh̄ ⊗ 1))

⎛
⎝∑
σ∈S3

sgnσ aσ(1) ⊗ aσ(2) ⊗ aσ(3)

⎞
⎠

= (mh̄ ◦ (1 ⊗ mh̄) ◦ (1 −ΦA))

⎛
⎝∑
σ∈S3

sgnσ aσ(1) ⊗ aσ(2) ⊗ aσ(3)

⎞
⎠

= −h̄2(m0 ◦ (1 ⊗ m0))(φ · (a1 ⊗ a2 ⊗ a3))+ O(h̄3),

as we wanted to prove. �
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The constructions of associative algebras in Ug-ModΦ have straightforward

analogs for g-quasi-Poisson algebras:

• If A is a commutative associative algebra in Ug-Mod such m ◦ (t1,2·)= 0,

then A, with {, } = 0, is a g-quasi-Poisson algebra. We shall call these alge-

bras quasi-Poisson-commutative. This is true, in particular, for A= C ∞(M),

where M is a g-manifold such that the stabilizers are coisotropic Lie

subalgebras of g [7].

• If A is a g ⊕ h-quasi-Poisson algebra and c ⊂ g is a coisotropic Lie subalgebra,

then the space of c-invariants Ac is an h-quasi-Poisson algebra [8].

• If A is a g ⊕ g ⊕ h-quasi-Poisson algebra, then the morphism of Lie algebras

g ⊕ h → g ⊕ g ⊕ h, (u, v) 
→ (u,u, v)

makes A to a g ⊕ h-quasi-Poisson algebra, with the new bracket (cf. (3b))

{a,b}′ = {a,b} + 1
2 m(t2,3 · (a ⊗ b − b ⊗ a)),

where m : A⊗ A→ A is the product. The result is called a (quasi-Poisson)

fusion of A (see [1]).

• If A is a g ⊕ h-quasi-Poisson algebra, then it is, with the same bracket, also a

ḡ ⊕ h-quasi-Poisson algebra. The same is true for algebras in U (g ⊕ h)-ModΦ

and U (ḡ ⊕ h)-ModΦ only if the associator Φ is even, that is, if

Φ(−x,−y)=Φ(x, y),

since then the monoidal structures on U (g ⊕ h)-ModΦ and U (ḡ ⊕ h)-ModΦ are

the same (with different braidings).

Definition 2 ([4]). A deformation quantization of a g-quasi-Poisson algebra

(A,m0, {, })

is a series mh̄ = ∑∞
i=0 h̄im(i) making A an associative algebra in Ug-ModΦ , such that

m(0) = m0, {a,b} = m(1)(a ⊗ b − b ⊗ a),

and such that each m(i) is a bidifferential operator (with respect to m0). �
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The following theorem gives us a deformation quantization of any quasi-Poisson

algebra which is built out of a quasi-Poisson-commutative algebra by repeated fusion

and reduction.

Theorem 3.

(1) If (A,m0, {, } = 0) is a g-quasi-Poisson-commutative algebra, then A, with

mh̄ = m0, is its deformation quantization.

(2) If (A,mh̄) is a deformation quantization of a g ⊕ g ⊕ h-quasi-Poisson algebra

(A,m0, {, }), then the quantum fusion of (A,mh̄) is a deformation quantiza-

tion of the quasi-Poisson fusion of (A,m0, {, }).
(3) If (A,mh̄) is a deformation quantization of a g ⊕ h-quasi-Poisson algebra

(A,m0, {, }) and if c ⊂ g is a coisotropic Lie subalgebra, then Ac is a defor-

mation quantization of the h-quasi-Poisson algebra Ac. �

Proof. Part 1 is Proposition 1, Part 2 follows from Equation (3b), and Part 3 is

obvious. �

5 Quasi-Poisson Structures on Moduli Spaces of Flat Connections

If M is a manifold with a g-quasi-Poisson structure on C ∞(M), then M is called a

g-quasi-Poisson manifold. Equivalently, M is a manifold endowed with an action of g

and with a g-invariant bivector field π such that

[π, π ]/2 = −φM,

where φM is the image of φ ∈ ∧3 g under the action map g → X(M).

We shall say that M is quasi-Poisson-commutative if C ∞(M) is quasi-Poisson-

commutative, that is, if π = 0 and the action of g has coisotropic stabilizers.

If M is a g-quasi-Poisson manifold and N a h-quasi-Poisson manifold, then

M × N is g ⊕ h-quasi-Poisson, with πM×N = πM + πN . If M is g-quasi-Poisson and M′ → M

is a local diffeomorphism (an étale map), then M′ is also g-quasi-Poisson.

The most important examples of quasi-Poisson manifolds arise as moduli spaces

of flat connections on a surface [1, 2]. Our presentation follows [8].

Let Σ be a compact oriented surface with boundary and V ⊂ ∂Σ a finite set of

marked points. We suppose that V meets every component of Σ (Σ does not have to be

connected).
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Let Π1(Σ,V) denote the fundamental groupoid of Σ with the base set V . Let

MΣ,V (G)= Hom(Π1(Σ,V),G).

By a skeleton of (Σ,V), we mean an embedded oriented graph Γ ⊂Σ with the vertex set

V , such that there is a deformation retraction of Σ to Γ . Given a skeleton, we obtain a

bijection

MΣ,V (G)∼= GE ,

where E is the set of edges of Γ . In this way, MΣ,V (G) becomes a manifold (the manifold

structure is independent of the choice of Γ ).

There is a natural action of GV on MΣ,V (G), namely

(g · μ)(γ )= gin(γ )μ(γ )g
−1
out(γ ) (μ :Π1(Σ,V)→ G, γ ∈Π1(Σ,V), g ∈ GV ).

Recall from Example 1 that g ⊕ ḡ acts on G with coisotropic stabilizers. Thus G, with

π = 0, is g ⊕ ḡ-quasi-Poisson, and hence also g ⊕ g-quasi-Poisson. Note that it is quasi-

Poisson-commutative in the first case, but not in the second case.

Theorem 4 ([8]). There is a natural bivector field πΣ,V on MΣ,V (G) which, together with

the action of gV , makes MΣ,V (G) to a gV-quasi-Poisson manifold. It is specified uniquely

by the following properties:

• IfΣ is a disk and V consists of two points, so that MΣ,V (G)= G, then πΣ,V = 0.

• If Σ is the disjoint union of Σ1 and Σ2, so that MΣ,V (G)= MΣ1,V1(G)×
MΣ2,V2(G), then πΣ,V = πΣ1,V1 + πΣ2,V2 .

• If (Σ∗,V∗) is obtained from (Σ,V) by a “corner connected sum” at two points

P , Q ∈ V , as in the picture, then MΣ∗,V∗(G) is obtained by fusing the gV-quasi-

Poisson structure on MΣ,V (G) along the P th and Qth factors of gV .
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Fig. 1. The surface Σ retracts onto the embedded skeletal graph. The pre-images (under the

retract) of the graph’s various edges are shaded in different tones; each such pre-image is diffeo-

morphic to a disk. In particular, the retract yields an explicit decomposition of the surface as a

corner connected sum of a family of disks each of which has two marked points.

If P ∈ V is such that the set V − {P } meets every component of Σ, then

MΣ,V−{P }(G) is the reduction of MΣ,V (G) by g acting at P . �

In particular, a deformation retraction of Σ onto the skeleton Γ makes Σ to

a corner connected sum of a family of disks with two marked points each (one disk for

each edge e ∈ E ; the disk is the part ofΣ that retracts onto e, as in Figure 1), hence the gV-

quasi-Poisson manifold MΣ,V (G)= GE is obtained from the g2E-quasi-Poisson manifold

GE (with {·, ·} = 0) by repeated fusion.

For the purpose of quantization, it is more convenient to produce the quasi-

Poisson manifold MΣ,V (G) out of a quasi-Poisson-commutative manifold. Let us split V

to two disjoint subsets V = V+ � V−. The manifold MΣ,V (G) is gV+ ⊕ ḡV−-quasi-Poisson,

with the same bivector field πΣ,V . If both V+ and V− meet every component of Σ, then

there exists a skeleton Γ which is bipartite with respect to V+ and V−, with edges

oriented from V− to V+. In this case, we start with GE as a gE ⊕ ḡE-quasi-Poisson-

commutative manifold, and obtain the gV+ ⊕ ḡV−-quasi-Poisson structure on MΣ,V (G) by

fusion.
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If we do not want to split V (or if it does not admit a convenient splitting), we

can set V+ = V , temporarily add new points to V−, and finally reduce the result by ḡV− .

6 Deformation Quantization of Poisson Manifolds Related to Poisson–Lie Groups

Let Σ and V ⊂ ∂Σ be as above. For every marked point P ∈ V we choose a coisotropic

Lie subalgebra cP ⊂ g. Let C P ⊂ G be the corresponding connected Lie group. If the

action of

C =
∏

P

C P ⊂ GV

on MΣ,V (G) is free and proper, then the quotient

MΣ,V (G)/C (6)

is a Poisson manifold. To deal with cases where the action is not free and proper, we can

sometimes replace MΣ,V (G) with another manifold M′ which is equipped with a free and

proper action of C along with a local C -equivariant diffeomorphism M′ → MΣ,V (G); the

lift of πΣ,V to M′ descends to a Poisson structure on M′/C .

Since the Poisson manifold (6) can be obtained from commutative quasi-Poisson

manifolds by fusion and reduction, we readily obtain its deformation quantization by

repeating the same steps in the world of associative algebras in Drinfeld categories (see

Theorem 3).

Remark 1. Our quantization of the Poisson manifold MΣ,V (G)/C depends on the choice

of a skeleton of (Σ,V). Let us make a conjecture about this dependence. If Γ is a skele-

ton, let AΓ denote the corresponding quantized algebra of functions on MΣ,V (G)/C . Then

there are isomorphisms φΓ ′,Γ : AΓ → AΓ ′ , natural up to inner automorphisms, and invert-

ible elements cΓ ′′,Γ ′,Γ ∈ AΓ such that

φΓ ′′,Γ ′ ◦ φΓ ′,Γ = φΓ ′′,Γ ◦ AdcΓ ′′ ,Γ ′ ,Γ ,

satisfying the cocycle condition

cΓ3,Γ2,Γ0 cΓ2,Γ1,Γ0 = cΓ3,Γ1,Γ0 φ
−1
Γ1,Γ0

(cΓ3,Γ2,Γ1).

Equivalently, there is a natural linear category whose objects are the skeletons of (Σ,V),

such that any two objects are isomorphic (i.e., an algebroid in the sense of Kontsevich),



6746 D. Li-Bland and P. Ševera

and End(Γ )= AΓ ; if we choose isomorphisms ψΓ ′,Γ : Γ → Γ ′ for every Γ, Γ ′, then we can

set φΓ ′,Γ = AdψΓ ′,Γ and cΓ ′′,Γ ′,Γ =ψ−1
Γ ′′,Γ ◦ ψΓ ′′,Γ ′ ◦ ψΓ ′,Γ .

This statement was proved in [6] by Kontsevich for his quantization of Poisson

manifolds, where in place of Γ ’s he used affine connections on the manifold; it is thus

natural to expect it also in our case. �

We shall suppose in the following examples that t ∈ S2g is nondegenerate, unless

explicitly stated otherwise. The inverse of t is thus a nondegenerate invariant symmetric

bilinear pairing 〈·, ·〉 on g. These examples are taken from [8]. We first consider several

Poisson manifolds related to Poisson–Lie groups, and finally we discuss the general case.

6.1 Poisson–Lie groups

Let h, h∗ ⊂ g be Lie subalgebras which are Lagrangian with respect to 〈·, ·〉, such that

g = h ⊕ h∗ as a vector space. In other words, h, h∗ ⊂ g is a Manin triple.

Let us first suppose that the map

H × H∗ → G

given by the product in G is a diffeomorphism (it is always a local diffeomorphism). Let

us consider the moduli space for the surface

For each marked point P ∈ V, we specify the corresponding Lie subalgebra cP ⊂ g on the

figure. If no subalgebra is specified, then we do not reduce at that marked point (and the

result is quasi-Poisson).

Explicitly, we construct this moduli space by the following sequence of fusions

and reductions:
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In the left most picture, we start with the g-quasi-Poisson-commutative manifolds G/H∗

and G/H , and fuse them to form the triangle pictured in the center. Finally, we reduce

by H∗ ⊂ G to make

H ∼= (G/H∗ × G/H)/H∗

a Poisson manifold. We identify it with H by setting the holonomy of the top edge to be

1 and by demanding that the holonomy of the left edge is in H . The resulting Poisson

structure on H is the Poisson–Lie structure given by the Manin triple (see [8] for more

details).

Repeating the same steps in the Drinfeld category, we endow

C ∞(H)[[h̄]] ∼= C ∞(G/H∗ × G/H)h
∗
[[h̄]]

with an associative multiplication, that is, we construct a star product quantizing the

Poisson structure on H .

We can eliminate the assumption that H × H∗ → G is a diffeomorphism by

replacing G/H∗ with H and G/H with H∗ (since they are locally diffeomorphic).

An inspection shows that the star product at 1 ∈ H coincides with the deformed

coproduct on Uh constructed by Etingof and Kazhdan [5]. We do not prove this statement

here for lack of space; see the end of Section 6.3 for the basic idea.

Remark 2. There is another way how to get the Poisson–Lie group H via fusion and

reduction (corresponding to a different choice of skeleton):

The resulting star product on H coincides with the quantization of Lie bialgebras

described in [9]. �

6.2 Poisson torsors

Let f ⊂ g be another Lagrangian Lie subalgebra such that f ∩ h = 0. It is equivalent to (the

graph of) a twist of the Lie bialgebra h∗.
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Let us consider the moduli space for the surface

As above, the moduli space is constructed by fusing G/H with G/H∗, and then reducing

by F ⊆ G. Once again, we can identify this moduli space with H ; the resulting Poisson

structure on H is the affine Poisson structure given by the twist f.

Again (after replacing G/H with H∗ and G/H∗ with H ) following the analogous

procedure of fusion followed by reduction in the Drinfeld category yields an associative

product on

C ∞(H)[[h̄]] ∼= C ∞(H × H∗)f[[h̄]],

which is a star product quantizing the affine Poisson structure on H .

6.3 Drinfeld double

Let us consider the moduli space for the square

We can identify it with G by demanding the holonomies along the horizontal edges to

be 1 (the holonomies along the vertical edges are then arbitrary—but equal—elements

of G). The group G with this Poisson structure is the Drinfeld double of H .

It is useful to construct this moduli space via the intermediate step
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The lower triangle corresponds to the fusion of G/H × G/H∗, the upper triangle

corresponds to the fusion of Ḡ/H∗ × Ḡ/H (we consider it as a ḡ-quasi-Poisson manifold

for convenience). We take their product and reduce by the diagonal G ⊂ G × Ḡ.

Repeating these steps in Drinfeld categories yields a deformation quantization

of the double, which is again equal (at 1 ∈ G) to the quantization of the double given

by Etingof and Kazhdan [5]. We do not have the space to summarize the procedure of

Etingof and Kazhdan here. Let us, however, recall that their main step is a definition

of a coproduct ΔΦ on Ug, making it a coassociative coalgebra in the Drinfeld category

Ug-ModΦ . The element ΔΦ1 ∈ Ug ⊗ Ug is then a twist turning the quasi-Hopf algebra

Ug (with the associator Φ) to a Hopf algebra. The lower triangle on the figure above

(the fusion of G/H × G/H∗) gives us a star product on G making C ∞(G) an associative

algebra in Ug-ModΦ . By construction, this star product is dual to the coproduct ΔΦ on

Ug. From here, it is not difficult to see that our quantization of the double coincides with

the quantization of Etingof and Kazhdan.

6.4 Heisenberg double

We can change the previous example slightly and consider the square

The moduli space can again be identified with G. As a Poisson manifold, it is the so-

called Heisenberg double of H ; up to local diffeomorphism, it is also the Lu–Weinstein

double symplectic groupoid. Repeating the analogous constructions in the Drinfeld cat-

egory yields quantizations of these spaces.

6.5 Moduli spaces

Let us now summarize how to quantize the moduli space (6) in general (we do not sup-

pose that t is nondegenerate anymore). We represent (Σ,V) as a corner connected sum of

disks with two marked points. By Theorem 4, the moduli space is formed by fusion and

reduction from copies of the moduli space for the disk with two marked points. Hence,

by Theorem 3, it is enough to quantize MΣ,V (G)∼= G in the special case when (Σ,V) is a

disk with two marked points.
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The algebra C ∞(G) (with the original product) is associative (and commutative)

in U (g ⊕ ḡ)-ModΦ . If the associator Φ is even, then it is also associative in U (g ⊕ g)-ModΦ

(as the associativity constraints are the same). If not, we consider C ∞(G × G) as a

commutative algebra in U (g ⊕ ḡ ⊕ g ⊕ ḡ)-ModΦ , fuse it to form an algebra in U (g ⊕ g ⊕
ḡ)-ModΦ , and finally reduce by ḡ to make C ∞(G) (with a deformed product) into an asso-

ciative algebra in U (g ⊕ g)-ModΦ . Pictorially, this construction is as follows:

Here, we have labeled the marked points at which g and ḡ act by + and − signs (respec-

tively).

A more flexible way of dealing with noneven associators is to use a decompo-

sition V = V+ � V− as at the end of Section 5. In this case, we just apply fusion to the

commutative algebra C ∞(GE ) in U (gE ⊕ ḡE )-ModΦ (and, if we added extra marked points

to V−, reduce at those extra points to eliminate them).

Finally, to obtain a quantization of the Poisson manifold MΣ,V (G)/C , we take the

c-invariants of the deformed algebra C ∞(MΣ,V (G)).
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