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Abstract We study fiber functors on Tannakian categories which are equipped with a grading or a
filtration. Our goal is to give a comprehensive set of foundational results about such functors. A main

result is that each filtration on a fiber functor can be split by a grading fpqc-locally on the base scheme.
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1. Introduction

Let k be a field and T a Tannakian category over k, for example the category of
finite-dimensional representations of an affine group scheme G over k, which we denote
by G-Rep. In the theory of such categories, the notion of a fiber functor plays a central
role. A fiber functor on T over a scheme S over k is a k-linear exact tensor functor from
T to the category of locally free sheaves of finite rank on S. This article is concerned
with fiber functors equipped with a grading or a filtration in the following sense: a
graded (resp. filtered) fiber functor on T is a fiber functor ϕ on T over some scheme
S over k together with a grading (resp. descending filtration) of the locally free sheaf
ϕ(X) for each object X of T such that these gradings (resp. filtrations) are functorial in
X, compatible with tensor products and exact in a suitable sense. Our goal is to give a
comprehensive set of foundational results about such functors. A number of results in
this direction have already been obtained by Saavedra Rivano in [19, IV].

Now we give an overview of our results on graded fiber functors. Since a grading on a
quasi-coherent sheaf M over a scheme S is the same as an action of Gm,S on M, a graded
fiber functor on T over a scheme S over k can be described by giving the underlying fiber
functor ω and a cocharacter of Aut⊗S (ω) (see Theorem 3.6). Thus proving a statement
about graded fiber functors usually boils down to proving the corresponding statement
about cocharacters of a group scheme over S.

Much of our work on graded fiber functors goes into defining and describing the
notion of the type of a graded fiber functor. The type of a graded locally free sheaf of
finite rank on a connected scheme S over k is the tuple consisting of the ranks of its
graded pieces. Two such sheaves have the same type if and only if they are isomorphic
Zariski-locally on S. This motivates the following definition of the type of a graded fiber
functor:
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P. Ziegler

Let CT : (Sch/k)→ (Sets) be the fpqc sheaf of isomorphism classes of graded fiber
functors, i.e., the sheafification of the presheaf which sends a scheme S over k to the set
of isomorphism classes of graded fiber functors over S and which acts on morphisms by
pullbacks. For a graded fiber functor γ on T over some scheme S over k we define the
type of γ to be the section t(γ ) ∈ CT (S) given by the isomorphism class of γ . Thus two
graded fiber functors on T over a scheme S over k have the same type if and only they
are isomorphic fpqc-locally on S. If T = G-Rep for an affine group scheme G over k, then
CT is the sheaf of conjugacy classes of cocharacters of G (see Lemma 3.14).

In Theorem 3.19 we prove:

Theorem 1.1. The functor CT is representable by a scheme which is étale over k.

Thus types of graded fiber functors are points of this scheme CT , which we call the
scheme of types of T . Let k̄ be an algebraic closure of k. In ğ 3.5 we give a more
explicit description of the scheme CT by describing the set CT (k̄) together with its
Aut(k̄/k)-action.

In ğ 3.6, we use this notion of the type of a graded fiber functor to establish several
results about graded fiber functors. In Theorem 3.25, given two graded fiber functors γi
over schemes Si over k, we describe the subfunctor of S1×k S2 over which the pullbacks
of the Si are isomorphic. In Theorem 3.27, we give a description of graded fiber functors
of a given type in terms of certain torsors. In Theorem 3.29, we prove that under
certain conditions each morphism S→ CT of schemes arises as the type of a graded fiber
functor.

In ğ 3.3 we consider the moduli space of graded fiber functors and show that it forms
an algebraic stack.

Now we come to filtered fiber functors. With every filtered locally free sheaf of finite
rank M one can associate the graded sheaf gr M whose graded pieces are the quotients
of successive steps of the filtration on M. This allows us to associate with a filtered fiber
functor ϕ on T a graded fiber functor gr ◦ϕ. Inversely, every graded locally free sheaf
of finite rank M = ⊕i∈ZMi can be equipped with a descending filtration by taking the
ith step of the filtration to be ⊕j>i Mj. We denote the resulting filtered locally free sheaf
of finite rank by fil M. This allows us to associate with every graded fiber functor γ on
T the filtered fiber functor fil ◦ γ on T . Filtered fiber functors of this form are called
splittable.

Our main result on filtered fiber functors is the following (see Theorem 4.14). Its proof
is given in ğ 5.

Main Theorem 1.2. Every filtered fiber functor on T is fpqc-locally splittable.

For any filtered fiber functor ϕ, we denote the underlying fiber functor by forg ◦ ϕ. Under
additional assumptions, the main theorem can be strengthened (see Theorem 4.16):

Theorem 1.3. Let ϕ be a filtered fiber functor on T over an affine scheme S. Assume
that the group scheme Aut⊗S (forg ◦ ϕ) is pro-smooth over S. Then ϕ is splittable.

Here by a pro-smooth group scheme over S we mean a group scheme which can be
written as the inverse limit of a projective system of group schemes which are smooth
over S.
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Graded and filtered fiber functors on Tannakian categories

The result of the main theorem was stated as an open problem by Saavedra Rivano
in [19, IV.2.2.1]. In [19, IV.2.4] he gives a proof of this fact, due to Deligne, in the case
where T is neutral and k has characteristic zero and in the case where T = G-Rep for a
reductive algebraic group G over k. In [19, IV.2.2.2] and [19, IV.2.2.5 3] Saavedra Rivano
also gives proofs, again due to Deligne, of special cases of Theorem 4.16.

The main theorem allows us to deduce statements about filtered fiber functors from
statements about graded fiber functors. For example, we define the type of a filtered
fiber functor ϕ to be the type of the associated graded fiber functor gr ◦ϕ, and then the
results on graded fiber functors described above also hold for filtered fiber functors, see
ğ 4.5.

In ğ 4.4 we consider the moduli space of filtered fiber functors and show that it forms
an algebraic stack.

This work was motivated by and needed for an ongoing collaboration with
Richard Pink and Torsten Wedhorn which is concerned with (generalizations of) the
Ekedahl–Oort stratifications of certain Shimura varieties in positive characteristic; see
[17]. The central notion there is that of an F-zip, which is a locally free sheaf of finite
rank on a scheme of positive characteristic together with two filtrations which are tied
together by Frobenius in a certain way. In the article [18] Pink, Wedhorn and the author
consider for certain algebraic groups G functors z from G-Rep to the category of F-zips.
Each such z naturally gives rise to two filtered fiber functors on G-Rep and in [18] results
from the present article are used to study z. Since graded and filtered quasi-coherent
sheaves appear in many other areas of mathematics, we hope that our results will find
more applications elsewhere.

2. Preliminaries

In the section we collect some terminology and facts regarding tensor categories and
Tannakian categories.

2.1. Categories with a tensor product

A symmetric monoidal category is a category C equipped with a functor ⊗: C × C → C
together with certain associativity and commutativity constraints as well as an identity
object 1 (cf. [19, I], where such an object is called a ‘⊗-catégorie ACU’).

Let C and C′ be two symmetric monoidal categories. We name as a tensor
functor F : C → C′ a functor F : C → C′ together with certain functorial isomorphisms
F(X) ⊗ F(Y) ∼= F(X ⊗ Y) for X and Y in C as well as a suitable isomorphism F(1) ∼= 1
(cf. [19, I.4], where such functors are called ‘⊗-foncteur ACU’).

Let C and C′ be as above and let F,F′ : C → C′ be two tensor functors. We name
as a tensor morphism F→ F′ a natural transformation F→ F′ such that the induced
morphism F(1)→ G(1) is an isomorphism and such that for all X,Y ∈ C the following
square:

F(X)⊗ F(Y) //

��

F(X ⊗ Y)

��
G(X)⊗ G(Y) // G(X ⊗ Y)
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in which the vertical maps are those given by the natural transformation and the
horizontal maps those part of the tensor functors is commutative (cf. [19, I.4], where
such natural transformations are called ‘⊗-morphisme unifère’). We name as a tensor
isomorphism F→ F′ a tensor morphism F→ F′ which is an isomorphism of functors.

A rigid object in a symmetric monoidal category is what is called an object admitting
a dual in [6, 2.2]. Any tensor functor maps rigid objects to rigid objects. A symmetric
monoidal category is rigid if all of its objects are rigid. If C is a rigid symmetric monoidal
category and F,F′ are two tensor functors from C to a symmetric monoidal category C′,
any tensor morphism F→ F′ is a tensor isomorphism (cf. [19, I.5.2.3]).

2.2. Tannakian categories
For a scheme S, we denote by QCoh(S) the category of quasi-coherent sheaves on S.

Let k be a field. A Tannakian category over k is an essentially small symmetric
monoidal category T which is abelian, k-linear and rigid, for which the natural
morphism k→ End(1) induced by the k-linear structure of T is an isomorphism and
for which there exists a non-empty scheme S over k and an exact k-linear tensor functor
ω from T to QCoh(S). Compare [6, 2.8],1 but note this is not the same definition as
in [19, III.3.2.1], since there the condition k

∼−→ End(1) is missing. Exact k-linear tensor
functors ω : T → QCoh(S) are called fiber functors on T over S.

Let T be a Tannakian category over k and let S be a scheme over k. For a fiber
functor ω on T over S and a scheme S′ over S, we denote by ω|S′ the fiber functor over S′
obtained by composing ω with the natural base change functor QCoh(S)→ QCoh(S′).

For fiber functors ω1 and ω2 on T over S, we denote by Isom⊗S (ω1, ω2) the functor
on the category of schemes over S which associates with any scheme T over S the set
of tensor isomorphisms ω1|T → ω2|T and which sends morphisms of schemes over S to
pullbacks. In the case where ω1 = ω2, we denote this functor by Aut⊗S (ω1). Composition
of tensor morphisms makes Aut⊗S (ω1) into a group-valued functor.

Theorem 2.1 (Deligne; see [6, 1.11–1.13]). The functor Isom⊗S (ω1, ω2) is representable
by a scheme which is affine and faithfully flat over S.

The Tannakian category T is called neutral if there exists a fiber functor ω on T over
k. By Theorem 2.1, associated with such a fiber functor one has the affine group scheme
G := Aut⊗k (ω) over k. For any X ∈ T , the group scheme G acts naturally on the vector
space ω(X) and in this way ω induces a tensor functor T → G-Rep. The structure of a
neutral Tannakian category is described via the following result:

Theorem 2.2 (Deligne and Milne [7, Theorem II.2.11]). Let k be a field and T a neutral
Tannakian category over k. The functor T → G-Rep induced by a fiber functor ω on T
over k is an equivalence of categories.

To extend this result to all Tannakian categories, one needs the notion of a gerbe:

1 The condition that T is essentially small does not appear in [6]. However, without this condition the
author does not understand the argument there, since in [6, 4.7] a certain construction is made which
appears to work only for an essentially small category, which is later applied to Tannakian categories.
At any rate, once one knows the result [6, 1.12] that any Tannakian category is the category of
representations of a gerbe, it follows from this result that T is essentially small. Alternatively the issue
could also be avoided by working within a suitable universe, as in [19].
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2.3. Gerbes
Recall that a stack G over a scheme S is a fibered category over S which satisfies
effective descent for both objects and morphisms. A gerbe G over a scheme S is a stack
for the fpqc topology fibered in groupoids over (Sch/S) satisfying the following two
requirements (cf. [9, ğ III.2.1]):

(i) There exists an fpqc covering S′ of S for which G(S′) is non-empty.
(ii) Any two objects of G are fpqc-locally isomorphic.

The prototypical example of a gerbe is the stack TorsG of left G-torsors for an
fpqc sheaf of groups G over S. It is a gerbe over S since TorsG(S) contains the trivial
torsor and any G-torsor is fpqc-locally isomorphic to the trivial torsor. Any gerbe is
fpqc-locally isomorphic to such a gerbe because of the following fact:

Theorem 2.3 ([9, Théorème III.2.5.1]). Let G be a gerbe over S and x ∈ G(S′) for some
S-scheme S′. Then there is an equivalence of gerbes GS′ → TorsAutS′ (x) which for every
S′-scheme S′′ sends objects y ∈ G(S′′) to IsomS′′(y, x) and morphisms y→ y′ in G(S′′) to
the induced morphism IsomS′′(y, x)→ IsomS′′(y

′, x).

In particular every gerbe G is locally completely determined by the automorphism
group of any object. Given two objects x, x′ ∈ G(S′) for some fpqc cover S′ of S,
there exists, locally on S′, an isomorphism x ∼= x′. Such an isomorphism induces an
isomorphism Aut(x) ∼= Aut(x′). If one chooses two different isomorphisms x ∼= x′ the
resulting isomorphisms Aut(x) ∼= Aut(x′) differ by an inner isomorphism. This data of
fpqc-locally defined isomorphisms Aut(x) ∼= Aut(x′) which are well-defined up to inner
isomorphism can be encapsulated in the so-called band of G; cf. [9, ğ IV.2.2]. The role
that the band of G plays for G is analogous to the role that a group scheme G plays for
TorsG. We will however not use the notion of a band; we only use it to motivate the
following language:

Definition 2.4. Let G be a gerbe over S. Let P be a property of a group scheme G over a
base scheme S′ which is local for the fpqc topology on S′. Then we say that the band of G
has property P over S if and only if AutS′(x) has property P over S′ for any (equivalently
every) object x ∈ G(S′) over some fpqc cover S′ of S.

Let, as above, k be a field and T a Tannakian category over k. For any scheme S over
k, let Hom⊗(T , QCoh)(S) be the category whose objects are fiber functors on T over S
and whose morphisms are isomorphisms of tensor functors. With the pullback functors
defined above these categories form a category fibered in groupoids over (Sch/S) which
we denote as Hom⊗(T , QCoh). By [19, III.3.2.1.2] this is a stack and Theorem 2.1 implies
that it is in fact a gerbe over S. The affineness statement of Theorem 2.1 implies that the
band of this gerbe is affine over k.

Tannakian categories over k form a 2-category, with 1-morphisms given by exact
k-linear tensor functors and 2-morphisms by tensor isomorphisms. Also, gerbes form
a 2-category with 1-morphisms given by morphisms of stacks and 2-morphisms given
by equivalences between 1-morphisms. The above construction which associates with a
Tannakian category its gerbe of fiber functors can naturally be extended to a 2-functor
between these 2-categories. Then Tannaka duality can be formulated as follows:
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Theorem 2.5 (Deligne [6, 1.12]). The above 2-functor which associates with a
Tannakian category its gerbe of fiber functors is a 2-equivalence between the 2-category of
Tannakian categories over k and the 2-category of gerbes with affine band.

There is also a natural construction which associates with a gerbe its category of
representations which gives an inverse to the above 2-functor (cf. [6, ğ 3]).

Thus a Tannakian category is completely determined by the gerbe Hom⊗(T , QCoh).
In the case where T = G-Rep, the canonical fiber functor of T-Rep identifies this gerbe
with TorsG as in Theorem 2.3. Thus for a property P as in Definition 2.4, the statement
‘the band of Hom⊗(T , QCoh) has property P over k’ about a Tannakian category T is
the correct generalization of the statement ‘G has property P over k’ about the category
G-Rep. A statement of this type appears for example in Theorem 1.3.

2.4. Tannakian categories possessing a tensor generator
Let T be a Tannakian category over a field k. An object X of T is a tensor generator of
T if each object of T is a subquotient of a direct sum of objects of the form X⊗n for n> 0
(cf. [19, II.4.3.1]). By [19, II.4.3.2] a Tannakian category T has a tensor generator if and
only if the band of the associated gerbe is of finite type over k.

Definition 2.6. Let IT be the class of strictly full Tannakian subcategories of T
possessing a tensor generator. This is a set because T is essentially small. We endow
IT with the partial order induced by inclusion.

Then for any fiber functor ϕ on T over some scheme S over k the group scheme Aut⊗S (ϕ)
becomes naturally the inverse limit of the group schemes {Aut⊗S (ϕ|T ′) | T ′ ∈ IT } which
are of finite type over S. It also follows from [19, III.3.3.3] that the homomorphisms
Aut⊗S (ϕ)→ Aut⊗S (ϕ|T ′) and Aut⊗S (ϕ|T ′)→ Aut⊗S (ϕ|T ′′) for T ′′ ⊂ T ′ in IT are faithfully
flat.

For us a smooth morphism of schemes need not be of finite type, but only locally
of finite type as in [21, Tag 01V5]. By a pro-smooth group scheme over S we mean
a group scheme which is the inverse limit of group schemes which are smooth over S.
From the above it follows that Aut⊗S (ϕ) is pro-smooth over S if and only if for any
full Tannakian subcategory T ′ of T possessing a tensor generator the group scheme
Aut⊗S (ϕT ′) is smooth over S.

In the remainder of this subsection, we prove some results which will be needed in the
proof of Theorem 4.17 below.

Lemma 2.7. If there exists a fiber functor ω on T over a scheme S over k such that
Aut⊗S (ω) is smooth over S then T has a tensor generator.

Proof. Since Aut⊗S (ω) is smooth over S it is locally of finite type over S. By Theorem 2.1
this scheme is affine over S. Together these two facts imply that it is of finite type over S
which implies the claim. �

Definition 2.8. A lattice is a partially ordered set I such that for any two elements i, j
of I there exists a least upper bound i ∨ j and a greatest lower bound i ∧ j of i and j.

We will later need:
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Lemma 2.9. The partially ordered set IT is a lattice.

Proof. Let i, j ∈ IT . We need to show that there exist elements i ∨ j and i ∧ j in IT .
For i∨ j we take the strictly full Tannakian subcategory of T generated by all elements

of i and j. If Xi,Xj are tensor generators of i, j, then Xi ⊕ Xj is a tensor generator of i ∨ j,
so i ∨ j ∈ IT . It follows directly from the construction that i ∨ j is a least upper bound for
i and j in IT .

Let i ∧ j := i ∩ j. This is a strictly full Tannakian subcategory of T . To see that it has
a tensor generator, pick a fiber functor ω : T → QCoh(k′) over some overfield k′ of k. The
fact that i has a tensor generator implies that Aut⊗k′ (ω|i) is of finite type over k′. Hence
Aut⊗k′ (ω|i∧j), being a quotient of Aut⊗k′ (ω|i), is also of finite type over k′. This proves that
i ∧ j has a tensor generator. Thus i ∧ j ∈ IT is a greatest lower bound for i and j. �

Lemma 2.10. Let ω : T → QCoh(S) be a fiber functor. For all i, j ∈ IT , the square

Aut⊗S (ω|i)

��

Aut⊗S (ω|i∨j)oo

��
Aut⊗S (ω|i∧j) Aut⊗S (ω|j)oo

whose arrows are the morphisms induced by restriction is Cartesian.

Proof of Lemma 2.10. It suffices to prove the claim fpqc-locally on S. After replacing
T by i ∨ j, we may assume that T has a tensor generator. Then there exists a finite field
extension k′ of k and a fiber functor ω′ : T → QCoh(k′). Since the fiber functors ωSk′ and
ω′Sk′ are isomorphic fpqc-locally on Sk′ by Theorem 2.1, it suffices to prove the claim for
ω′ instead of ω. Thus we have reduced to the case where S = Spec(k′) for a finite field
extension k′ of k.

Construction 2.12 implies (i∧ j)k′ = ik′ ∧ jk′ and [19, III.3.2.4.1] implies (i∨ j)k′ = ik′ ∨ jk′ .
Thus after replacing i, j, i ∨ j and i ∧ j by their base change to k′, which does not change
the square in question, we may assume that k = k′.

Set G := Aut⊗k (ω). For h ∈ IT let Gh := Aut⊗k (ω|h) and Kh be the kernel of the
homomorphism G→ Gh induced by restriction. Since giving a strictly full Tannakian
subcategory of G-Rep is the same as giving the corresponding quotient of G, the
assignment h 7→ Kh gives a order-reversing bijection between IT and the lattice of
normal subgroup schemes of G. This implies Ki∨j = Ki ∩ Kj and Ki∧j = KiKj. Thus we
have reduced to the following claim, which follows from a direct verification. �

Lemma 2.11. Let G be an affine group scheme of finite type over k. Let K,K′ be two
normal subgroup schemes of G. Then the square

G/K

��

G/K ∩ K′

��

oo

G/KK′ G/K′oo

is Cartesian.
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2.5. Base change for a Tannakian category

We recall the notion of the base change of a Tannakian category T over to a finite field
extension:

Construction 2.12. Let T be a Tannakian category over k and let k′ be a finite field
extension of k. The base change of T to k′ is the category Tk′ defined as follows:
Its objects are pairs (V, α) where V ∈ T and α : k′→ End(V) is a homomorphism of
k-algebras. A morphism (V, α)→ (V ′, α′) in Tk′ is a morphism f : V → V ′ such that
f ◦ α(λ)= α′(λ) ◦ f for all λ ∈ k′. The tensor product of two elements (V, α), (V ′, α′) ∈ Tk′
is defined to be (V ⊗k′ V ′, α̃), where V ⊗k′ V is the largest quotient of V ⊗ V ′ on which
α(λ) ⊗ IdV ′ and IdV ⊗α′(λ) agree for all λ ∈ k and where α̃ is induced by α ⊗ IdV ′
or, equivalently, by IdV ⊗α′. This defines a functor ⊗: Tk′ × Tk′ → Tk′ . As is shown in
[7] between Remark II.3.10 and Proposition II.3.11, this makes Tk′ into a Tannakian
category over k′.

There is a natural tensor morphism T → Tk′ which sends V ∈ T to (V ⊗ k′, αV) where
αV sends λ ∈ k′ to the endomorphism IdV ⊗λ of V ⊗ k′. By the above citation any
fiber functor ω : T → QCoh(k′) extends to a fiber functor ω′ : Tk′ → QCoh(k′) such that
the functor T → Tk′ induces an isomorphism Aut⊗k′ (ω

′)→ Aut⊗k′ (ω). In particular Tk′ is
neutral if T possesses a fiber functor over k′.

2.6. An exactness criterion for inverse limits

In this subsection we prove Theorem 2.17 below, which will be needed in the proof of
Theorem 4.17.

Construction 2.13. Let (Gi)i∈I be an inverse system of groups indexed by a partially
ordered set I with transition maps π i

j : Gi→ Gj for all j 6 i in I. Let Z be the set of

tuples (gi
j)j6i∈I such that gi

j ∈ Gj for all j 6 i and gi
k = π j

k(g
i
j)g

j
k for all k 6 j 6 i in I. Let

B :=∏i∈I Gi. This group acts on Z from the left via (gi)i∈I · (gi
j)j6i∈I := (π i

j (gi)gi
jg
−1
j )i6j∈I .

Let lim←−
1
i∈I

Gi := B \ Z. This is a set which is pointed by the class of (1Gj)j6i∈I ∈ Z. It is
functorial in (Gi)i∈I in a natural way.

In the case where the Gi are abelian, the set lim←−
1
i∈I

Gi inherits a group structure. In this

case it follows from [14, Théorème 4.1] that lim←−
1
i∈I

is the first right derived functor of the
inverse limit functor.

Definition 2.14. Let (Gi)i∈I be an inverse system of groups indexed by a partially
ordered set I. A (left) (Gi)i∈I-torsor is an inverse system of sets (Xi)i∈I such that each Xi

is a (left) Gi-torsor and for all j 6 i the transition morphism Xi→ Xj is equivariant with
respect to the transition morphism Gi→ Gj.

A morphism between (Gi)i∈I-torsors (Xi)i∈I and (X′i)i∈I is a morphism (Xi)i∈I → (X′i)i∈I

of inverse systems of sets such that each morphism Xi→ X′i is Gi-equivariant.
We call (Gi)i∈I considered as a torsor under itself by left multiplication the trivial

(Gi)i∈I-torsor. A (Gi)i∈I-torsor (Xi)i∈I is isomorphic to the trivial torsor if and only if
lim←−i∈I

Xi 6= ∅.
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Graded and filtered fiber functors on Tannakian categories

Lemma 2.15. Let (Gi)i∈I be an inverse system of groups indexed by a partially
ordered set I. There is a natural bijection between the set of isomorphism classes of
(Gi)i∈I-torsors and lim←−

1
i∈I

Gi under which the distinguished point of lim←−
1
i∈I

Gi corresponds
to the class of the trivial torsor (Gi)i∈I.

Proof. Let (Xi)i∈I be a (Gi)i∈I-torsor. For each i ∈ I we pick an element xi ∈ Xi. Then
each transition map f i

j : Xi → Xj for j 6 i in I is uniquely determined by the unique
element gi

j ∈ Gj such that f i
j (xi)= gi

j · xj. The fact that (Xi)i∈I is an inverse system implies
(gi

j)j6i∈I ∈ Z. A different choice of xi would be of the form (gj · xi)i∈I for certain gi ∈ Gi.
The element of Z associated with such a choice of xi would be (π i

j (gi)gi
jg
−1
j )j6i∈I . Thus

this construction associates with (Xi)i∈I a well-defined element of lim←−
1
i∈I

Gi. By a direct
verification this element only depends on the isomorphism class of (Xi)i∈I . Thus we have
a map as claimed and it follows from a direct verification that it is a bijection. The last
claim follows directly from the construction. �

Lemma 2.16. Let 0→ (G′i)i∈I → (Gi)i∈I → (G′′i )i∈I → 0 be an exact sequence of inverse
systems of groups indexed by a partially ordered set I. Then there is a natural sequence of
pointed sets

0 // lim←−i∈I
G′i // lim←−i∈I

Gi // lim←−i∈I
G′′i // lim←−

1
i∈I

G′i // lim←−
1
i∈I

Gi // lim←−
1
i∈I

G′′i

which is exact in the following sense: The image of each map is the fiber over the
distinguished point of the following map, and in addition there is a natural left action of
lim←−i∈I G′′i on lim←−

1
i∈I G′i the orbits of which are the fibers of the map lim←−

1
i∈I G′i→ lim←−

1
i∈I

Gi.

Proof. The action of lim←−i∈I G′′i on lim←−
1
i∈I G′i is defined as follows: Let g′′ = (g′′i )i∈I ∈

lim←−i∈I G′′i and let (g̃i
j)j6i∈I with g̃i

j ∈ G′j be a representative of an element g̃ ∈ lim←−
1
i∈I G′i.

Pick elements gi in Gi which lift the elements g′′i ∈ G′′i . Then g′′ sends g̃ to the class
of (π i

j (gi)g̃i
jg
−1
j )j6i∈I . It follows by a direct verification that this is a well-defined action.

The map lim←−
1
i∈I G′i→ lim←−

1
i∈I

Gi is the map which sends g ∈ lim←−
1
i∈I G′i to the image of the

distinguished point of lim←−
1
i∈I

Gi. The remaining maps are the natural functoriality maps.
That the sequence is exact follows by direct verification. �

Theorem 2.17. Let R be a ring and (Mi)i∈I an inverse system of R-modules indexed by
a partially ordered set I such that:

(i) The set I is a lattice.
(ii) Each Mi is a finitely generated projective R-module.

(iii) For all j6 i in I, the transition morphism µi
j : Mi→Mj is surjective.

(iv) For all i, j in I, the following square is Cartesian:

Mi

��

Mi∨joo

��
Mi∧j Mjoo

Then lim←−
1
i∈I

Mi = 0.

95

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1474748013000376
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 16:47:13, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1474748013000376
https:/www.cambridge.org/core


P. Ziegler

To prove this, we will use the following criterion:

Theorem 2.18 ([2, Théorème III.7.4.1]). Let I be filtered partially ordered set and (Xi)i∈I

an inverse system of non-empty sets with transition morphisms f i
j for i 6 j in I. Assume

that for each i ∈ I there is a family Si of subsets of Xi such that:

(i) Each Si is closed under arbitrary intersections.
(ii) For each F ⊂ Si such that each finite intersection of elements of F is not empty, the

intersection of all elements of F is not empty.
(iii) For all j6 i in I and x ∈ Xj, the set (f i

j )
−1(x) is in Si.

(iv) For all j6 i in I and Y ∈ Si, the set f i
j (Y) is in Sj.

Then the set lim←−i∈I
Xi is not empty.

Proof of Theorem 2.17. By Lemma 2.15 it is enough to show that for any
(Mi)i∈I-torsor (Xi)i∈I , the set lim←−i∈I

Xi is not empty.

Lemma 2.19. For all j, j′ 6 i in I:

(i) ker(µi
j) ∩ ker(µi

j′)= kerµi
j∨j′ .

(ii) µi
j′(ker(µi

j))= ker(µj′
j∧j′).

Proof. (i) This follows by a direct verification using the fact that the square

Mj

��

Mj∨j′oo

��
Mj∧j′ Mj′oo

is Cartesian.
(ii) Using the surjectivity of µi

j∨j′ we can reduce to the case i = j ∨ j′. Then again the
claim follows by a direct verification from the fact that the above square is Cartesian. �

For i ∈ I let Si := {x + ker(µi
j) | x ∈ Xi, j 6 i} ∪ {∅,Xi}. The assumption that the µi

j are
surjective implies that their kernels are direct summands of Mi. Thus these kernels are
finitely generated projective R-modules and it makes sense to speak of their rank as
a locally constant function Spec(R)→ Z>0. The set of all such functions is partially
ordered by the relation 6 for which f 6 g if and only if f (x) 6 g(x) for all x ∈ Spec(R).
The fact that Spec(R) has only finitely many connected components implies that each
family of such functions contains a minimal element.

Lemma 2.20. If ker(µi
j) ⊂ ker(µi

j′) and rk(ker(µi
j)) = rk(ker(µi

j′)) for certain j, j′ 6 i in
I, then ker(µi

j)= ker(µi
j′).

Proof. Since ker(µi
j) and ker(µi

j′) are direct summands of Mi, the module ker(µi
j) is also

a direct summand of ker(µi
j′). This together with the equality of the ranks implies that

the two modules are equal. �
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Graded and filtered fiber functors on Tannakian categories

We need to verify that these Si satisfy the conditions (i) to (iv) of Theorem 2.18.

(i) Consider a family F ⊂ Si. If ∩X∈FX = ∅, then ∩X∈FX ∈ Si. Otherwise we can
write F = {x + ker(µi

jα )} for a certain family of jα 6 i and an x ∈ ∩X∈FX. Then
Lemma 2.19(i) implies that each finite intersection of elements of F is of the form
x + ker(µi

j) for some j 6 i. Now pick such a finite intersection with rk(ker(µi
j))

minimal among all such finite intersections. Then Lemma 2.20 implies that
∩X∈FX = x+ ker(µi

j) ∈ Si.
(ii) Let F ⊂ Si such that each finite intersection of elements of F is non-empty. Then

as in (i) we can write each such finite intersection as x + ker(µi
j) for certain x ∈ Xi

and j6 i. Pick such a finite intersection with rk(ker(µi
j)) minimal. Then Lemma 2.20

implies that this finite intersection is equal to ∩X∈FX. Thus ∩X∈FX is not empty.
(iii) This follows directly from the definition of the Si.
(iv) This follows directly from Lemma 2.19(ii). �

3. Graded fiber functors

Throughout, we denote by k a field and by S, S1, S2 arbitrary non-empty schemes over
k. The pullbacks under a morphism S′→ S of a scheme X over S and a morphism f of
schemes over S are denoted XS′ and fS′ respectively.

3.1. Graded quasi-coherent sheaves
We denote the category of graded quasi-coherent sheaves of OS-modules by GrQCoh(S).
Its objects are quasi-coherent sheaves M together with a decomposition M = ⊕n∈ZMn

into quasi-coherent subsheaves Mn. It is a k-linear abelian category.
The tensor product of two graded quasi-coherent sheaves M and N is given by

the usual tensor product M ⊗ N together with the decomposition into the subsheaves
(M⊗N )n =⊕i+j=n Mi⊗N j. This makes GrQCoh(S) into a symmetric monoidal category.
An object M ∈ GrQCoh(S) is rigid if and only if its underlying quasi-coherent sheaf is
locally free of finite rank.

There is a natural equivalence between GrQCoh(S) and the category of quasi-coherent
sheaves on S with a representation of Gm,S. It sends M=⊕n∈ZMn to the quasi-coherent
sheaf M with the representation of Gm,S for which Gm,S acts on Mn through the
character t 7→ tn. Under this equivalence the above tensor product corresponds to the
usual tensor product of representations.

The forgetful functor forg : GrQCoh(S)→ QCoh(S) is a faithful exact tensor functor.
With the natural notion of pullbacks, the categories GrQCoh(S) form a fibered category

over (Sch/k) which we denote by GrQCoh. Since quasi-coherent modules satisfy effective
descent, the fibered category GrQCoh is a stack for the fpqc topology.

3.2. Graded fiber functors
Let T be a Tannakian category over k.

Definition 3.1. (i) A graded fiber functor on T over S is an exact k-linear tensor
functor γ : T → GrQCoh(S).

(ii) A morphism between two graded fiber functors on T over S is a tensor morphism.
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(iii) We denote the resulting category of graded fiber functors on T over the scheme S by
Hom⊗(T , GrQCoh)(S).

(iv) For a morphism S′ → S over k, composition with the base change functor
GrQCoh(S) → GrQCoh(S′) gives a pullback functor Hom⊗(T , GrQCoh)(S) →
Hom⊗(T , GrQCoh)(S′). With these pullback functors the categories
Hom⊗(T , GrQCoh)(S) for varying S form a fibered category over (Sch/k) which
we denote by Hom⊗(T , GrQCoh).

Remark 3.2. Let γ : T → GrQCoh(S) be a graded fiber functor. Since T is rigid, the
tensor functor γ factors through the full subcategory of rigid objects of GrQCoh(S) (see
[6, 2.7]). Thus for every X ∈ T the underlying quasi-coherent sheaf of γ (X) is locally free
of finite rank.

Definition 3.3. (i) For any two graded fiber functors γ1, γ2 on T over S, we let
Isom⊗S (γ1, γ2) be the sheaf (Sch/S)→ (Sets) which sends S′→ S to the set of tensor
isomorphisms (γ1)S′

∼−→ (γ2)S′ and morphisms to pullback maps.
(ii) If γ1 = γ2, we denote Isom⊗S (γ1, γ2) by Aut⊗S (γ1).

(iii) For graded fiber functors γ1, γ2 over k-schemes S1, S2 we let

Isom⊗k (γ1, γ2) := Isom⊗S1×S2
(pr∗1 γ1,pr∗2 γ2)

where pri : S1 × S2→ Si are the projections.

Given graded fiber functors γ1, γ2, γ3 on T over S, composition of functors gives a
morphism Isom⊗S (γ1, γ2)×S Isom⊗S (γ2, γ3)→ Isom⊗S (γ1, γ3). In this way Aut⊗S (γ1) and
Aut⊗S (γ2) become sheaves of groups that act on Isom⊗S (γ1, γ2) from the right (resp. from
the left).

Construction 3.4. Since GrQCoh(S) can be identified with the category of
representations of Gm,S, by [19, II.3.1.1] the action of Gm,S gives an isomorphism

Gm,S
∼−→Aut⊗S (forg : GrQCoh(S)→ QCoh(S)).

Thus with any graded fiber functor γ on T over S we can associate the cocharacter

χ(γ ) : Gm,S ∼=Aut⊗S (forg : GrQCoh(S)→ QCoh(S))→Aut⊗S (forg ◦ γ )
induced by γ .

Definition 3.5. Let GFF(S) be the following category:
Its objects are pairs (ω, χ) where ω is a fiber functor on T over S and χ : Gm,S →

Aut⊗S (ω) a cocharacter.
A morphism (ω, χ)→ (ω′, χ ′) in GFF(S) is a tensor morphism λ : ω→ ω′ such that the

following diagram, in which the vertical morphism is induced by λ, commutes:

Aut⊗S (ω)

��
Gm,S

χ 44hhhhhh

χ ′
**VVVVV

Aut⊗S (ω′)
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Graded and filtered fiber functors on Tannakian categories

The following result, due to Saavedra Rivano, describes graded fiber functors in terms of
cocharacters:

Theorem 3.6 ([19, IV.1.3]). The functor Hom⊗(T , GrQCoh)(S)→ GFF(S) which sends a
graded fiber functor γ to the pair (forg ◦ γ, χ(γ )) and a morphism of graded fiber functors
to the induced morphism of the underlying fiber functors is an equivalence.

Corollary 3.7. Let γ,γ2 be graded fiber functors on T over S such that forg ◦ γ1 =
forg ◦ γ2 and set G := Aut⊗S (forg ◦ γ ). The functor from Theorem 3.6 induces a natural
isomorphism Isom⊗S (γ1, γ2)∼= Transp

G
(χ(γ1), χ(γ2)).

Theorem 3.8. Let G be a group scheme of finite type over k and χ : Gm,S → GS a
cocharacter.

(i) Assume that Gred is a smooth subgroup scheme of G. Then fpqc-locally on S, the
cocharacter χ is conjugate to a cocharacter which factors through (Gred)S.

(ii) If G is smooth over k, the field k is algebraically closed and S is connected and
of finite type over k, then there exist an fpqc covering S′ of S and a cocharacter
χ0 : Gm,k→ G such that χS′ is conjugate to (χ0)S′ .

The condition that Gred is a smooth subgroup scheme of G is always satisfied if k is
perfect, but not in general (see [5, Example A.8.3]). However, for any group scheme G
of finite type over k, there exists a finite field extension k′ of k such that (Gk′)red is a
smooth subgroup scheme of Gk′ .

Proof. (i) By [8, Théorème XI.6.2], the functor Transp
S
(χ, (Gred)S), whose S′-valued

points for any scheme S′ over S are those g ∈ G(S′) for which gχS factors through (Gred)S,
is representable by a closed subscheme of GS. We need to prove that Transp

S
(χ, (Gred)S)

is faithfully flat over S. In the case where S is the spectrum of a field, the cocharacter χ
must factor through (Gred)S since Gm,S is reduced. Thus the claim is true in this case,
which implies that in general it is enough to show that Transp

S
(χ, (Gred)S) is flat over S.

For this we may assume that S is the spectrum of a local ring. After base change from k
to the residue field of the closed point s of S, we may also assume that s is k-rational.

Let χ0 : Gm,k → G be the fiber of χ in s. Since χ0 factors through Gred, it suffices
to show that (χ0)S and χ are conjugate. For any V ∈ G-Rep and i ∈ Z, let gri

χ VS

(resp. gri
χ0

VS) be the ith step of the decomposition of VS defined by χ (resp. (χ0)S). By
Corollary 3.7 it suffices to construct isomorphisms gri

χ VS ∼= gri
χ0

VS for all i and V which
are natural in V and compatible with tensor products. For V ∈ G-Rep and i ∈ Z, consider
be the morphism

ψ i
V : gri

χ VS ↪→ VS ∼=⊕j∈Z grj
χ0

VS� gri
χ0

VS.

Since χ and (χ0)S agree on the fiber over s, on this fiber ψ i
V is an isomorphism.

Since gri
χ VS and gri

χ0
VS, being direct summands of VS, are locally free OS-modules

of finite rank, it thus follows from Nakayama’s Lemma that ψ i
V is an isomorphism.

Since it follows directly from the construction of the ψ i
V that they are natural in V and

compatible with tensor products, we are done.
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(ii) Let s ∈ S be a closed point. Since S is of finite type over k and k is algebraically
closed, the residue field of s is k. Let χ0 : Gm,k → G be the fiber of χ in s. Since G is
smooth, by [8, Corollaire XI.5.2] the transporter Transp

S
(χ, (χ0)S) is representable by a

closed subscheme of GS which is smooth over S. Thus the image U of Transp
S
(χ, (χ0)S)

in S is an open subscheme of S and if U = S then Transp
S
(χ, (χ0)S) is an fpqc covering of

S over which χ0 and χ become conjugate. Hence the claim will follow from:

Lemma 3.9. U = S.

Proof. Otherwise there exists a closed point s′ ∈ S\U. Repeating the above construction
with s′ instead of s yields a cocharacter χ ′0 : Gm,k → G and an open subset U′ of S
containing s′ over which χ and (χ ′0)S are fpqc-locally conjugate. Since S is connected, the
intersection U ∩ U′ is not empty and over this intersection all three cocharacters (χ0)S,
(χ ′0)S and χ are fpqc-locally conjugate. Hence χ0 and χ ′0 are conjugate over some field
extension of k. This implies s′ ∈ U which is a contradiction. �

�

In the following lemma, by a statement P(γ1, . . . , γr) we simply mean a function from
the class of tuples (γ1, . . . , γr) as below to the set {true, false}.
Lemma 3.10. Assume that T has a tensor generator. Let P(γ1, . . . , γr) be a statement
involving finitely many graded fiber functors γ1, . . . , γr on T over the same scheme which
satisfies the following conditions:

(i) The statement P is invariant under pullback, i.e.: If P(γ1, . . . , γr) holds, then so
does P(γ1|S′ , . . . , γr|S′) for any morphism S′→ S of schemes.

(ii) The statement P is local for the fpqc topology, i.e.: If {Si → S | i ∈ I} is an fpqc
covering of S, then P(γ1, . . . , γr) is true if and only if for all i ∈ I the statement
P(γ1|Si

, . . . , γr|Si
) is true.

(iii) The statement P is invariant under isomorphisms, i.e.: If γ ′1, . . . , γ ′r are graded fiber
functors on T over S such that γi is isomorphic to γ ′i for all i ∈ I, then P(γ1, . . . , γr)

is true if and only if P(γ ′1, . . . , γ ′r ) is true.
(iv) There exists an algebraically closed overfield k′ of k such that P(γ1, . . . , γr) is true

for all graded fiber functors γ1, . . . , γr on T over k′.

Then P(γ1, . . . , γr) is true in general.

Proof. Let γ1, . . . , γr be graded fiber functors on T over a k-scheme S. We need to show
that P(γ1, . . . , γr) is true. Let ω be a fiber functor on T over k′ and let G := Aut⊗k′ (ω).
Since T has a tensor generator, this is a group scheme of finite type over k′. Using
condition (ii), after replacing S by Sk′ we may assume that there is a morphism
S→ Spec(k′). Since by Theorem 2.1 the fiber functors forg ◦ γi and ωS are fpqc-locally
isomorphic, after replacing S by a suitable covering we may assume that forg ◦ γ ∼= ωS.
Thus, using condition (iii), we can replace the γi by isomorphic graded fiber functors
such that forg ◦ γi = ωS. By Theorem 3.6, the γi are determined by the cocharacters
χ(γi) : Gm,S→ GS. By Theorem 3.8(i), after replacing S by a suitable fpqc covering we
may assume that these cocharacters factor through (Gred)S.
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By a standard limit argument there exists a scheme S′ of finite type over k′ together
with a k′-morphism S→ S′ such that the χ(γi) : Gm,S→ (Gred)S, and hence the γi, are
defined over S′. Using condition (i) we may thus assume that S is of finite type over k′.
Using condition (ii) we may assume that S is connected. Then by Theorem 3.8 there
exist cocharacters χ1, . . . , χr : Gm,k′→ Gred and an fpqc covering S′ of S such that χ(γi)S′
is conjugate to (χi)S′ for all i. By Theorem 3.6, there exist unique graded fiber functors
γ ′i on T over k′ such that forg ◦ γ ′i = ω and χ(forg ◦ γ ′i )= χi. Again by Theorem 3.6, the
conjugacy of χ(γi)S′ and (χi)S′ implies that (γi)S′ is isomorphic to (γ ′i )S′ for all i.

By condition (iv) the statement P(γ ′1, . . . , γ ′r ) is true. By conditions (i) and (iii) this
implies that P((γ1)S′ , . . . , (γ1)S′) is true. Thus a final application of condition (ii) shows
that P(γ1, . . . , γr) is true. �

Theorem 3.11. For any graded fiber functors γ1, γ2 over S (resp. γ1 over S1 and γ2

over S2) the functor Isom⊗S (γ1, γ2) (resp. Isom⊗k (γ1, γ2)) is representable by a scheme
which is affine and flat over S (resp. over S1 × S2). If T has a tensor generator, these
schemes are of finite presentation over S (resp. over S1 × S2).

In particular, for any graded fiber functor γ over S, the functor Aut⊗S (γ ) is
representable by a group scheme which is affine and flat over S.

Proof. Since Isom⊗k (γ1, γ2) = Isom⊗S1×S2
(pr∗1 γ1,pr∗2 γ2), it suffices to prove the claim

about Isom⊗S (γ1, γ2). First we treat the case that T has a tensor generator. By
Lemma 3.10 we may assume that S is the spectrum of an algebraically closed field
k′. Since all fiber functors on T over k′ are isomorphic we may also assume that
forg ◦ γ1 = forg ◦ γ2. Let G := Aut⊗k′ (forg ◦ ω1) which is a group scheme of finite
type over k′. Then Isom⊗k′ (γ1, γ2)∼= Transp

k′(χ(γ1), χ(γ2)) by Corollary 3.7. This functor
is representable by a closed subscheme of G which is in particular of finite type over k′
and trivially flat over k′. Thus the claim is true in this case.

Now let T be an arbitrary Tannakian category. The category T is the filtered
colimit of the set IT of Tannakian subcategories from in § 2.4 which possess a
tensor generator. Then Isom⊗S (γ1, γ2) is in a natural way the filtered limit of the
functors Isom⊗S (γ1|T ′ , γ2|T ′) over T ′ ∈ IT . By the previous case all these functors are
representable by schemes which are affine and flat over S. By [11, Proposition 8.2.3] this
implies that Isom⊗S (γ1, γ2) is representable by a scheme which is affine over S and by
[11, Proposition 8.3.8] this scheme is flat over S. �

3.3. The stack of graded fiber functors

Let T be a Tannakian category over k possessing a tensor generator. In this subsection
we show that Hom⊗(T , GrQCoh) is an algebraic stack. By an algebraic stack we mean the
same as in [15, Définition 4.1].

Lemma 3.12. The fibered category Hom⊗(T , GrQCoh) is a stack for the fpqc topology.

Proof. Since by [19, III.3.2.1.2] fiber functors satisfy effective descent for the fpqc
topology, this follows from Theorem 3.6. �
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Given two group schemes G and H over a scheme S, we denote by HomS(G,H) the
fpqc sheaf (Sch/S)op→ (Sets) which associates with a scheme S′ over S the set of group
homomorphisms GS′→ HS′ and acts on morphisms in the natural way.

Construction 3.13. Let k′ be an overfield of k and ω a fiber functor on T over k′.
Let G := Aut⊗k′ (ω). Since T has a tensor generator, this is a group scheme of finite
type over k′. By [8, Remarque XI.4.3] the functor Homk′(Gm,k′ ,G) is representable by a
scheme which is separated and locally of finite type over k′. The group scheme G acts
on this scheme from the left by conjugation. We denote the associated quotient stack by
[G \Homk′(Gm,k′ ,G)]. We construct a morphism of stacks

Fω : Hom⊗(T , GrQCoh)k′→ [G \Homk′(Gm,k′ ,G)]
as follows:

Recall that for a scheme S over k′, an object of [G \ Homk′(Gm,k′ ,G)](S) is a
pair (X, f ) consisting of a left GS-torsor X over S and a GS-equivariant morphism
f : X→ Homk′(Gm,k′ ,G)S over S. A morphism (X, f )→ (X′, f ′) in [G \ Homk′(Gm,k′ ,G)](S)
is a GS-equivariant morphism g : X→ X′ such that f = f ′ ◦ g.

Let γ ∈ Hom⊗(T , GrQCoh)(S). Let Xγ := Isom⊗S (forg ◦ γ, ω), which is a left GS-torsor
by composition of isomorphisms. Any section λ ∈ Xγ (S′) for some scheme S′ over S
induces an isomorphism Aut⊗S′(forg ◦ γ )→ GS′ , and we let fγ (λ) ∈ HomS(Gm,S,GS)(S′)
be the composition of the cocharacter χ(γ )S′ with this isomorphism. This defines a
GS-equivariant morphism fγ : Xγ → HomS(Gm,S,GS). Altogether we obtain an object
Fω(γ ) := (Xγ , fγ ) ∈ [G \Homk′(Gm,k′ ,G)](S).

To define Fω on morphisms, consider a morphism λ′ : γ → γ ′ in Hom⊗(T , GrQCoh)(S′).
Such a morphism defines a GS-equivariant isomorphism Fω(λ′) : Xγ → Xγ ′ by
composition of isomorphisms. The cocharacter χ(γ ′) : Gm,S′ → Aut⊗S′(γ

′) is the
composition of χ(γ ) : Gm,S′ → Aut⊗S′(γ ) and the isomorphism Aut⊗S′(γ )→ Aut⊗S′(γ

′)
induced by λ′. This implies fγ = fγ ′ ◦ Fω(λ′). Thus Fω(λ′) is a morphism Fω(γ )→ Fω(γ ′)
in [G \Homk′(Gm,k′ ,G)](S).

By a direct verification, this construction is functorial and compatible with pullbacks,
so we obtain a morphism Fω of stacks, as desired.

Lemma 3.14. For each ω as above, the associated morphism of stacks Fω is an
equivalence.

Proof. First we prove that Fω is fully faithful. Let γ, γ ′ ∈ Hom⊗(T , GrQCoh)k′(S) for
some k′-scheme S. Since fiber functors on T satisfy effective descent and are pairwise
fpqc-locally isomorphic, they form a gerbe. Thus Theorem 2.3 gives an equivalence
between fiber functors on T over S and left GS-torsors which sends a fiber functor
ω′ to Isom⊗S (ωS, ω

′). In particular giving a tensor morphism λ′ : forg ◦ γ → forg ◦ γ ′
is the same as giving the G-equivariant morphism gλ′ : Xγ → Xγ ′ induced by λ. By
a direct verification fγ = fγ ′ ◦ gλ′ if and only if λ is a morphism (forg ◦ γ, χ(γ ))→
(forg ◦ γ ′, χ(γ ′)) in GFF(S). Thus it follows from Theorem 3.6 that Fω is fully faithful.

It remains to prove that Fω is an epimorphism. Let (X, f ) ∈ [G \ Homk′(Gm,k′ ,G)](S)
for some k-scheme S. After passing to a suitable fpqc covering, we may assume that X
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has a section over S. By fixing such a section we can identify X with GS. Then f is
determined by the cocharacter χ ∈ Homk′(Gm,k′ ,G)(S) which is the image of this section
under f . By Theorem 3.6 there is a graded fiber functor γ over S such that forg ◦ γ = ωS

and χ(γ ) = χ . By chasing through the definition of Fω one can directly verify that
Fω(γ )= (X, f ). Thus Fω is an equivalence. �

The following lemma is probably well-known, but we could not find a reference.

Lemma 3.15. Let X be a fibered category over (Sch/S) for some scheme S which is a
stack for the fppf topology. If there exists an fppf covering S′ of S such that XS′ is an
algebraic stack, then X is an algebraic stack.

Proof. By [15, Théorème 10.1] it is sufficient to show that the diagonal morphism
X → X ×S X is representable, separated and quasi-compact and that there exists an
algebraic space Y and a morphism Y → X which is representable, faithfully flat and
locally of finite presentation.

The first condition can be checked fppf-locally on S and thus holds by assumption.
Since XS′ is an algebraic stack, there exists an algebraic space Y together with a
morphism Y → XS′ which is representable, faithfully flat and of finite presentation.
Composing this morphism with the natural morphism XS′ → X which is also
representable, faithfully flat and of finite presentation because it is a pullback of the
fppf covering S′→ S yields the required morphism Y→ X . �

Theorem 3.16. The stack Hom⊗(T , GrQCoh) is an algebraic stack locally of finite type
over k.

Proof. Since T is rigid, all morphisms between graded fiber functors are isomorphisms
by [19, I.5.2.3]. Thus Hom⊗(T , GrQCoh) is fibered in groupoids. By [6, 6.20] there exists
a finite field extension k′ of k such that there exists a fiber functor ω on T over k′. By
Lemma 3.14 applied to this ω, the stack Hom⊗(T , GrQCoh)k′ is algebraic and locally of
finite type over k. By Lemma 3.15 this implies the claim. �

3.4. The scheme of types of T
Let T be a Tannakian category over k possessing a tensor generator. In this subsection
we develop the notion of the type of a graded fiber functor, in analogy with the notion of
the type of a graded module.

Definition 3.17. We denote by CT the coarse fpqc sheaf on k associated with the
stack Hom⊗(T , GrQCoh), i.e. the sheafification of the presheaf which associates with
a k-scheme S the set of isomorphism classes of Hom⊗(T , GrQCoh)(S) and acts on
morphisms in the natural way. We denote the natural morphism Hom⊗(T , GrQCoh)→
CT by t.

Lemma 3.18. Let G be an affine group scheme of finite type over k such that Gred is a
smooth subgroup scheme. Then the morphism of fpqc quotient sheaves

Gred \Homk(Gm,k,Gred)→ G \Homk(Gm,k,G)

induced by the inclusion Gred ↪→ G is an isomorphism.
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Proof. That it is an epimorphism is a consequence of Theorem 3.8. To prove that it is
a monomorphism we need to show that any two cocharacters χ1, χ2 of Gred over some
scheme S which are conjugate by an element of G(S) are fpqc-locally on S conjugate by
an element of Gred(S). For any point s ∈ S, the fibers of χ1 and χ2 in s are conjugate by
an element of Gred(k(s)) = G(k(s)). Since Gred is smooth, by [8, Corollaire XI.5.4] this
implies that χ1 and χ2 are conjugate by an element of Gred(S) fpqc-locally on S. �

For us, an étale morphism of schemes need not be of finite type, just locally of finite
type as in [21, Tag 02GI].

Theorem 3.19. (i) The sheaf CT is representable by a scheme which is étale over k
and the morphism t : Hom⊗(T , GrQCoh)→ CT is faithfully flat and locally of finite
presentation.

(ii) The scheme CT is the coarse moduli space of Hom⊗(T , GrQCoh), i.e., the morphism
CT → Hom⊗(T , GrQCoh) is universal among all morphisms from Hom⊗(T , GrQCoh)
to a scheme and induces a bijection between the set of isomorphism classes in
Hom⊗(T , GrQCoh)(k′) and the set CT (k′) for any algebraically closed overfield k′
of k.

(iii) The stack Hom⊗(T , GrQCoh) is a gerbe over CT .

Proof. (i) By Theorem 3.11, for any γ ∈ Hom⊗(T , GrQCoh)(S) the sheaf Aut⊗S (γ ) is
flat and of finite type over S. By [15, Corollaire 10.8] this implies that the coarse fppf
sheaf associated with Hom⊗(T , GrQCoh) is representable by an algebraic space over k
and that the natural morphism Hom⊗(T , GrQCoh)→ CT is faithfully flat and locally
of finite presentation. Then, as an algebraic space, this fppf sheaf is an fpqc sheaf by
[15, Théorème A.4] which implies that it coincides with CT . Since by [21, Tag 03KX]
any algebraic space which has an étale morphism to the spectrum of a field is a scheme,
it suffices to prove that CT is étale over k. For this we may replace k by an algebraic
closure.

Then using Lemma 3.14 we can identify Hom⊗(T , GrQCoh) with [G \ Homk(Gm,k,G)]
where G = Aut⊗k (ω) for some fiber functor ω on T over k such that CT is identified
with the fpqc quotient sheaf G \ Homk(Gm,k,G). Using Lemma 3.18 we may assume
that G is smooth. Let χ ∈ Homk(Gm,k,G). Since G is smooth, by [8, Corollaire
XI.5.3], the subsheaf of Homk(Gm,k,G) consisting of those cocharacters which are
fpqc-locally conjugate to χ is representable by an open and closed subscheme of
Homk(Gm,k,G) which we denote by U. This subscheme is preserved by the action
of G on Homk(Gm,k,G). Thus we obtain an open and closed substack [G \ U] of
[G \ Homk(Gm,k,G)]. Let X be the coarse fpqc sheaf associated with [G \ U]. By an
argument analogous to the one used above to show that CT is representable, it follows
from [15, Remarque 10.9] that X is representable by an algebraic space. There is a
natural inclusion X ↪→ CT whose pullback along the fpqc covering [G\Homk(Gm,k,G)] →
CT is the open and closed immersion [G \ U] ↪→ [G \ Homk(Gm,k,G)]. Thus X is an open
and closed subspace of CT . It follows from the definition of U that for any scheme S over
k the set X(S) consists of exactly one point. Thus X is Spec(k).
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By varying the cocharacter χ we can cover Homk(Gm,k,G) with open and closed
subsets U as above, and it follows that CT is a disjoint union of copies of Spec(k). This
means that CT is étale over k.

(ii) and (iii) follow from (i). �

Definition 3.20. (i) The scheme CT is called the scheme of types of T .

(ii) For any graded fiber functor γ ∈ Hom⊗(T , GrQCoh)(S), the type of γ is the image
t(γ ) of γ in CT (S).

For a group scheme G over k, we denote by G-Rep the category of finite-dimensional
representations of G.

Proposition 3.21. Let T = G-Rep for some group scheme G of finite type over k such
that Gred is a smooth subgroup scheme of G. Let T ′ := Gred-Rep. Then the restriction
functor T → T ′ induces a morphism of stacks Hom⊗(T ′, GrQCoh)→ Hom⊗(T , GrQCoh)
by composition of functors, and this in turn induces a morphism of schemes CT ′ → CT .
This morphism CT ′→ CT is an isomorphism.

Proof. By Lemma 3.14, the stacks Hom⊗(T , GrQCoh) (resp. Hom⊗(T ′, GrQCoh)) can be
identified with [G\Homk(Gm,k,G)] (resp. [Gred\Homk(Gm,k,Gred)]). Then CT (resp. CT ′)
are the fpqc quotient sheaves G \Homk(Gm,k,G) (resp. Gred \Homk(Gm,k,Gred)) and the
morphism CT ′ → CT in question is the morphism considered in Lemma 3.18. Thus the
theorem follows from Lemma 3.18. �

3.5. Explicit description of CT
Let T be a Tannakian category over k possessing a tensor generator and let k̄ be an
algebraic closure of k. In this subsection, we will describe CT by giving the set CT (k̄)
together with its Aut(k̄/k)-action. Since CT is étale over k, these data determine CT
uniquely. In this way we will obtain a description of CT not involving the language of
stacks.

The following lemma is a generalization of [5, Lemma C.3.5]. The proof that we give is
essentially the same as the one given in the above citation.

Lemma 3.22. Let G be a group scheme which is locally of finite type over a field k′ and
let T be a maximal split subtorus of G. Then the inclusion T ↪→ G induces a bijection

NormG(T)(k
′) \Homk′(Gm,k′ ,T)(k′) ∼−→ G(k′) \Homk′(Gm,k′ ,G)(k′).

Proof. By [5, Proposition C.4.5] any two maximal split tori in G are conjugate under
G(k′). Hence for χ ∈ Homk′(Gm,k′ ,G) there exists g ∈ G(k′) such that gχ factors through
T which shows surjectivity.

To prove injectivity, consider χ ∈ Homk′(Gm,k′ ,T) and g ∈ G(k′) such that gχ factors
through T. Then CentG(χ) contains the maximal split tori T and g−1T. Thus by the
above citation there exists z ∈ CentG(χ)(k′) such that z−1g−1T = T. The element gz lies in
NormG(T)(k′) and satisfies gzχ = gχ . �
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For any group scheme G over k̄ we denote by X∗(G) := Homk̄(Gm,k̄,G)(k̄) its set of
cocharacters over k̄. Let ω be a fiber functor on T over k̄ and let G := Aut⊗

k̄
(ω), which

is an affine group scheme of finite type over k̄. Let T ⊂ G be a maximal torus. The
action of NormG(T)(k̄) on X∗(T) from the left by conjugation induces an action of
WG(T) :=NormG(T)(k̄)/CentG(T)(k̄) on X∗(G).

Consider another fiber functor ω′ on T over k̄ and let G′ := Aut⊗
k̄
(ω′). Since we

are over an algebraically closed field, the fiber functors ω and ω′ are isomorphic by
Theorem 2.1. Any isomorphism λ : ω→ ω′ induces an isomorphism G→ G′ which is
independent of λ up to an inner automorphism. In particular the induced bijection
G(k̄)\X∗(G)

∼−→ G′(k̄)\X∗(G′) is independent of λ. If T ′ ⊂ G′ is a maximal torus, using the
conjugacy of maximal tori we may choose λ such that the induced isomorphism G

∼−→ G′
maps T to T ′. This yields a canonical bijection WG(T) \ X∗(T)

∼−→WG′(T ′) \ X∗(T ′).
We shall apply this to group schemes G′ and T ′ obtained as follows: For σ ∈ Aut(k̄/k),

the automorphism group of the fiber functor σ ∗ω is Aut⊗
k̄
(σ ∗ω) = σ ∗G and σ ∗T is a

maximal torus of σ ∗G.

Theorem 3.23. There is a bijection CT (k̄) ∼= WG(T) \ X∗(T) under which the Galois
action on CT (k̄) is given as follows: Let σ ∈ Aut(k̄/k) and χ ∈ X∗(T). The image under σ
of the class of χ is the image of the class of σ ∗χ ∈ X∗(σ ∗T) under the canonical bijection
Wσ ∗G(σ ∗T) \ X∗(σ ∗T)∼=WG(T) \ X∗(T) constructed above.

Proof. By Lemma 3.14 the functor Fω induces a bijection CT (k̄) ∼= G(k̄) \ X∗(G). By
composing this bijection with the bijection WG(T) \ X∗(T) ∼= NormG(T)(k̄) \ X∗(T) ∼=
G(k̄) \ X∗(G) given by Lemma 3.22 we obtain the desired map. The claim about the
Galois action follows from a direct verification using the definition of Fω. �

In the case where T is neutral, the description of CT given by the preceding theorem
can be simplified:

Theorem 3.24. Let T = G-Rep for an affine group scheme G of finite type over k.
Let T ⊂ G be a maximal torus. Then there is a bijection CT (k̄) ∼= WG(T) \ X∗(T) under
which the action of Aut(k̄/k) on CT (k̄) corresponds to the natural action of Aut(k̄/k) on
WG(T) \ X∗(T).

Proof. This follows from Theorem 3.23 by taking ω to be the forgetful functor G-Rep→
QCoh(Spec(k)), since in the present situation the Aut(k̄/k)-action on WG(T) \ X∗(T)
described there coincides with the natural action of Aut(k̄/k). �

3.6. Consequences
Let T be a Tannakian category over k possessing a tensor generator. The above results
on the scheme of types have the following consequences:

Theorem 3.25. Let γ1, γ2 be graded fiber functors on T over connected schemes S1, S2.
Then exactly one of the following is true:

(i) Isom⊗k (γ1, γ2) is the empty scheme.
(ii) The types t(γ1) and t(γ2) have the same set-theoretic image in CT .
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In the second case, the image of t(γ1) and t(γ2) consists of one point x whose residue field
k(x) is a finite separable field extension of k. Then the morphisms t(γi) : Si→ CT factor
through Spec(k(x)) ⊂ CT and the morphism Isom⊗k (γ1, γ2)→ S1 × S2 factors through a
faithfully flat morphism Isom⊗k (γ1, γ2)→ S1×k(x)S2.

Proof. Let S be a scheme over S1 × S2. By the definition of CT , the pullbacks of
γ1 and γ2 to S are isomorphic fpqc-locally on S if and only if the two morphisms
t(γi|S) : S→ Si

γi−→Hom⊗(T , GrQCoh)→ CT are equal, i.e., if and only if the morphism
S→ S1 × S2 factors through S1×CT S2. Since the Si are connected and CT is étale, the
set-theoretic images of the two morphisms t(γi) both consist of a single point xi. If
x1 6= x2, the two morphisms t(γi|S) cannot be equal, which implies that Isom⊗k (γ1, γ2)

is empty. Otherwise we are in the second case. Let x := x1 = x2. Then the morphisms
t(γi) factor through Spec(k(x)) and thus S1×CT S2 = S1×k(x) S2. If we let S be the
spectrum of an algebraically closed field, the above implies that the set-theoretic image
of Isom⊗k (γ1, γ2) in S1 × S2 is S1×k(x) S2. Since Isom⊗k (γ1, γ2) is flat over S1 × S2 by
Theorem 3.11 this implies the last statement. �

Theorem 3.26. Two graded fiber functors on T over some scheme S have the same type
if and only if they are fpqc-locally isomorphic.

Proof. This is merely a rephrasing of the fact that Hom⊗(T , GrQCoh) is a gerbe
over CT . �

Theorem 3.27. Let γ be a graded fiber functor on T over some scheme S and S′
a scheme over S. Then the functor which sends a graded fiber functor γ ′ over S′ to
Isom⊗S′(γ

′, γS′) and acts on morphisms in the natural way gives an equivalence between
graded fiber functors over S′ having the same type as γ and left Aut⊗S (γ )S′-torsors.

Proof. The fiber of the gerbe Hom⊗(T , GrQCoh) over CT in the point t(γ ) is a neutral
gerbe over S. Its S′-valued points are exactly the γ ′ of the theorem. Thus the theorem
follows from Theorem 2.3. �

Definition 3.28. Assume that T = G-Rep for an affine group scheme G over k. Let
χ : Gm,S → GS be a cocharacter. By Theorem 3.6 there exists a unique graded fiber
functor γ on T over S such that forg ◦ γ is the base change of the forgetful functor
G-Rep→ QCoh(k) to S and such that χ(γ ) = χ . We call γ the graded fiber functor
associated with χ .

Recall that a connected reductive algebraic group G over k is called quasi-split if there
exists a Borel subgroup of G defined over k. We extend the same definition to arbitrary
smooth connected affine group schemes over k.

Theorem 3.29. Let T = G-Rep where G is a smooth connected quasi-split affine group
scheme over k. For any point x ∈ CT there exists a cocharacter χ : Gm,k(x) → Gk(x)

such that the type of the associated graded fiber functor is the natural morphism
Spec(k(x))→ CT with set-theoretic image {x}.
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Proof. Let B ⊂ G be a Borel subgroup and T ⊂ B a maximal torus. Under the bijection
of Theorem 3.24, the point x corresponds to a WG(T)-conjugacy class in X∗(T) which is
Aut(k̄/k(x))-invariant. The Borel subgroup B defines a set of simple coroots in X∗(T) and
thus a set of dominant cocharacters in X∗(T). It follows from [1, Theorem V.3.3.2] that
the latter is a system of representatives for the action of WG(T) on X∗(T). Let χ be the
unique dominant cocharacter in the conjugacy class corresponding to x. Then for any
σ ∈ Aut(k̄/k(x)), the image σ ∗χ of χ under σ lies in the same conjugacy class. Since B is
defined over k(x), the cocharacter σ ∗χ is also dominant. Thus σ ∗χ = χ which shows that
χ is defined over k(x). By construction the graded fiber functor associated with χ has the
required type. �

Corollary 3.30. Let T = G-Rep where G is a smooth connected quasi-split affine group
scheme over k. Let S be a connected k-scheme and γ a graded fiber functor on T over
S. Then the image of t(γ ) consists of a single point x whose residue field k(x) is a finite
separable extension of k and there exists a cocharacter χ : Gm,k(x)→ Gk(x) such that the
associated graded fiber functor has the same type as γ .

Proof. That the image of t(γ ) consists of one point x for which k(x) is finite separable
over k follows from the fact that CT is étale over k by Theorem 3.19. The cocharacter
obtained by applying Theorem 3.29 to x has the required properties. �

For the case where k is finite, we can also prove the following variant of the preceding
result in which the automorphism group of the fiber functor is not required to be
connected.

Theorem 3.31. Assume that k is finite, that T is neutral and that Aut⊗k (ω) is smooth
for some (or equivalently any) fiber functor ω on T over k. Let S be a connected scheme
over k and γ a graded fiber functor on T over S. Then the image of t(γ ) consists of a
single point x whose residue field k(x) is a finite extension of k and there exists a graded
fiber functor γ ′ : T → GrQCoh(k(x)) which has the same type as γ .

First we prove the following result, which is a more concrete version of Theorem 3.31:

Theorem 3.32. Assume that k is finite, and let G be a smooth affine group scheme over
k. Let C be a conjugacy class of cocharacters of G which is defined over a finite field
extension k′ of k. Then there exists an inner form (G′, ϕ : G′̄

k

∼−→ Gk̄) defined over k′ and a
cocharacter χ ′ : Gm,k′→ G′ such that ϕ ◦ χ ′̄

k
lies in C.

Proof. Let χ : Gm,k̄→ Gk̄ be a cocharacter in C(k̄). Let σ ∈ Gal(k̄/k′) be the Frobenius.
Since C is defined over k′ there exists g ∈ G(k̄) such that g · σχ · g−1 = χ . There exists
a finite field extension k′′ of k′ over which χ and g are defined. Let n := [k′′ : k′]. Then
σ n

g= g, and g · σg · · · σ n−1
g ∈ G(k′′) has finite order since G(k′′) is finite. By [20, Exercise

I.5.1.2], this implies that there exists a cocycle (aτ )τ∈Gal(k̄/k′) with values in G(k̄) such
that aσ = g. By twisting G with this cocycle, we obtain an inner form G′ of G defined
over k′ together with an isomorphism ϕ : G′̄

k
→ Gk̄ such that ϕ(σg′)= aσ · σϕ(g′) · a−1

σ for
all g′ ∈ G′(k̄). Let χ ′ := ϕ−1 ◦ χk̄. This cocharacter of G′ is invariant under σ and hence is
defined over k′. Thus it has the required properties. �
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Proof of Theorem 3.31. That the image of t(γ ) consists of one point x whose residue
field k(x) is finite over k follows from the fact that CT is étale over k by Theorem 3.19.
Pick a fiber functor ω on T over k and let G := Aut⊗k (ω). By Lemma 3.14, the point
x ∈ CT corresponds to a conjugacy class of cocharacters of G which is defined over k(x).
Let (G′, ϕ : G′̄

k

∼−→ Gk̄) and χ ′ : Gm,k(x)→ G′ be the inner form of G defined over k(x) and
the cocharacter of G′ obtained by applying Theorem 3.32 to G and C. The fact that G′
is an inner form of G yields in a natural way a fiber functor ω′ on T over k(x) for which
Aut⊗k(x)(ω′)= G′. By Theorem 3.6 there exists a unique graded fiber functor γ ′ on T over
k(x) such that forg ◦ γ ′ = ω′ and χ(γ ′) = χ ′. The fact that ϕ ◦ χ ′̄

k
lies in C implies that

γ ′ has the same type as γ . Thus γ ′ has the required properties. �

4. Filtered fiber functors

4.1. Filtered quasi-coherent sheaves

By a decreasing filtration on a quasi-coherent sheaf M on S we mean a family of
quasi-coherent subsheaves (Fn M)n∈Z satisfying Fn M ⊃ Fn+1 M for all n ∈ Z as well as
∩n∈Z Fi M = 0 and ∪n∈Z Fn M = M. A morphism between two quasi-coherent sheaves
M and N equipped with a decreasing filtration is a morphism f : M → N such that
f (Fn M)⊂ Fn N for all n ∈ Z. We denote the resulting category of filtered quasi-coherent
sheaves on S by FilQCoh(S).

The category FilQCoh(S) is k-linear but in general not abelian. It has arbitrary
kernels, cokernels and direct sums. The failure of FilQCoh(S) to be abelian can be
compensated by giving it the structure of an exact category in the sense of Quillen.
Such an exact category is an additive category A together with a class of sequences
0→ A′→ A→ A′′→ 0 in A satisfying certain axioms. These sequences are called short
exact. Any abelian category is given the exact structure for which the short exact
sequences are the short exact sequences in the usual sense. An exact functor between
exact categories is an additive functor which sends short exact sequences to short exact
sequences. For an overview of exact categories, see [3].

The exact structure on FilQCoh(S) is defined as follows: A morphism f : M → N
in FilQCoh(S) is admissible if f (Fn M) = Fn N ∩ Imf for all n ∈ Z, and a sequence in
FilQCoh(S) is short exact if its morphisms are admissible and the underlying sequence of
quasi-coherent sheaves is short exact.

For any two quasi-coherent sheaves equipped with a filtration, we equip their tensor
product with the filtration given by Fn(M ⊗ N ) =∑i+j=n Fi M ⊗ Fj N . This makes
FilQCoh(S) into a symmetric monoidal category.

There is a natural forgetful functor forg : FilQCoh(S)→ QCoh(S), which is a faithful
exact tensor functor.

With any M ∈ FilQCoh(S) one can associate the graded quasi-coherent sheaf gr M :=
⊕n∈Z Fn M/Fn+1 M ∈ GrQCoh(S). A morphism f : M → N in FilQCoh(S) naturally
induces a morphism gr M→ gr N and this gives a functor gr : FilQCoh(S)→ GrQCoh(S).
It is an exact tensor functor. In fact, using the Five Lemma, the short exact sequences in
FilQCoh(S) can be described in the following way:
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Lemma 4.1. For a sequence 0→ L→M→ N → 0 in FilQCoh(S) the following are
equivalent:

(i) The sequence 0→ L→M→N → 0 is short exact in FilQCoh(S).
(ii) For all n ∈ Z the sequence 0→ Fn L→ Fn M→ Fn N → 0 is exact in QCoh(S).
(iii) The sequence 0→ gr L→ gr M→ gr N → 0 is exact in GrQCoh(S).

Lemma 4.2. An object M of FilQCoh(S) is rigid if and only if M is a locally free
OS-module of finite rank and all Fn M are direct summands of M Zariski-locally on S.

Proof. Let M ∈ FilQCoh(S) be rigid. Since forg and gr are tensor functors, by [6, 2.7]
the objects forg(M) ∈ QCoh(S) and gr(M) ∈ GrQCoh(S) are rigid. Thus the underlying
module M is locally free of finite rank, for each n ∈ Z the sheaf Fn M/Fn+1 M is locally
free of finite rank and for n small enough Fn M=M. Using the exact sequence

0→ Fn M/Fn+1 M→M/Fn+1 M→M/Fn M→ 0

it follows by induction on n that M/Fn M is locally free of finite rank. This implies that
all Fn M are direct summands of M Zariski-locally on S.

Now let M ∈ FilQCoh(S) satisfy the requirements of the lemma. Then we endow
the dual M∨ of the underlying locally free sheaf M with the filtration given by
Fn M∨ = (F1−n M)⊥. To prove that is in fact the dual of M in FilQCoh(S), it suffices to
prove that the morphisms δ : 1→M∨⊗M and ev : M⊗M∨→ 1 of sheaves respect the
gradings on these sheaves. This can be done locally on S where it follows from a direct
calculation using a basis of M adapted to the filtration on M. �

Any graded quasi-coherent sheaf M = ⊕n∈ZMi can be naturally equipped with a
decreasing filtration via Fn M =⊕i>n Mi. A morphism of graded quasi-coherent sheaves
is then also a morphism of filtered quasi-coherent sheaves for these filtrations; thus we
obtain a functor fil : GrQCoh(S)→ FilQCoh(S). It is a faithful exact tensor functor.

For any morphism of schemes S′ → S the pullback functor QCoh(S) → QCoh(S′)
preserves submodules and hence induces a pullback functor FilQCoh(S)→ FilQCoh(S′).
Thus for varying S the categories FilQCoh(S) form a fibered category FilQCoh over
(Sch/k). The functors gr, fil and forg are compatible with these pullbacks.

Analogously to the above, one can define the notion of an increasing filtration on a
quasi-coherent sheaf M on S.

Let M be as above and let (Fn M)n∈Z (resp. (Gn M)n∈Z) be a decreasing (resp. an
increasing) filtration on M. Two such filtrations are called opposite if there exists a
grading M = ⊕n∈ZMn of M such that Fn M = ⊕i>n Mi and Gn M = ⊕i6n Mi for all
n ∈ Z.

Lemma 4.3. The following are equivalent:

(i) The filtrations (Fn M)n∈Z and (Gn M)n∈Z are opposite.
(ii) The addition morphism Fn M⊕Gn−1 M→M is an isomorphism for all n ∈ Z.

Proof. That (i) implies (ii) follows directly from the definition.
Now assume that (ii) holds. For n ∈ Z let Mn := Fn M ∩ Gn M. It follows directly

from (ii) that the addition morphism ψ : ⊕n∈Z Mn → M is a monomorphism. Since
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both filtrations are exhaustive, every section of M is contained in Fa M ∩ Gb M
for some integers a 6 b. Thus to prove that ψ is an epimorphism, it is enough to
show that Fa M ∩ Gb M = ⊕a6n6b Mn for all a 6 b. For fixed a we prove this by
induction on b. For a = b the claim is trivial. For general b, it follows from (ii) that
Fa M ∩ Gb M = (Fa M ∩ Gb−1 M)⊕ (Fb M ∩ Gb M). This identity allows us to reduce
the claim for b to the claim for b− 1, which finishes the induction. �

4.2. Filtered fiber functors
Let T be a Tannakian category over k.

Definition 4.4. (i) A filtered fiber functor on T over S is an exact k-linear tensor
functor T → FilQCoh(S).

(ii) A morphism of filtered fiber functors is a tensor morphism.
(iii) We denote the resulting category of filtered fiber functors on T over the scheme S by

Hom⊗(T , FilQCoh)(S).
(iv) For a morphism S′→ S over k composition with the pullback functor FilQCoh(S)→

FilQCoh(S′) gives a functor Hom⊗(T , FilQCoh)(S)→ Hom⊗(T , FilQCoh)(S′). With
these pullback functors the categories Hom⊗(T , FilQCoh)(S) form a fibered
category over (Sch/k) which we denote by Hom⊗(T , FilQCoh).

Remark 4.5. Let ϕ : T → GrQCoh(S) be a filtered fiber functor. Since T is rigid, the
tensor functor ϕ factors through the full subcategory of rigid objects of FilQCoh(S)(see
[6, 2.7]). Thus by Lemma 4.2 for every X ∈ T the underlying quasi-coherent sheaf of
ϕ(X) is locally free of finite rank and the subsheaves Fn(ϕ(X)) are direct summands
Zariski-locally on S. Thus our notion of a filtered fiber functor agrees with the one from
[19, IV.2.1.1].

Definition 4.6. (i) For any two filtered fiber functors ϕ1, ϕ2 on T over S, we let
Isom⊗S (ϕ1, ϕ2) be the functor (Sch/S)→ (Sets) which sends S′ → S to the set of
tensor isomorphisms (ϕ1)S′

∼−→ (ϕ2)S′ and morphisms to pullback maps.
(ii) If ϕ1 = ϕ2, we denote Isom⊗S (ϕ1, ϕ2) by Aut⊗S (ϕ1).
(iii) For filtered fiber functors ϕ1, ϕ2 over k-schemes S1, S2 we set

Isom⊗k (ϕ1, ϕ2) := Isom⊗S1×S2
(pr∗1 ϕ1,pr∗2 ϕ2)

where pri : S1 × S2→ Si are the projections.

Given filtered fiber functors ϕ1, ϕ2, ϕ3 on T over S, composition of functors gives
a morphism Isom⊗S (ϕ1, ϕ2)×S Isom⊗S (ϕ2, ϕ3)→ Isom⊗S (ϕ1, ϕ3). In this way Aut⊗S (ϕ1)

and Aut⊗S (ϕ2) become sheaves of groups which act on Isom⊗S (ϕ1, ϕ2) from the right
(resp. from the left).

Theorem 4.7. For any filtered fiber functors ϕ1, ϕ2 over S (resp. ϕ1 over S1 and ϕ2 over
S2) the functor Isom⊗S (ϕ1, ϕ2) (resp. Isom⊗k (ϕ1, ϕ2)) is representable by a scheme which is
affine over S (resp. over S1× S2). If T has a tensor generator, these schemes are of finite
presentation over S (resp. S1 × S2).

In particular, for any filtered fiber functor ϕ over S, the functor Aut⊗S (ϕ) is
representable by a group scheme which is affine over S.
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Proof. It suffices to prove the claim about Isom⊗S (ϕ1, ϕ2). The functor
forg : FilQCoh(S)→ QCoh(S) induces a monomorphism Isom⊗S (ϕ1, ϕ2) ↪→ Isom⊗S (forg ◦
ϕ1, forg ◦ ϕ2) and the latter is affine over S and of finite presentation over S if T
has a tensor generator. Thus it suffices to show that this monomorphism is a closed
immersion.

Given any morphism ψ : F → G of quasi-coherent sheaves of finite type on some
scheme S′ over S and quasi-coherent subsheaves F ′ of F (resp. G′ of G), the subfunctor
of S′ consisting of those points on which ψ maps F ′ into G′ is representable by a closed
subscheme of X. This follows from the fact that this subfunctor consists of those points
on which (ψ(F ′) + G′)/G′ is zero, and the latter is representable by a closed subscheme
by [10, Theorem 11.17].

We take S′ := Isom⊗S (forg ◦ ϕ1, forg ◦ ϕ2). There is a universal tensor isomorphism
(ϕ1)S′ → (ϕ2)S′ which for X ∈ T gives an isomorphism ψX : ϕ1(X)S′ → ϕ2(X)S′ . Let n ∈ Z.
It follows from the preceding paragraph that the subfunctor of S′ consisting of those
points on which ψX(Fn(ϕ1(X))) = Fn(ϕ2(X)) is represented by a closed subscheme. Since
Isom⊗S (ϕ1, ϕ2)⊂ Isom⊗S (forg ◦ ϕ1, forg ◦ ϕ2) is the intersection of these subfunctors over
all X ∈ T and n ∈ Z this implies the claim. �

Definition 4.8. Using Theorems 3.11 and 4.7 we can associate with a filtered fiber
functor ϕ on T over S the following group schemes which are affine over S:

(i) P(ϕ) :=Aut⊗S (ϕ).
(ii) L(ϕ) :=Aut⊗S (gr ◦ϕ).

(iii) U(ϕ) := ker(P(ϕ)
gr−→ L(ϕ)).

The definition of U(ϕ) can be generalized as follows; cf. [19, IV.2.1.4].

Definition 4.9. For any filtered fiber functor ϕ on T over S and any integer α > 0
let Uα(ϕ) be the subgroup functor of P(ϕ) such that for any scheme S′ over S the
group Uα(S′) consists of those elements g ∈ P(S′) which act as the identity on the sheaf
Fi(ϕ(X))/Fi+α(ϕ(X)) for all X ∈ T and i ∈ Z.

In particular U0(ϕ)= P(ϕ) and U1(ϕ)= U(ϕ).

4.3. Splittings
Let T be a Tannakian category over k and let ϕ : T → FilQCoh(S) be a filtered fiber
functor.

Definition 4.10. (i) A splitting of ϕ is a graded fiber functor γ : T → GrQCoh(S) such
that ϕ = fil ◦ γ .

(ii) The functor ϕ is splittable if there exists a splitting of ϕ.
(iii) The functor ϕ is fpqc-locally splittable if there exists an fpqc covering S′ → S

such that the pullback of ϕ to S′ is splittable. (In [19], such a functor is called
admissible.)

(iv) The functor Spl(ϕ) : (Sch/S)→ (Sets) is the functor which sends a scheme S′→ S to
the set of splittings of ϕS′ and which acts on morphisms by pullbacks.
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Lemma 4.11. Giving a splitting of ϕ is the same as giving a cocharacter χ : Gm,S →
P(ϕ) such that the composite of χ with gr : P(ϕ) → L(ϕ) is the cocharacter
χ(gr ◦ϕ) : Gm,S→ L(ϕ).

Proof. Let γ be a splitting of ϕ. Then the cocharacter χ := χ(γ ) : Gm,S→ Aut⊗S (forg ◦
ϕ) factors through P(ϕ) and satisfies gr ◦χ = χ(forg ◦ ϕ).

On the other hand, let χ : Gm,S → P(ϕ) be as above. Then by Theorem 3.6, there
exists a unique graded fiber functor γ such that forg ◦ γ = forg ◦ ϕ and χ(γ ) = χ . The
identity gr ◦χ = χ(gr ◦ϕ) implies that γ is a splitting of ϕ. �

Definition 4.12. We call a cocharacter χ as in Lemma 4.11 a cocharacter which
splits ϕ.

Lemma 4.11 implies that Spl(ϕ) is a sheaf for the fpqc topology. It also follows from
Lemma 4.11 that U(ϕ) acts on Spl(ϕ): Given a cocharacter which splits ϕ, its conjugate
under a point of U(ϕ) again splits ϕ.

Lemma 4.13 ([19, IV.2.2.1]). This action makes Spl(ϕ) into a left U(ϕ)-pseudotorsor,
i.e., for each scheme S over k the group U(ϕ)(S) acts simply transitively on Spl(ϕ)(S).

The following is our main result on filtered fiber functors. In the case where T
is neutral and k has characteristic zero and in the case where T is neutral and
Aut⊗S (forg ◦ ϕ) is reductive it is due to Deligne; see [19, IV.2.4].

Main Theorem 4.14. Any filtered fiber functor on T is fpqc-locally splittable.

The proof of Theorem 4.14 will be given in ğ 5. For the rest of this section we assume
that it holds.

Lemma 4.13 and Theorem 4.14 immediately imply:

Theorem 4.15. The functor Spl(ϕ) is a left U(ϕ)-torsor.

In light of Theorem 4.14 it is natural to ask whether one can split ϕ already over
S or at least Zariski-locally or étale-locally on S. In [19, IV.2.2.3.1], Saavedra Rivano
constructs for every non-perfect field k a group scheme G over k and a filtered fiber
functor G-Rep→ FilQCoh(Spec(k)) which only becomes splittable over a non-separable
field extension of k.

There also exist filtered fiber functors which split Zariski-locally on S but not globally:
Take T := GLn-Rep for some n > 0. As explained in ğ 2.3, giving a fiber T over S is
the same as giving a GLn-torsor I over S. For convenience here we work with right
GLn-torsors. The fiber functor ω associated with I sends V ∈ GLn-Rep to I×G VS which
is defined to be the quotient of I × VS by the left G-action given by g · (i, v) := (ig−1, gv).
Furthermore, there is a well-known equivalence between GLn-torsors over S and locally
free coherent OS-modules of rank n. It sends a locally free coherent OS-module M of
rank n to the GLn-torsor of isomorphisms O⊕n

S →M. Altogether we get an equivalence
between locally free coherent OS-modules of rank n on S and fiber functors on T over
S. Under this equivalence a fiber functor ω corresponds to the image of the standard
representation GLn on kn under ω.
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Analogously it follows that for any rigid object M ∈ FilQCoh(S) whose underlying
locally free coherent OS-module has rank n there exists a filtered fiber functor ϕ on
T over S which sends the standard representation to M and which is unique up to
isomorphism. This fiber functor is splittable if and only if the filtered module M is
splittable. Thus such filtered fiber functors are in general only splittable Zariski-locally
on S and not globally on S.

Thus in general Theorem 4.14 is the best possible result. Nevertheless, we have the
following:

Theorem 4.16. Let ϕ be a filtered fiber functor on T over an affine scheme S. Assume
that the group scheme Aut⊗S (forg ◦ ϕ) is pro-smooth over S. Then ϕ is splittable.

Theorem 4.16 is a generalization of [19, IV.2.2.2] and [19, IV.2.2.5 3]. By
Theorem 4.15, it is a special case of the following result:

Theorem 4.17. Let ϕ be a filtered fiber functor on T over an affine scheme S. Assume
that the group scheme Aut⊗S (forg ◦ ϕ) is pro-smooth over S. Then for any α > 1, every
Uα(ϕ)-torsor for the fpqc topology is trivial.

For a discussion of the condition that Aut⊗S (forg ◦ ϕ) be pro-smooth see ğ 2.3. From
the results there it follows in particular that this is really a condition on T and not on
ϕ and that this condition is always satisfied if k has characteristic zero, since then any
group scheme of finite type over a field is smooth.

The rest of this subsection is devoted to proving Theorem 4.17. In the case where T
has a tensor generator, the proof of Theorem 4.17 requires significantly less work and
will be given as Theorem 4.27 below.

Lemma 4.18. Assume that T possesses a tensor generator. Let k′ be an overfield
of k and ϕ : T → FilQCoh(k′) a filtered fiber functor which is split by a cocharacter
χ : Gm,k′→ P(ϕ). Set G := Aut⊗k′ (forg ◦ ϕ), and let γ : G-Rep→ GrQCoh(k′) be the unique
graded fiber functor such that χ(γ ) = χ and forg ◦ γ = forg : G-Rep→ QCoh(k′), whose
existence is given by Theorem 3.6. Then Uα(ϕ)= Uα(fil ◦ γ ) for all α > 0.

Proof. Let X be a tensor generator of T . Let V := forg(ϕ(X)) and denote the ith step
of the filtration on V given by ϕ(X) by Fi(X). The vector space V is equipped with a
faithful action of G and P(ϕ) is the subgroup scheme of G whose points are the points
of G stabilizing the filtration on V. Similarly, for each α > 1, the group scheme Uα(ϕ)
is the subgroup scheme of P(ϕ) whose points are those which act as the identity on
Fi(X)/Fi+α(X) for all i ∈ Z.

If we consider V as an object of G-Rep, the filtration on V given by fil(γ (V)) coincides
with the one given by ϕ(V). Since the action of G on V is faithful, similarly to above
the group scheme P(fil ◦ γ ) (resp. Uα(fil ◦ γ ) for any α > 0) is the subgroup scheme of G
(resp. of P(fil ◦ γ )) whose points are those which stabilize the filtration on V (resp. which
act as the identity on Fi(X)/Fi+α(X) for all i ∈ Z). Thus Uα(ϕ) = Uα(fil ◦ γ ) for all
α > 0. �

Definition 4.19. For a filtered fiber functor ϕ on T and α > 0 we denote
Uα(ϕ)/Uα+1(ϕ) by grα U(ϕ).
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The next lemma is a generalization of [19, IV.2.1.4.1].

Lemma 4.20. Let ϕ : T → FilQCoh(S) be a filtered fiber functor and α > 0.

(i) The sheaf Uα(ϕ) is representable by a group scheme which is affine and flat over S.
(ii) If T has a tensor generator, the sheaf grα U(ϕ) is representable by a group scheme

which is flat over S.
(iii) If Aut⊗S (ϕ) is smooth over S, then so are Uα(ϕ) and grα U(ϕ).

Proof. The category T is the filtered colimit of the set IT of Tannakian subcategories
possessing a tensor generator from § 2.4. Thus Uα(ϕ) is in a natural way the filtered limit
of the sheaves Uα(ϕ|T ′) for T ′ ∈ IT . Hence by [11, Proposition 8.2.3] and [11, Proposition
8.3.8] it suffices to prove (i) for the functors ϕ|T ′ , so we may assume that T has a tensor
generator.

Since the claims are local for the fpqc topology, using Theorem 4.14 and Lemma 3.10
we may assume that ϕ is splittable and S is the spectrum of an algebraically closed
field. Then using Lemma 4.18 we may assume that T = G-Rep for G := Aut⊗S (ϕ)
and that forg ◦ ϕ = forg. Then the representability of Uα(ϕ) by an affine scheme is
[19, IV.2.1.4.1 1], and this implies the representability of grα U(ϕ). Since S is a field, both
schemes are flat over S.

If Aut⊗S (ϕ) is smooth over S, by [19, IV.2.1.4.1 3] so is Uα(ϕ). This implies that
grα U(ϕ) is also smooth and we are done. �

Lemma 4.21. Let ϕ be a filtered fiber functor on T . For any α, β > 0, the commutator
of Uα(ϕ) and Uβ(ϕ) is contained in Uα+β(ϕ).

Proof. This follows by a direct verification using the definition of the Uα(ϕ). �

Since P(ϕ)= U0(ϕ), Lemma 4.21 directly implies:

Lemma 4.22. Let ϕ be a filtered fiber functor on T .

(i) The group scheme Uα(ϕ) is normal in P(ϕ) for all α > 0.
(ii) The sheaf of groups grα U(ϕ) is abelian for all α > 1.

Lemma 4.23. Let ϕ : T → FilQCoh(S) be a filtered fiber functor. The morphism
P(ϕ)→ L(ϕ) induced by gr induces an isomorphism P(ϕ)/U(ϕ)∼= L(ϕ).

Proof. By definition, the group scheme U(ϕ) is the kernel of P(ϕ)→ L(ϕ). Thus it
remains to prove that P(ϕ)→ L(ϕ) is an epimorphism. For this we may work fpqc-locally
on S, so by Theorem 4.14 we may assume that ϕ = fil ◦ γ for a graded fiber functor
γ : T → GrQCoh(S). Then there is a canonical isomorphism gr ◦ϕ ∼= γ and the morphism
Aut⊗S (γ )→ P(ϕ) induced by fil splits P(ϕ)→ L(ϕ). �

Construction 4.24. Let ϕ : T → FilQCoh(S) be a filtered fiber functor and α > 1. We
define an action of Gm,S on grα U(ϕ) as follows:

By Lemma 4.22, the group scheme P(ϕ) acts on Uα(ϕ) by conjugation. Lemma 4.21
implies that this action induces an action of P(ϕ)/U(ϕ) on grα U(ϕ).

115

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1474748013000376
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 16:47:13, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1474748013000376
https:/www.cambridge.org/core


P. Ziegler

Via the natural isomorphism P(ϕ)/U(ϕ) ∼= L(ϕ) from Lemma 4.23 we consider
χ(gr ◦ϕ) : Gm,S→ L(ϕ) as a cocharacter of P(ϕ)/U(ϕ). By restricting the above action of
P(ϕ)/U(ϕ) on grα U(ϕ) along χ(gr ◦ϕ) we obtain an action of Gm,S on grα U(ϕ) which we
denote by m.

For all α > 1 we denote by µα,S ⊂Gm,S the kernel of the homomorphism Gm,S→Gm,S,
t 7→ tα.

Proposition 4.25. Let ϕ : T → FilQCoh(S) be a filtered fiber functor for which the group
scheme Aut⊗S (forg ◦ ϕ) is smooth over S. For any α > 1, under the above action of Gm,S

on grα U(ϕ) the subgroup µα,S acts trivially on grα U(ϕ).
Thus there is an action m̃ of Gm,S on grα U(ϕ) making the following diagram

commutative:

Gm,S ×S grαU(ϕ) m //

(t 7→tα)×S Id
��

grαU(ϕ)

Gm,S ×S grαU(ϕ) m̃ // grαU(ϕ)

This action m̃ makes grα U(ϕ) into a vector bundle over S.

Proof. By Lemma 2.7 the Tannakian category T has a tensor generator. For both
claims we may work locally for the fpqc topology. Thus using Theorem 4.14 and
Lemma 3.10 we may assume that S is the spectrum of an algebraically closed overfield k′
of k and that ϕ is splittable.

Let X be a tensor generator of T and V := forg(ϕ(X)). We denote by Fi V the ith step
of the filtration on V defined by ϕ(X). We define a map

h : Uα(ϕ)(k
′)→⊕i∈Z Homk′(Fi V/Fi+1 V,Fi+α V/Fi+α+1 V)=:W

as follows: Let u ∈ Uα(ϕ)(k′) and i ∈ Z. If we denote the k′-linear map V → V induced
by u again by u, then by the definition of Uα(ϕ), the k′-linear map u − IdV maps
Fi V into Fi+α V and Fi+1 V into Fi+1+α V. Thus u − IdV induces a k′-linear map
Fi V/Fi+1 V→ Fi+α V/Fi+α+1 V and we let h(u) be the direct sum of these maps over all
i ∈ Z. Since V is finite-dimensional over k′, so is W. The following lemma shows that h
gives an isomorphism from grα U(ϕ)(k′) onto an additive subgroup of W:

Lemma 4.26. (i) The map h is a group homomorphism from Uα(ϕ)(k′) to the additive
group of W.

(ii) The kernel of h is Uα+1(ϕ)(k′).

Proof. (i) Let u, u′ ∈ Uα(ϕ)(k′) and i ∈ Z. Then for all x ∈ Fi V,

(u(u′(x))− x)− ((u(x)− x)+ (u′(x)− x))= u(u′(x)− x)− (u′(x)− x) ∈ Fi+2α V

since u′(x) − x ∈ Fi+α V. Since α > 1 we have Fi+2α V ⊂ Fi+α+1 V and thus the preceding
equation implies h(uu′)= h(u)+ h(u′).

(ii) An element u ∈ Uα(ϕ)(k′) is in the kernel of h if and only if u − IdV maps
Fi V into Fi+α+1 V for all i ∈ Z. Since X is a tensor generator, this is equivalent to
u ∈ Uα+1(ϕ)(k′). �
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We let Gm(k′) act on grα U(ϕ)(k′) via m and on W via t 7→ tα. Then h is
Gm(k′)-equivariant by a direct verification. This implies that µα(k′) acts trivially on
grα U(ϕ)(k′). Since grα U(ϕ) is smooth by Lemma 4.20, this proves the first part of the
claim.

Furthermore, since Gm(k′)→ Gm(k′), t 7→ tα is surjective, the Gm(k′)-equivariance of h
implies that the image of h is a k′-subspace of W. If we identify grα U(ϕ)(k′) with this
subspace via h, the resulting action of (k′)∗ on grα U(ϕ)(k′) is the one given by m̃. Using
the smoothness of grα U(ϕ) this implies the second part of the claim. �

Proposition 4.25 is enough to prove the following result, which is Theorem 4.17 in the
case where T has a tensor generator:

Theorem 4.27. Assume that T has a tensor generator and let ϕ be a filtered fiber
functor on T over an affine scheme S for which the group scheme Aut⊗S (forg ◦ ϕ) is
smooth over S. Then for any α > 1, every Uα(ϕ)-torsor for the fpqc topology is trivial.

Proof. We need to prove that the set H1
fl(S,Uα(ϕ)) has exactly one element for all

α > 1. Since S is affine and since by [16, Proposition III.3.7] for a quasi-coherent
sheaf the flat and Zariski cohomology groups are isomorphic, by Proposition 4.25 the
group H1

fl(S, grα U(ϕ)) is zero for all α > 1. Thus for all α > 1, the natural morphism
H1

fl(S,Uα+1(ϕ))→ H1
fl(S,Uα(ϕ)) is surjective. Since T has a tensor generator, for α large

enough the group Uα(ϕ) is trivial. This implies the claim. �

Lemma 4.28. Let ϕ : T → FilQCoh(S) be a filtered fiber functor for which Aut⊗S (forg ◦
ϕ) is smooth, and let T ′ ⊂ T be a Tannakian subcategory and α > 1. If grα U(ϕ) and
grα U(ϕ|T ′) are endowed with the vector bundle structure given by Proposition 4.25, the
morphism of fpqc sheaves

grα U(ϕ)→ grα U(ϕ|T ′)

induced by restriction is an OS-linear epimorphism.

Proof. Since G′ := Aut⊗S (ϕ|T ′) is a quotient of G := Aut⊗S (ϕ) it is smooth and thus the
statement of the lemma makes sense. That the morphism in question is OS-linear follows
directly from the definition of the vector bundle structures.

Fix α > 1. To prove that the morphism is an epimorphism, we may work fpqc-locally
on S. Thus by Theorem 4.14 and Lemma 3.10 we may assume that ϕ is split by a
cocharacter χ : Gm,S→ Aut⊗S (ϕ) and that S is the spectrum of an algebraically closed
field k′. Then ϕ|T ′ is split by the cocharacter χ ′ : Gm,S

χ−→P(ϕ)→ P(ϕ|T ′), where the
morphism P(ϕ)→ P(ϕ|T ′) is given by restriction.

By Lemma 2.7 the Tannakian category T possesses a tensor generator. Using
Lemma 4.18 we may assume that T = G-Rep, that T ′ = G′-Rep and that forg ◦ ϕ = forg.
We let G act on its Lie algebra Lie(G) (resp. on Lie(G′)) via the adjoint action
(resp. via G→ G′ composed with the adjoint action of G′). Thus ϕ endows Lie(G)
and Lie(G′) with a filtration, whose ith step we denote by Fi Lie(G) (resp. Fi Lie(G′)).
Then Lie(Uα(ϕ))= Fα(Lie(G)) and Lie(Uα(ϕ|T ′))= Fα(Lie(G′)) by [19, IV.2.1.4.1].

Since the morphism G→ G′ is faithfully flat, the induced morphism Lie(G)→ Lie(G′)
is surjective. Hence the exactness of ϕ implies the induced morphism Lie(Uα(ϕ))→
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Lie(Uα(ϕ|T ′)) is surjective. Since by Lemma 4.20 the Uα are smooth, this implies that
the image of Uα(ϕ) in Uα(ϕ|T ′) is of finite index. Thus also the image of the k′-vector
space grα U(ϕ) in the k′-vector space grα U(ϕ|T ′) is of finite index. Since k′ is infinite this
implies that this image is all of grα U(ϕ|T ′), which finishes the proof. �

Proof of Theorem 4.17. Let α > 1 and X be a right Uα(ϕ)-torsor. For all j 6 i in
IT there are natural morphisms Uα(ϕ)→ Uα(ϕ|i) and Uα(ϕ|i)→ Uα(ϕ|j) induced by
restriction. For i ∈ IT , let Xi := X×Uα(ϕ)Uα(ϕ|i) which is a right Uα(ϕ|i)-torsor. The fact
that T = lim−→i∈IT

i implies Uα(ϕ)∼= lim←−i∈IT
Uα(ϕ|i). Hence X ∼= lim←−i∈IT

Xi. By the discussion

at the end of § 2, the condition that Aut⊗S (forg ◦ ϕ) is pro-smooth over S is equivalent
to saying that for each i ∈ IT the group scheme Aut⊗S (forg ◦ ϕ|i) is smooth over S.
Hence by Theorem 4.27 for each i the set Xi(S) is not empty and thus a torsor under
the group Gαi := Uα(ϕ|i)(S). Hence the Xi(S) form a torsor under the inverse system
of groups (Gαi )i∈IT . We want to show that X(S) = lim←−i∈IT

Xi(S) is not empty. This is
equivalent to saying that the (Gαi )i∈IT -torsor (Xi(S))i∈IT is isomorphic to the trivial one.
By Lemma 2.15 it is thus sufficient to prove that lim←−

1
i∈IT

Gαi is the trivial pointed set for
all α > 1. First we prove:

Lemma 4.29. For all α > 1, the pointed set lim←−
1
i∈IT

Gαi /G
α+1
i is trivial.

Proof. Let R := Γ (S,OS) and Mi := Gαi /G
α+1
i for all i ∈ IT . The case of Theorem 4.17

already proved implies Mi = grα U(ϕ|i)(S). Thus by Proposition 4.25 the Mi are finitely
generated projective R-modules. By Lemma 4.28 the transition maps Mi → Mj are
R-linear for all j 6 i in IT . Thus the Mi form an inverse system of R-modules and it
suffices to verify the conditions of Theorem 2.17. We already know that condition (ii) is
satisfied.

(i) This is Lemma 2.9.

(iii) This is part of Lemma 4.28.

(iv) Let i, j ∈ IT . By Lemma 2.10 the square

Aut⊗S (forg ◦ ϕ|i)

��

Aut⊗S (forg ◦ ϕ|i∨j)oo

��
Aut⊗S (forg ◦ ϕ|i∧j) Aut⊗S (forg ◦ ϕ|j)oo

is Cartesian. This implies that the square

Uα(ϕ|i)(S)

��

Uα(ϕ|i∨j)(S)oo

��
Uα(ϕ|i∧j)(S) Uα(ϕ|j)(S)oo

is Cartesian for all α > 0. This in turn implies that condition (iv) is satisfied. �
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Now we can prove:

Lemma 4.30. For all α > 1, the pointed set lim←−
1
i∈IT

Gαi is trivial.

Proof. Let α > 1 and x ∈ lim←−
1
i∈IT

Gαi . Lemmas 4.29 and 2.16 imply that for all

α′ > 1, the natural map lim←−
1
i∈IT

Gα
′+1

i → lim←−
1
i∈IT

Gα
′

i is surjective. Thus the induced

map lim←−α′>αlim←−
1
i∈IT

Gα′i → lim←−
1
i∈IT

Gαi is surjective. Hence there exists (xα′)α′>α ∈
lim←−α′>αlim←−

1
i∈IT

Gα
′

i such that xα = x. For each α′ > α we pick a representative (α
′
gi

j)j6i∈IT

of xα′ . For any α′′ > α′ > α and j 6 i in IT we denote the transition map Gα
′′

i → Gα
′

i by
rα
′′
α′ and the transition map Gα

′
i → Gα

′
j by π i

j . The fact that (xα′)α′>α ∈ lim←−α′>αlim←−
1
i∈IT

Gα
′

i

implies that for each α′ > α, there exists (α
′
gi)i∈IT ∈

∏
i∈IT

Gα
′

i such that

α′gi
j = π i

j (
α′gi)r

α′+1
α′ (α

′+1gi
j)(
α′gj)

−1 (4.31)

for all j6 i ∈ IT .
Since each i ∈ IT has a tensor generator, for each i ∈ IT , there exists αi > 1 such that

Gα
′

i = 1 for α′ > αi. For i ∈ IT let gi := αgi · rα+1
α (α+1gi) · · · rαi

α (
αigi). Then for any i 6 j

in IT repeated application of (4.31) shows that αgi
j = π i

j (gi)g
−1
j . Thus x, which is the

class of (αgi
j)i6j∈IT in lim←−

1
i∈IT

Gαi , is equal to the distinguished element of lim←−
1
i∈IT

Gαi . This
proves the claim. �

�

4.4. The stack of filtered fiber functors

Let T be a Tannakian category over k. In this subsection, we study the fibered category
Hom⊗(T , FilQCoh).

Lemma 4.32. The fibered category Hom⊗(T , FilQCoh) is a stack for the fpqc topology.

Proof. For any fpqc covering S′ → S of k-schemes we denote by Desc(S′/S) the
category of objects of FilQCoh(S′) equipped with a descent datum relative to S.
Given M,M′ ∈ FilQCoh(S′), descent data on M and M′ relative to S′ induce a
descent datum on M ⊗ M′ relative to S′. This makes Desc(S′/S) into a symmetric
monoidal category, and the natural functor b : FilQCoh(S)→ Desc(S′/S), which is an
equivalence since FilQCoh is a stack for the fpqc topology, is a tensor functor. Let
b−1 : Desc(S′/S)→ FilQCoh(S) be a tensor functor which is an inverse of b. To give a
tensor functor T → FilQCoh(S′) equipped with a descent datum relative to S is the same
as giving a tensor functor T → Desc(S′/S). Thus such a functor can be descended to a
tensor functor T → FilQCoh(S) by composing it with b−1. Similarly a tensor morphism
between two tensor functors T → FilQCoh(S′) which is equipped with a descent datum
can be descended by applying b−1. It follows from Lemma 4.1 that for a tensor functor
ϕ : T → FilQCoh(S), the property of being exact is local on S for the fpqc topology.
Altogether this implies the claim. �
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Definition 4.33. Let

Hom⊗(T , GrQCoh)
fil //

Hom⊗(T , FilQCoh)
gr

oo

be the morphisms induced by composition with the morphisms fil : GrQCoh→ FilQCoh
(resp. gr : FilQCoh→ GrQCoh).

Proposition 4.34. Assume that T has a tensor generator. Then the morphism of stacks

fil : Hom⊗(T , GrQCoh)→Hom⊗(T , FilQCoh)

is representable by schemes, affine, faithfully flat and of finite presentation.

Proof. The claim means the following: For any scheme S over k and any filtered fiber
functor ϕ : S→Hom⊗(T , FilQCoh) the stack

X :=Hom⊗(T , GrQCoh)×fil,Hom⊗(T ,FilQCoh) S

is representable by a scheme which is affine, faithfully flat and of finite presentation over
S. To prove this, we may work fpqc-locally on S. Thus, by Theorem 4.14 we may assume
that ϕ is splittable. We fix a graded fiber functor γ0 splitting ϕ.

For any scheme S′ over S, the objects of X(S′) are pairs (γ, λ) consisting of a graded
fiber functor γ ∈ Hom⊗(T , GrQCoh)(S′) and an isomorphism λ : fil ◦ γ ∼−→ ϕS′ , and a
morphism (γ, λ)→ (γ ′, λ′) in X(S′) is a morphism µ : γ → γ ′ such that λ = λ′ ◦ fil(µ).
Since fil is faithful, for any such (γ, λ) and (γ ′, λ′) there can thus be at most one
morphism (γ, λ)→ (γ ′, λ′). Since for any (γ, λ) ∈ X(S′) the tensor morphism gr(λ)
gives an isomorphism γ ∼= gr ◦ϕS′ ∼= (γ0)S′ , the category X(S′) is equivalent to its
full subcategory whose objects are of the form ((γ0)S′ , λ). Since fil ◦ (γ0)S′ = ϕS′ it
follows that P(ϕ)(S′)→ X(S′), λ 7→ ((γ0)S′ , λ) is an equivalence. Since this equivalence
is functorial in S it gives an equivalence P(ϕ)→ X of fibered categories. Thus X has the
required properties by Theorem 4.7 and Lemma 4.20. �

Theorem 4.35. Assume that T has a tensor generator. Then Hom⊗(T , FilQCoh) is an
algebraic stack which is locally of finite type over k.

Proof. Since T is rigid, by [19, I.5.2.3] any morphism in Hom⊗(T , FilQCoh) is an
isomorphism. Thus Hom⊗(T , FilQCoh) is fibered in groupoids. By [15, Théorème 10.1],
to prove that Hom⊗(T , FilQCoh) is an algebraic stack it suffices to prove that the
diagonal morphism Hom⊗(T , FilQCoh)→ Hom⊗(T , FilQCoh) × Hom⊗(T , FilQCoh) is
representable, separated and quasi-compact and that there exists an algebraic space
Y and a morphism Y → Hom⊗(T , FilQCoh) which is representable, faithfully flat and
locally of finite presentation.

The condition on the diagonal morphism is equivalent to saying that for any two
filtered fiber functors ϕ1, ϕ2 over a scheme S the functor Isom⊗S (ϕ1, ϕ2) is representable
by an algebraic space which is separated and quasi-compact over S. This condition is
satisfied by Theorem 4.7.

120

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1474748013000376
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 16:47:13, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1474748013000376
https:/www.cambridge.org/core


Graded and filtered fiber functors on Tannakian categories

Since Hom⊗(T , GrQCoh) is an algebraic stack locally of finite type over k by
Theorem 3.16, there exists an algebraic space Y which is locally of finite type over k
and a morphism Y → Hom⊗(T , GrQCoh) over k which is representable, faithfully flat
and locally of finite presentation. Composing such a morphism with the morphism
Hom⊗(T , GrQCoh) → Hom⊗(T , FilQCoh) from Proposition 4.34 yields a morphism
Y → Hom⊗(T , FilQCoh) which is representable, faithfully flat and locally of finite
presentation.

Since Y is locally of finite type over k and the morphism Y → Hom⊗(T , FilQCoh) is
faithfully flat and locally of finite presentation, the algebraic stack Hom⊗(T , FilQCoh) is
locally of finite presentation over k (cf. [12, Lemme 17.7.5]). �

Now we turn to the type of a filtered fiber functor.

Definition 4.36. Assume that T has a tensor generator.

(i) We denote the composition

Hom⊗(T , FilQCoh) gr−→Hom⊗(T , GrQCoh) t−→ CT

again by t.

(ii) For a filtered fiber functor ϕ on T over S its image t(ϕ) in CT (S), which is the type of
the graded fiber functor gr ◦ϕ, is called the type of ϕ.

Theorem 4.37. Assume that T has a tensor generator. Then t : Hom⊗(T , FilQCoh)→
CT makes CT into the coarse fpqc sheaf associated with Hom⊗(T , FilQCoh). In particular
CT is the coarse moduli space of Hom⊗(T , FilQCoh) and Hom⊗(T , FilQCoh) is a gerbe
over its coarse moduli space.

Proof. Let X be the coarse fpqc sheaf associated with Hom⊗(T , FilQCoh). The
morphism t induces a morphism t̄ : X→ CT of sheaves. It is an epimorphism since gr ◦ fil
is canonically isomorphic to the identity on Hom⊗(T , GrQCoh). Theorem 4.14 implies
that two filtered fiber functors on T over a given scheme are fpqc-locally isomorphic
if and only if the associated graded fiber functors are fpqc-locally isomorphic. This
implies that t̄ is a monomorphism. The last statement follows from the fact that CT is
representable by Theorem 3.19. �

4.5. Consequences

Let T be a Tannakian category over k. Theorem 4.14 and the above results about
the stack Hom⊗(T , FilQCoh) allow us to prove the following facts about filtered fiber
functors:

Theorem 4.38. (i) For any two filtered fiber functors ϕ1, ϕ2 on T over a k-scheme S
the morphism

gr : Isom⊗S (ϕ1, ϕ2)→ Isom⊗S (gr ◦ϕ1, gr ◦ϕ2)

is faithfully flat. In particular IsomS(ϕ1, ϕ2) is flat over S.
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(ii) If ϕ1, ϕ2 are filtered fiber functors on T over k-schemes S1, S2, then Isom⊗k (ϕ1, ϕ2) is
faithfully flat over Isom⊗k (gr ◦ϕ1, gr ◦ϕ2) and flat over S1 × S2.

Proof. (i) We may work fpqc-locally on S. Thus by Theorem 4.14 we may assume that
ϕi = gr ◦ γi for graded fiber functors γi. Then gr ◦ϕi ∼= γi and the functor fil induces a
splitting of the morphism in question, which implies faithful flatness. Then the claim
about flatness follows from Theorem 3.11. (ii) is a special case of (i). �

Theorem 4.39. Let ϕ1, ϕ2 be two filtered fiber functors on T over a k-scheme S. The
right action of U(ϕ1) on Isom⊗S (ϕ1, ϕ2) by composition of functors makes Isom⊗S (ϕ1, ϕ2)

into a right U(ϕ1)-torsor over Isom⊗S (gr ◦ϕ1, gr ◦ϕ2).

Proof. Since Isom⊗S (ϕ1, ϕ2) is faithfully flat over Isom⊗S (gr ◦ϕ1, gr ◦ϕ2) by
Theorem 4.38 it suffices to show that for each tensor isomorphism λ : gr ◦ (ϕ1)S′ →
gr ◦ (ϕ2)S′ over some scheme S′ over S, the group U(ϕ)(S′) acts simply transitively on the
set of tensor isomorphisms λ′ : (ϕ1)S′ → (ϕ2)S′ for which gr(λ′) = λ. This follows directly
from the definition of U(ϕ). �

Part (iii) of the following theorem is due to Saavedra Rivano:

Theorem 4.40. Let ϕ be a filtered fiber functor on T over S.

(i) The group schemes P(ϕ) and U(ϕ) are flat over S.
(ii) If Aut⊗S (forg ◦ ϕ) is smooth over S, so are P(ϕ) and U(ϕ).

(iii) Assume that G :=Aut⊗S (forg ◦ ϕ) is reductive over S. Then:
− P(ϕ) is a parabolic subgroup of G with unipotent radical U(ϕ). If χ : Gm,S→ G

splits ϕ and Lie(G) = ⊕n∈Z Lie(G)n is the weight decomposition induced by χ ,
then Lie(P)=⊕n>0 Lie(G).

− If χ : Gm,S→ G splits ϕ, then CentG(χ) is a Levi subgroup of P(ϕ).
− The preceding construction gives a bijection between splittings of ϕ and Levi

subgroups of P(ϕ).

Proof. (i) and (ii) are part of Lemma 4.20. (iii) is [19, IV.2.2.5]. �

Theorems 3.25 and 4.38 together imply:

Theorem 4.41. Assume that T has a tensor generator. Let ϕ1, ϕ2 be graded fiber
functors on T over connected schemes S1, S2. Then exactly one of the following is
true:

(i) Isom⊗k (ϕ1, ϕ2) is the empty scheme.
(ii) The types t(ϕ1) and t(ϕ2) have the same set-theoretic image in CT .

In the second case, the image of t(ϕ1) and t(ϕ2) consists of one point x whose residue
field k(x) is a finite separable field extension of k. Then the morphisms t(ϕi) : Si→ CT
factor through Spec(k(x)) ⊂ CT and the morphism Isom⊗k (ϕ1, ϕ2)→ S1 × S2 factors
through a faithfully flat morphism Isom⊗k (ϕ1, ϕ2)→ S1×k(x) S2.
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The following two theorems are proven in exactly the same way as Theorems 3.26 and
3.27.

Theorem 4.42. Assume that T has a tensor generator. Two filtered fiber functors on T
over some scheme S have the same type if and only if they are fpqc-locally isomorphic.

Theorem 4.43. Assume that T has a tensor generator. Let ϕ be a filtered fiber functor
on T over some scheme S and S′ a scheme over S. The functor which sends a graded fiber
functor ϕ′ over S′ to Isom⊗S′(ϕ

′, ϕS′) and a tensor morphism ϕ′ → ϕ′′ to the induced
morphism Isom⊗S′(ϕ

′, ϕS′)→ Isom⊗S′(ϕ
′′, ϕS′) gives an equivalence between filtered fiber

functors over S′ having the same type as ϕ and left Aut⊗S (ϕ)S′-torsors.

5. Proof of the main theorem

In this section we give the proof of Theorem 4.14. Let T be a Tannakian category over
k and ϕ : T → FilQCoh(S) a filtered fiber functor. The proof will consist of a series of
reduction steps. In the initial cases we will have T = G-Rep for a group scheme G over k.
In this situation, we denote by ω0 : G-Rep→ QCoh(Spec(k)) the forgetful functor. Since
the fiber functors forg ◦ ϕ and ω0 are fpqc-locally isomorphic, after replacing S by a
suitable covering we may assume that forg ◦ ϕ = (ω0)S.

5.1. Preparations

First we give two lemmas.

Lemma 5.1. Let ϕ : T → FilQCoh(S) be a k-linear tensor functor. Assume that the
functor forg ◦ ϕ : T → QCoh(S) is exact and that for each epimorphism X→ X′ in T
and each n ∈ Z the induced morphism Fn ϕ(X)→ Fn ϕ(X′) is an epimorphism. Then ϕ is
exact.

Proof. Let 0→ X′→ X→ X′′→ 0 be an exact sequence in T . By Lemma 4.1 it suffices
to show that 0→ Fn ϕ(X′)→ Fn ϕ(X)→ Fn ϕ(X′′)→ 0 is exact for all n ∈ Z.

The fact that ϕ is a tensor functor implies ϕ(X∨) = ϕ(X)∨. Thus Fnϕ(X∨) =
(F1−n ϕ(X))⊥ and analogously for X′ and X′′. Since X′ → X is a monomorphism, the
dual morphism X∨ → (X′)∨ is an epimorphism. Hence (Fn ϕ(X))⊥ → (Fn ϕ(X′))⊥ is
an epimorphism by the assumption on ϕ which implies that Fn ϕ(X′)→ Fn ϕ(X) is a
monomorphism.

The fact that ϕ is k-linear implies that the composite Fn ϕ(X′)→ Fn ϕ(X)→ Fn ϕ(X′′)
is zero.

It remains to prove exactness in the middle. Using the anti-automorphism X 7→ X∨ of
T it is enough to show that the sequence

0→ (F1−n ϕ(X′′))⊥→ (F1−n ϕ(X))⊥→ (F1−n ϕ(X′))⊥→ 0. (5.2)

is exact in the middle.
Let us have f ∈ (F1−n ϕ(X))⊥ such that f |forg(ϕ(X′)) = 0. Since forg ◦ ϕ is exact, the

morphism f factors through a unique OS-linear morphism f̃ : forg(ϕ(X′′))→ OS. Since
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by assumption the map F1−n ϕ(X)→ F1−n ϕ(X′′) is an epimorphism, this f̃ lies in
(F1−n ϕ(X′′))⊥. Thus f̃ is a preimage of f in (F1−n ϕ(X′′))⊥. Hence (5.2) is exact in
the middle and we are done. �

In the following lemma, the category Tk′ is the base change of T to k′ given by
Construction 2.12.

Lemma 5.3. (i) Let ϕ : T → FilQCoh(S) be a filtered fiber functor and k′ a finite field
extension of k. Then there exists a filtered fiber functor ϕ′ : Tk′ → FilQCoh(Sk′)
making the following diagram commutative:

T
ϕ //

��

FilQCoh(S)

pullback
��

Tk′
ϕ′ // FilQCoh(Sk′)

(ii) If ϕ′ is fpqc-locally splittable, so is ϕ.

Proof. (i) Let (V, α) ∈ Tk′ . Then we have two k-homomorphisms k′ → End(ϕ(V)Sk′ );
one is given by the usual action of k′ on ϕ(V)Sk′ and the other is given by
the image of α under ϕSk′ . These give two morphisms ϕ(V)Sk′ ⊗k k′ → ϕ(V)Sk′ in
FilQCoh(Sk′) and we define ϕ′((V, α)) to be the cokernel of the difference of these two
morphisms. This construction is functorial in (V, α), and hence we obtain a functor
ϕ′ : Tk′ → FilQCoh(Sk′). By a direct verification, the functor ϕ′ is a k-linear tensor
functor and the diagram above commutes.

To prove that ϕ′ is exact, by Lemma 5.1 it is enough to prove that forg ◦ ϕ′ is
exact and that for all epimorphisms X→ X′ in T and all n ∈ Z the induced morphism
Fn ϕ′(X)→ Fn ϕ′(X′) is an epimorphism. A straightforward diagram chasing argument
shows that the second condition is fulfilled and that forg ◦ ϕ is right exact. By [6, 2.10]
the right exactness of forg ◦ ϕ implies the exactness of forg ◦ ϕ. Thus we are done.

(ii) If γ : Tk′ → GrQCoh(S′) is a splitting of the pullback of ϕ′ to an fpqc cover S′ of Sk′ ,
then the commutativity of the diagram in (i) shows that composing γ with the functor
T → Tk′ gives a splitting of ϕS′ . �

5.2. The case T = G-Rep for G smooth and S the spectrum of a field

First we prove the following result, which is a special case of Theorem 4.16:

Theorem 5.4. Let T = G-Rep for an affine smooth group scheme G over k. Let ϕ be a
fiber functor on T over S= Spec(k′) for some overfield k′ of k satisfying forg ◦ ϕ = (ω0)S.
Then ϕ is splittable.

We will use the following result from SGA 3:

Theorem 5.5 ([8, Théorème XVII.5.1.1]). Let U and H be two group schemes of finite
type over k. If U is unipotent and smooth and H is of multiplicative type and connected,
then every exact sequence

1→ U→ E→ H→ 1
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splits, that is there exists a homomorphism H→ E of group schemes which is a section of
the homomorphism E→ H.

Lemma 5.6. The group scheme U(ϕ) is unipotent and smooth.

Proof. Since G is smooth, by [19, IV.2.1.4.1] so is U(ϕ).
Let V ∈ G-Rep be a faithful representation of G. Pick a basis (v1, . . . , vn) of V which

is adapted to the filtration of V given by ϕ(V), i.e. such that each step of the filtration
is the span of {v1, . . . , vr} for some r. Under the resulting embedding G ↪→ GLn,k′ the
subgroup U(ϕ) is mapped into the subgroup of upper triangular matrices with entries 1
on the diagonal. This shows that U(ϕ) is unipotent. �

Proof of Theorem 5.4. By Lemma 4.11, showing that ϕ is splittable is equivalent
to showing that the cocharacter χ(gr ◦ϕ) : Gm,k′ → L(ϕ) can be lifted to P(ϕ). Let
E := P(ϕ)×L(ϕ),χ(gr ◦ ϕ)Gm,k′ . It fits into an exact sequence

1→ U(ϕ)→ E→Gm,k′→ 1.

Thus Theorem 5.5 and Lemma 5.6 imply that there exists a cocharacter Gm,k′ → E
splitting this sequence. But such a cocharacter is the same as a cocharacter Gm,k′→ P(ϕ)
which lifts χ(gr ◦ϕ). Thus ϕ is splittable. �

5.3. The case T = G-Rep for G of finite type over k

Now we prove the following special case of Theorem 4.14:

Theorem 5.7. Let T = G-Rep for any group scheme G of finite type over k. Any filtered
fiber functor on T is fpqc-locally splittable.

First we collect some facts about restriction and induction functors. We denote by
G-REP the category of (not necessarily finite-dimensional) representations of G. Let H
be a closed subgroup scheme of G. We denote by resG

H : G-REP→ H-REP the restriction
functor. By [13, I.3.4], it has a right adjoint indG

H : H-REP→ G-REP. For W ∈ H-REP, we
denote the adjunction map resG

H indG
H W→W by εW .

By [13, I.3.3] the functor indG
H can described explicitly as follows: For W ∈ H-REP let

Wa be the functor from k-algebras to sets which sends a k-algebra A to W ⊗k A and acts
on morphisms in the natural way. Consider G as a functor from k-algebras to sets in the
usual way and let Mor(G,Wa) be the set of natural transformations from G to Wa. The
k-vector space structure on W gives a natural k-vector space structure on Mor(G,Wa).
Then

indG
H(W) = {f ∈Mor(G,Wa) | f (gh)= h−1f (g)

for all k-algebras A and all g ∈ G(A), h ∈ H(A)} (5.8)

and the action of G is by left translations. Under this description the map εW becomes

εW : resG
H(indG

H(W))→W, f 7→ f (1). (5.9)

125

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1474748013000376
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 16:47:13, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1474748013000376
https:/www.cambridge.org/core


P. Ziegler

Theorem 5.10 ([13, I.3.6]). Let V ∈ G-REP and W ∈ H-REP. Then there is a canonical
isomorphism of G-modules

(indG
H W)⊗k V

∼−→ indG
H(W ⊗k resG

H V).

Under the explicit description (5.8) this isomorphism sends f ⊗k v to the natural
transformation G→ (W ⊗k V)a which sends g ∈ G(A) to f (g)⊗k g−1v for all k-algebras A.

Corollary 5.11. Let V ∈ G-REP. Endow k[G/H] with the left regular representation of
G. Then there is a natural isomorphism of G-modules

indG
H(resG

H(V))∼= k[G/H] ⊗k V.

Under this isomorphism, the map εresG
H(V)

corresponds to the map eG/H ⊗k V : k[G/H] ⊗k

V → k ⊗k V ∼= V where eG/H : k[G/H] → k is the homomorphism corresponding to
the composition of the unit section Spec(k)→ G of G and the canonical morphism
G→ G/H.

Proof. The isomorphism is obtained by setting W = 1 in Theorem 5.10. The description
of εresG

H(W)
can be directly verified using (5.8), (5.9) and Theorem 5.10. �

Theorem 5.12. Assume that G/H is affine.

(i) The functor indG
H is exact.

(ii) The map εW is surjective for all W ∈ H-REP.

Proof. For (i), see [13, I.5.13]. Part (ii) is proven in [4, Lemma 4.2] for the case where
G and H are affine algebraic groups. But the proof given there works for arbitrary affine
group schemes G and H of finite type over k. �

Construction 5.13. Let H be a closed subgroup scheme of G such that G/H is finite.
Let S be a reduced scheme and ϕ : G-Rep→ FilQCoh(S) be a filtered fiber functor such
that forg ◦ ϕ = (ω0)S.

We construct a functor ϕ′ : H-Rep→ FilQCoh(S) such that forg ◦ ϕ′ = (ω0)S as follows:
Since each V ∈ G-REP is the union of its finite-dimensional subrepresentations, the
functor ϕ can be naturally extended to an exact k-linear tensor functor G-REP→
FilQCoh(S). For n ∈ Z and V ∈ G-REP we denote the nth step of the filtration on
VS defined by this functor by Fn(VS). For n ∈ Z and W ∈ H-Rep define Fn(WS) :=
(εW)S(Fn(indG

H(W)S)). Since by Theorem 5.12 the map (εW)S is surjective, this gives a
descending filtration on WS. Since this construction is functorial in W, this defines a
functor ϕ′ : H-Rep→ FilQCoh(S).

Proposition 5.14. Let H be a closed subgroup scheme of G such that G/H is finite. Let
S be a reduced scheme and ϕ : G-Rep→ FilQCoh(S) be a filtered fiber functor such that
forg ◦ ϕ = (ω0)S. The functor ϕ′ : H-Rep→ FilQCoh(S) given by Construction 5.13 is a
filtered fiber functor satisfying ϕ = ϕ′ ◦ resG

H.

Proof. First we show:
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Lemma 5.15. Let eG/H : k[G/H] → k be the morphism from Corollary 5.11 and equip
k[G/H] with the left regular representation. Then (eG/H)S(Fi(k[G/H]S))= 0 for all i> 0.

Proof. Consider x ∈ Fi(k[G/H]S). Since the multiplication k[G/H] ⊗k k[G/H] → k[G/H]
is G-equivariant, the element xj lies in Fij(k[G/H]S) for all j > 1. Since ϕ is a tensor
functor, each Fj(k[G/H]S) is locally a direct summand of k[G/H]S for all j ∈ Z. Since
by assumption k[G/H]S is free of finite rank as an OS-module, this implies that for j
large enough Fj(k[G/H]S) = 0. Thus x is nilpotent. Since OS is reduced, this implies
(eG/H)S(Fi(k[G/H]S))= 0. �

Lemma 5.16. ϕ = ϕ′ ◦ resG
H.

Proof. Let V ∈ G-Rep. By Corollary 5.11 we can identify indG
H(resG

H(V))S as a G-module
with (k[G/H] ⊗k V)S such that (εresG

H(V)
)S corresponds to (eG/H ⊗k V)S. Hence

Fn(resG
H(V)S)=

∑
i+j=n

(eG/H)S(Fi(k[G/H]S)) · Fj(VS). (5.17)

By Lemma 5.15, the terms with i> 0 in (5.17) vanish. If k is given the trivial G-action,
the homomorphism k→ k[G/H] is G-equivariant. Hence 1 ∈ F0(k[G/H]S), which implies
that the term (eG/H)S(Fi(k[G/H]S)) · Fj(VS) in (5.17) is equal to Fj(VS) for i 6 0. Thus
(5.17) shows Fn(resG

H(V)S) = Fn(V), which means that ϕ and ϕ′ ◦ resG
H agree on objects.

Since forg ◦ ϕ = (ω0)S = forg ◦ ϕ′ ◦ resG
H these functors also agree on morphisms. �

Lemma 5.18. The functor ϕ′ is a tensor functor.

Proof. Lemma 5.16 implies that ϕ′ maps the trivial representation of H to the tensor
unit of FilQCoh(S). It remains to prove that ϕ′ is compatible with tensor products.

In the following we will sometimes use the canonical isomorphism XS ⊗OS X′S ∼=
(X ⊗k X′)S for certain k-vector spaces X and X′ without mention.

Let W,W ′ ∈ H-Rep. Then there is a commutative diagram

indG
H(W)S ⊗OS indG

H(W
′)S

∼
��

(εW )S⊗OS (εW′ )S // // WS ⊗OS W ′S

∼

��

indG
H(W ⊗k resG

H(indG
H(W

′)))S

indG
H(W⊗kεW′ )S ����

indG
H(W ⊗k W ′)S

(εW⊗kW′ )S // // (W ⊗k W ′)S

where the top left vertical isomorphism is given by Theorem 5.10 for V = indG
H(W

′) and
the bottom left vertical and the horizontal maps are surjective by Theorem 5.12. To
check the commutativity of this diagram we may assume that S = Spec(k) and then it
can be directly verified using the explicit description of the vector spaces involved and
the maps given by (5.8), (5.9) and Theorem 5.10.
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Note that the two maps on the left are G-equivariant. Using the definition of ϕ′ and
the fact that ϕ is a tensor functor the commutativity of the diagram implies the lemma:

Fn((W ⊗k W ′)S) = (εW ⊗k εW ′)S(Fn(indG
H(W ⊗k W ′)S))

= ((εW)S ⊗OS (εW ′)S)(Fn(indG
H(W)S ⊗OS indG

H(W
′)S))

= ((εW)S ⊗OS (εW ′)S)

(∑
i+j=n

Fi(indG
H(W)S)⊗OS Fj(indG

H(W
′)S)
)

=
∑

i+j=n

Fi(WS)⊗OS Fj(W ′S). �

It remains to show:

Lemma 5.19. The functor ϕ′ is a filtered fiber functor.

Proof. It follows directly from the construction of ϕ′ that it is k-linear. Furthermore
forg ◦ ϕ′ = ω0 is a fiber functor. Thus by Lemma 5.1 is suffices to show that for any
surjection W→ W ′ in H-Rep and any n ∈ Z the induced morphism Fn W→ Fn W ′ is an
epimorphism. This follows from the definition of ϕ′ by a straightforward diagram chasing
argument. �

�

Proof of Theorem 5.7. Let ϕ be a filtered fiber functor on T over some scheme S over
k. Since the fiber functors forg ◦ ϕ and ω0 are fpqc-locally isomorphic by Theorem 2.1,
after replacing S by a suitable covering we may assume that forg ◦ ϕ = (ω0)S. By
Lemma 5.3 we can replace k by a finite field extension such that Gred is a smooth
subgroup scheme of G.

Consider a point s ∈ S. First we show that the fiber ϕs of ϕ in s is splittable.
Proposition 5.14 applied to H = Gred allows us to factor ϕs as ϕ′ ◦ resG

Gred for a filtered
fiber functor ϕ′ : Gred-Rep→ FilQCoh(k(s)) satisfying forg ◦ ϕ′ = (ω0)k(s). Since Gred is
smooth, by Theorem 5.4 there exists a graded fiber functor γ ′ : Gred-Rep→ GrQCoh(k(s))
which splits ϕ′. Then the graded fiber functor γ0 := γ ′ ◦ resG

Gred splits ϕs.
The fact that forg ◦ ϕ′ = (ω0)k(s) implies forg ◦ γ ′ = (ω0)k(s). Thus γ ′ is determined

by the cocharacter χ(γ ′) : Gm,k(s)→ (Gred)k(s). Since Gred is smooth, by [8, Théorème
XI.5.8] there exists an étale morphism S′→ S, a point s′ ∈ S′ over s with trivial residue
field extension k(s′)/k(s) and a cocharacter χ : Gm,S′→ (Gred)S′ whose fiber in s′ is χ(γ ′).
By construction, the fiber of χ in s′ splits the fiber of ϕS′ in s′.

Next we show that ϕOS′,s′ is splittable. For V ∈ G-Rep and n ∈ Z, we denote
by Fn(VOS′,s′ ) the nth step of the filtration on VOS′,s′ defined by ϕOS′,s′ and by
grn
χ (VOS′,s′ ) the nth step of the grading of VOS′,s′ defined by χOS′,s′ . For n ∈ Z let

Gn(VOS′,s′ ) := ⊕i6n gri
χ (VOS′,s′ ); this defines a decreasing filtration of VOS′,s′ . For n ∈ Z

consider the addition morphism ψ : Fn(VOS′,s′ )⊕Gn(VOS′,s′ )→ VOS′,s′ . Since χ splits ϕ in
the fiber over s′, in this fiber the two filtrations defined above are opposite. Therefore ψ
is an isomorphism in this fiber by Lemma 4.3. Since the domain and codomain of ψ are
both locally free OS′,s′-modules of finite rank, it follows from Nakayama’s Lemma that ψ
is an isomorphism. Hence the two filtrations are opposite by Lemma 4.3. Therefore
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grn(VOS′,s′ ) := Fn(VOS′,s′ ) ∩ Gn(VOS′,s′ ) gives a grading of VOS′,s′ which splits both
filtrations. Since this grading is functorial in V and compatible with tensor products,
we have constructed a graded fiber functor γ on G-Rep over OS′,s′ which splits ϕOS′,s′ .

Finally we show that ϕS′ is splittable on some open neighborhood of s′. Since
forg ◦ γ = (ω0)OS′,s′ , the graded fiber functor γ is determined by χ := χ(γ ) : Gm,OS′,s′ →
P(ϕOS′,s′ ). Since G is of finite type over k, so is P(ϕ). Thus it follows from [11, Théorème
8.8.2] that χ can be extended to a cocharacter χ : Gm,U → P(ϕ)U for some open subset
U of S′ containing s′, which we take to be connected. Then γ can also be extended to
U. For V ∈ G-Rep and n ∈ Z we denote by Fn(VU) (resp. grn

γ (VU)) the nth step of the
filtration (resp. grading) of VU given by ϕ (resp. γ ). Since χ is a cocharacter of P(ϕ),
for any V ∈ G-Rep, each Fn(VU) can be decomposed as Fn(VU)=⊕i∈Z Fn(VU) ∩ gri

γ (VU).
Since γ splits ϕ in the fiber over s′, this decomposition takes the form Fn(Vk(s′)) =
⊕i>n gri

γ (Vk(s′)) in this fiber. Since the terms Fn(VU) ∩ grm
γ (VU) are direct summands of

Fn(VU), they are locally free OU-modules of finite rank. Since U is connected, their ranks
are constant on U. Hence Fn(VU)=⊕i>n gri

γ (VU), which shows that γ splits ϕU.
The image of U in S is an open subset of S containing s over which ϕ is fpqc-locally

splittable. By varying s over S we find that ϕ is fpqc-locally splittable. �

5.4. The case where T has a tensor generator

Theorem 5.20. Let T be a Tannakian category possessing a tensor generator. Any
filtered fiber functor on T is fpqc-locally splittable.

Proof. By [6, 6.20] there exists a finite field extension k′ of k over which T has a fiber
functor. Thus using Lemma 5.3 we may replace k by k′, so we may assume that T is
neutral. Then we are in the previous case. �

5.5. The case where T is arbitrary

Proof of Theorem 4.14. The category T is the filtered colimit of the set IT of
Tannakian subcategories of T from § 2.4 which possess a tensor generator.

Lemma 5.21. For each T ′ ∈ IT , the functor Spl(ϕ|T ′) is representable by a scheme
which is affine and faithfully flat over S.

Proof. By Theorem 5.20, the filtered fiber functor ϕ|T ′ is fpqc-locally splittable. Thus,
since it is sufficient to prove the claim fpqc-locally on S, we may assume that ϕ|T ′
is splittable. Using Lemma 3.10 we reduce to the case where S is the spectrum of an
algebraically closed field. Since ϕ|T ′ is splittable, by Lemma 4.13 the functor Spl(ϕ|T ′)
is a U(ϕ|T ′)-torsor and thus representable by an affine scheme which is trivially flat
over S. �

The functor Spl(ϕ) is in a natural way the filtered limit of the functors Spl(ϕ|T ′) over
T ′ ∈ IT . Since by Lemma 5.21 the functors Spl(ϕ|T ′) are representable by schemes which
are affine and faithfully flat over S, by [11, Proposition 8.2.3] and [11, Proposition 8.3.8]
the functor Spl(ϕ) is representable by a scheme which is affine and faithfully flat over S.
Thus there exists a splitting of ϕ fpqc-locally on S. �
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Notes in Mathematics, Volume 152 (Springer, 1970).
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