
Interacting with Computers 23 (2011) 189–201

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library
Contents lists available at ScienceDirect

Interacting with Computers

journal homepage: www.elsevier .com/locate / intcom
The organization of interaction design pattern languages alongside
the design process

Christian Hübscher ⇑, Stefan L. Pauwels, Sandra P. Roth, Javier A. Bargas-Avila, Klaus Opwis
University of Basel, Department of Psychology, Center for Cognitive Psychology and Methodology, 4055 Basel, Switzerland

a r t i c l e i n f o
Article history:
Received 30 March 2010
Received in revised form 1 February 2011
Accepted 24 February 2011
Available online 4 March 2011

Keywords:
Design patterns
Pattern languages
Interaction design
0953-5438/$ - see front matter � 2011 Elsevier B.V. A
doi:10.1016/j.intcom.2011.02.009

⇑ Corresponding author. Tel.: +41 44 292 2127.
E-mail address: christian.huebscher@unibas.ch (C.
a b s t r a c t

This work explores the possibility of taking the structural characteristics of approaches to interaction
design as a basis for the organization of interaction design patterns. The Universal Model of the User Inter-
face (Baxley, 2003) is seen as well suited to this; however, in order to cover the full range of interaction
design patterns the model had to be extended slightly. Four existing collections of interaction design pat-
terns have been selected for an analysis in which the patterns have been mapped onto the extended
model. The conclusion from this analysis is that the use of the model supports the process of building
a pattern language, because it is predictive and helps to complete the language. If several pattern writers
were to adopt the model, a new level of synergy could be attained among these pattern efforts. A conclud-
ing vision would be that patterns could be transferred freely between pattern collections to make them as
complete as possible.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

In the project that was the trigger for this research (see Pauwels
et al., 2009, 2010) one of the challenges was to build a library of
interaction design patterns for an internal system. This library
had to be designed to cover the whole design space of this applica-
tion with patterns. Then it had to be positioned as an authoritative
source of information about interaction design for the business
analysts and developers in the company. This is the background
of this work. The article now explores whether it is possible to take
knowledge from approaches to interaction design as a basis for the
organization of interaction design patterns. Publicly available pat-
tern collections (Tidwell, 2006; van Duyne et al., 2007; Yahoo! Inc.,
2009; van Welie, 2009) are used to illustrate the analysis.
1.1. The problem of pattern categorization

In recent years, many interaction design pattern collections
have been published and more are appearing each year (for an
overview, see: http://www.hcipatterns.org). With collections
growing bigger, the question of pattern categorization becomes
more important. According to Dearden and Finlay (2006), the orga-
nization of pattern languages is an important area of research in
human–computer interaction (HCI).
ll rights reserved.

Hübscher).
There is currently a certain ‘‘duplication of effort’’ (Dearden and
Finlay, 2006, p. 88) in the field of interaction design patterns and
this indicates that in building pattern languages, the wheel has al-
ready been (re-)invented several times. Ironically, this is exactly
what the concept of patterns intends to prevent designers from
doing. Because pattern collections are all organized differently, it
is very hard to compare them and to transfer individual patterns
from one collection to the other. With the pattern language markup
language (PLML) (Fincher, 2003), important steps have been made
toward a standardization of the structure of individual patterns,
but no such organized effort has yet been made to find a unified
organization of pattern languages. To have such a standard in the
organization of languages may bring synergies to the HCI field as
a whole and make it easier for individual projects to build their
own pattern language, based on the work of others.
1.2. Interaction design patterns and pattern languages

Dearden and Finlay (2006) define a pattern as ‘‘a structured
description of an invariant solution to a recurrent problem within
a context’’ and a pattern language as ‘‘a collection of such patterns
organized in a meaningful way’’. The concept of design patterns
was originally developed by Christopher Alexander (1964) in the
field of architecture. Software engineers Gamma et al. (1995) then
adopted the concept to describe software design patterns (see
Gabriel (1996) for more about these efforts). Borchers (2001) later
applied patterns to problems in the field of HCI. One emerging area
of an application for design patterns, which is closely related to
HCI, is e-learning (see Dimitriadis et al., 2009).

https://core.ac.uk/display/85214057?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.hcipatterns.org
http://dx.doi.org/10.1016/j.intcom.2011.02.009
mailto:christian.huebscher@unibas.ch
http://dx.doi.org/10.1016/j.intcom.2011.02.009
http://www.sciencedirect.com/science/journal/09535438
http://www.elsevier.com/locate/intcom


190 C. Hübscher et al. / Interacting with Computers 23 (2011) 189–201
This study focuses on interaction design patterns: ‘‘A problem is
stated in the domain of human interaction issues, and the solution
is stated in terms of suggested perceivable interaction behavior’’
(Dearden and Finlay, 2006, p. 52). The description of a pattern is
structured with the topics problem, context, solution, and forces in-
cluded in many cases; however, the structure and naming of these
sections vary among pattern collections (see Fig. 1). Most include
further sections such as examples.

Alexander’s (1964, 1979) idea behind design patterns is (see
Kohls and Uttecht, 2009) that they should support design as a
problem-solving task to achieve fitness between form and context.
A design problem occurs because competing ‘‘forces’’ have to be
satisfied. Thus multiple design patterns can solve the same prob-
lem in different contexts (e.g. checkboxes and a list builder both
solve the problem of selecting multiple items). In this case, they
have identical problem attributes but the context attributes make
clear when to choose one pattern over the other. Alexander uses
the term forces to describe these context-dependent constraints
that have an effect on how to solve the problem. The proper config-
uration of a group of patterns is in itself a pattern on a more ab-
stract level. Alexander stresses the point that one needs a pattern
language to achieve a coherent design and that ‘‘a bunch of good
ideas’’ (Alexander, 1999, p. 75) are not enough to do the job.
Fig. 1. Example of an interaction design pattern description (van Welie, 2009).
Pattern languages should be capable of producing coherent wholes;
i.e. they should be generative.

Dearden and Finlay (2006) conclude that there are two evident
forms of organization in Alexander et al. (1977): patterns come in
sets according to levels of physical scale and build up a network,
where patterns are referenced to other patterns. The linking of
individual interaction design patterns is usually made in a ‘‘related
patterns’’ section, where alternative solutions to similar contexts
or patterns are placed. Van Welie and van der Veer (2003) distin-
guish between three fundamental relations:

� Aggregation: A design pattern can include others that complete
it.
� Specialization: A design pattern can be derived and specialized

from another design pattern.
� Association: Multiple design patterns can occur in the same con-

text or solve similar problems.

An interesting question concerns the completeness of a pattern
language. Alexander (1979) argues that a pattern language can
be morphologically and functionally complete: It is morphologically
complete when it can account for a complete design, without any
missing parts, and functionally complete when it is self-consistent,
i.e. it does not create forces that it cannot resolve. For interaction
design patterns, van Welie and van der Veer (2003) say that a pat-
tern language is complete when every good design that we find can
be described using it.

1.3. Recent work on the organization of interaction design patterns

In architecture, Alexander (1979) defined physical scale as being
the main organizational principle for patterns. The organization of
interaction design patterns, on the other hand, is not so straightfor-
ward; therefore, we must put more effort into coming up with
good organizational principles for patterns in the field of HCI. Dif-
ferent approaches on how to work out an organization of interac-
tion design patterns have been suggested (for an overview, see
Dearden and Finlay, 2006). Several authors argue that the best
way to organize a pattern language is alongside a design process.
Fincher and Windsor (2000) discuss different organizing principles.
Their final solution brings their taxonomies in an order that could
be associated with the phases of a design process. They distin-
guish: analysis space (context and values), problem space (structure:
tasks; structure: information) and solution space (structure: scale).
Van Welie and van der Veer (2003) argue that the organization
should be based on a top-down design process and they distin-
guish the following levels: business goals, posture level, experience
level, task level, and action level. These authors’ organization is done
according to a design process but they do not explicitly relate it to
concrete user-centered or interaction design approaches. They only
mention Cooper et al. (2007) as a basis for their choice of the cat-
egory ‘‘posture type patterns’’. Borchers (2000) maps different
types of patterns onto Nielsen’s (1993) usability engineering lifecy-
cle but he does this more to argue that we can use patterns across a
whole project lifecycle than to discuss the organization of patterns.
Dearden and Finlay (2006) give an overview of the different
requirements for an organizing principle for pattern languages.
According to Fincher and Windsor (2000), an organizing principle
should taxonomise, proximate, be evaluative and generative; i.e. it
should enable users to find (related) patterns, it should allow users
to consider the problem from different viewpoints and to build
new solutions. Fincher (2002) argues that it would also be desir-
able that an organization is predictive; i.e. it should actively support
the process of identifying new patterns. Using the periodic table of
the elements in chemistry as an example; she argues that such an
organization would help to discover missing patterns. This is a very



C. Hübscher et al. / Interacting with Computers 23 (2011) 189–201 191
interesting idea, which suggests giving preference to a top-down
categorization based on a certain model over a bottom-up
approach.
2. Structural characteristics of interaction design approaches

As mentioned above, several authors suggest that the organiza-
tion of interaction design patterns should be based on a design pro-
cess (e.g., van Welie and van der Veer, 2003; Fincher and Windsor,
2000). There is a vast literature on the topic of how to proceed in
designing user interfaces, and many design processes have been
published so far. This study seeks to extract the relevant aspects
from these published works and use them as a basis for structuring
interaction design pattern languages. The focus is on the design as-
pect of such processes – even though patterns can also be used to
support other phases of the process (see Borchers, 2000, or
Granlund et al., 2001).

Different sources can be considered as interaction design pro-
cesses; i.e. usability engineering lifecycles or user-centered design
processes:

� Nielsen’s Usability Engineering Lifecycle (Nielsen, 1993).
� Delta Method (Rantzer, 1996).
� Contextual Design (Beyer and Holtzblatt, 1998).
� OVID (Robert, 1998).
� Mayhew’s Usability Engineering Lifecycle (Mayhew, 1999).
� Usage Centered Design (Constantine and Lockwood, 1999).
� The Elements of User Experience (Garrett, 2002).
� Universal Model of a User Interface (Baxley, 2002, 2003).
� Goal Directed Design (Cooper et al., 2007).

To define how to organize interaction design patterns alongside
a design process, we extract the structural characteristics of these
approaches in order to perform a mapping of different kinds of pat-
terns onto them. Most approaches to interaction design foster a
layered approach in which different levels of the user interface
are designed one after another. Some approaches distinguish two
phases; others have more levels of design.

Many design approaches make the distinction between concep-
tual and concrete design, or conceptual and physical design as
Sharp et al. (2007) call it. Rantzer (1996), Beyer and Holtzblatt
(1998), Robert (1998), Constantine and Lockwood (1999), and
Cooper et al. (2007) make such a distinction in the processes that
they describe. Mayhew (1999) distinguishes a 1st, 2nd, and 3rd
level of design in her process, but in her levels 2 and 3 concrete de-
sign is carried out. In level 2, the central and recurring interactions
are designed and in level 3 the rest of the user interface is specified.
Here, her distinction is more a matter of scope than a matter of dif-
ferent aspects. One can argue that Mayhew’s design process is also
based on the distinction of conceptual and concrete design.

In conceptual design, the structural base of the user interfaces –
the ‘‘user interface architecture’’ – is defined. The name for this
design task varies: conceptual design (Rantzer, 1996), user envi-
ronment design (Beyer and Holtzblatt, 1998), conceptual model
design (Mayhew, 1999), content model (Constantine and Lock-
wood, 1999), and interaction framework (Cooper et al., 2007). In
this phase, the designer works out relationships between user ob-
jects, organizational schemes, and workflows. The deliverables of
these tasks are, for the most part, diagrams, storyboards, and
sketches of user interfaces. Some of these deliverables do not really
look like user interfaces.

In concrete design, the user interface – in the form of concrete
user interface elements – is defined. This task is called prototyping
(Beyer and Holtzblatt, 1998; Rantzer, 1996), detailed design
(Cooper et al., 2007; Mayhew, 1999), or the implementation model
(Constantine and Lockwood, 1999). The deliverables of concrete
design are interactive prototypes or renderings of screens, which
often look and behave very similarly to the real system.

Besides the distinguishing of two phases of design, there are
several authors who describe an approach with three or more lev-
els. These approaches, however, are not contradictory to the notion
of conceptual and concrete design; they are more an extension of
this thinking. The classical work of IBM (1992) explains the levels
of designing a user interface with the metaphor of an iceberg,
which has the three levels: structure, behavior, and presentation.
The approaches by Garrett (2002) and Baxley (2003) build on these
levels. Garrett (2002) has a model with the five layers: strategy,
scope, structure, skeleton, and surface. The layers strategy and scope,
however, are more to ‘‘set the stage’’ for doing the interaction de-
sign, although structure, skeleton, and surface are similar to the lay-
ers of the aforementioned ‘‘iceberg model’’. The tiers of structure,
behavior, and presentation bring in a more sophisticated discrimi-
nation between different types of design tasks and hence patterns.
Following this thinking, using website navigation as an example
(see e.g., Leuthold et al., 2011), one can distinguish patterns that
describe the structure of navigation (e.g., hierarchical vs. flat), the
behavior of navigation (e.g., dynamic vs. static), and the presenta-
tion of navigation (e.g., left vs. horizontal placement in the layout).
All these different aspects of navigation are influenced by their
own forces and therefore it makes sense to distinguish between
these aspects by using different interaction design patterns.

An elaborate model in this sense is Baxley’s (2003) Universal
Model of the User Interface. In his model, the same three main tiers
exist as in the ‘‘iceberg model’’: structure, behavior, and presenta-
tion. However, these three tiers are further divided into three
sub-layers each:

� Structure
– Conceptual model.
– Task flow (formerly called structural model by Baxley (2002)).
– Organizational model.
� Behavior

– Viewing and navigation.
– Editing and manipulation.
– User assistance.
� Presentation

– Layout.
– Style.
– Text.

The models of Baxley (2003) and Garrett (2002) are similar,
because they both describe a layered top-down design approach.
In general, they can be seen as similarly well suited to organizing
patterns into categories, but Baxley’s (2003) model is much more
fine-grained. It actually distinguishes nine layers that are relevant
for interaction design patterns. For this reason, it is taken as a basis
for this analysis. However, Garrett’s (2002) model has a wider
scope and therefore it will be taken as an extension of Baxley’s
model to cover the whole range of interaction design patterns
(see Section 3.2).
3. A model for the organization of interaction design patterns

It is a goal of this research to find a model that is based on an
interaction design process and that can be used to organize inter-
action design patterns. As indicated above, Baxley’s model has the
required properties, so its detailed structure is presented here as
described by Baxley (2002, 2003). However, the model does not
cover the full range of interaction design patterns as defined by
Dearden and Finlay (2006). Therefore the authors have made an



192 C. Hübscher et al. / Interacting with Computers 23 (2011) 189–201
extension to the model with the introduction of the category
‘‘requirements patterns’’. Following this, the relationship between
the model and technical platforms is discussed.
3.1. The original structure of Baxley’s model

Baxley’s ‘‘Universal Model of the User Interface’’ (2003) has sim-
ilarities with the other models described above but it divides de-
sign tasks in a more sophisticated way. The model has nine
layers divided between three tiers (see Fig. 2). Baxley divides
these layers into further topics and sub-topics (Baxley, 2002), see
Table 1.

The nine layers of Baxley’s model distinguish different aspects
of a user interface; for example, whether we are dealing with the
structure of the user interface or with its behavior and whether
the behavior is for the manipulation of data by users (i.e. editing
and manipulation) or for helping them by doing so itself (i.e. user
assistance). These nine layers can be seen as building on each
other.

Baxley (2002) breaks down most of the layers in a topical man-
ner (see the column ‘‘topics’’ in Table 1). These sub-divisions can-
not be seen as clearly building on each other. Most of them are
topical in nature and are often just different aspects of a layer. This
finer structure is optimized for the design of web applications
(which is the topic of Baxley’s book; Baxley, 2002) and it has been
created to provide an optimal structure for the ‘‘patterns’’ that Bax-
ley (2002) discusses. Baxley mentions ‘‘interaction design pat-
terns’’ for all the different levels of the user interface of web
applications; however, he does not call them ‘‘patterns’’ but rather
‘‘conventions’’: ‘‘Unfortunately, the use of the word ‘pattern’ in this
context, although definitely accurate, is a bit arcane.’’ (Baxley,
2002, p. 14). Baxley seems to have developed the model to orga-
nize interaction design patterns – as well as for other purposes –
but uses a different terminology.
Fig. 2. Illustration of Baxley’s ‘‘Universal Mod
3.2. An extension of Baxley’s model

The definition of interaction design patterns is meant to distin-
guish these patterns from user interface software design patterns
(Dearden and Finlay, 2006) in the area of patterns concerning the
user interface (see Fig. 3). The former are concerned with the per-
ceivable aspects of the user interface and the latter with the inner
working of the system related to the user interface.

The perceivable aspects of the user interface, which can be doc-
umented as interaction design patterns, can be of two kinds: (a)
user requirements i.e. a function to enable a user to achieve a cer-
tain goal and (b) the conceptual implementation of these require-
ments in the form of a user interface. Baxley’s Model is very
detailed but does not cover the whole scope of interaction design
patterns. The conceptual implementation (how it is done) is the
scope of Baxley’s model, which further breaks down the different
solutions into categories. The user requirements (what is imple-
mented in the user interface) can be seen as beyond the scope to
Baxley’s model and suggest an extension of the model (see
Fig. 4). Baxley describes a requirements phase in his book but does
this within his larger scope design process (Baxley, 2002, p. 44):

(1) Understanding (user needs, competition, business opportu-
nity, technical constraints).

(2) Vision (core design values, opportunity statement, persona
profiles and goals).

(3) Requirements (functional, technical, business, usability).
(4) Design (structure, behavior, presentation).

This extended model bears a similarity to Garrett’s (2002)
model, which also contains a layer dealing with requirements
(see Fig. 5). This scope layer deals with the question of whether a
feature or function is part of a system’s functional requirements
or not, whereas the strategy layer does not deal with solutions to
users’ problems but rather with the definition of the needs of users
el of the User Interface’’ (Baxley, 2003).



Table 1
The layers broken down into topics (Baxley, 2002).

Tier Layer Topics Sub-topics

Structure Conceptual Model ‘‘Examples’’ Store; Catalog

Structural Model Pages Views; Forms; View/Form Construct

(later called task flow
by Baxley, 2003)

Workflows Hubs; Wizards; Guides (hub/wizard hybrid)

Organizational Model Classification schemes Objective: Alphabetic; Numeric; Chronologic; Geographic
Subjective: Topical; Functional; Audience-based; Metaphorical

Models of association Indexes; Hierarchies; Webs

Behavior Viewing and
Navigation

Navigation High-level navigation; Low-level navigation; Utility navigation

Selecting objects and
issuing commands

Shared controls; Dedicated controls

Viewing lists of data Changing column sets; Paging; Sorting; Filtering; Searching

Editing and
Manipulation

Input controls Check boxes; Radio buttons; List boxes; Menus; Text boxes; Buttons

Common interaction
problems and solutions

Selecting a single item; Selecting multiple items; Selecting a date

User Assistance Help Conceptual help; Procedural help; Definitional help; Instructional help

Alerts Error alerts; Status alerts; Confirmation alerts

Presentation Layout Simplicity Clarity; Reduction; Leverage

Consistency Web conventions; Templates and grids; Standards and guidelines

Order Grouping; Hierarchy; Alignment

Style Evaluating style Individuality; Brand consistency; Appropriateness for the audience and function

Preventing style from
messing other things up

Working within the medium; Legibility (contrast, line length, typeface, type size, font styling,
density/leading, balance the variables affecting legibility); Providing visual cues to behavior
(visual cues for text-based hyperlinks, visual cues for clickable images)

Text Eliminate superfluous text Eliminate superfluous text

Text: what’s it good for Navigation; Titles; Labels; Instruction and help; Marketing messages

Writing for the web Be courteous, not patronizing; Leverage the context; Don’t repeat yourself; Avoid multisyllabic
words that obfuscate

C. Hübscher et al. / Interacting with Computers 23 (2011) 189–201 193
or the business objectives and therefore is beyond the scope of inter-
action design patterns.
Fig. 4. The different intera

Fig. 3. Different patterns concerning the user interface.
Garrett’s (2002) structure, skeleton, surface and Baxley’s (2003)
structure, behavior, presentation both cover the conceptual imple-
mentation of the user interface but they have certain differences
in the mapping of patterns onto the model; for example, Baxley
(2003) puts ‘‘layout’’ in the presentation tier whereas Garrett
(2002) sees it as part of his skeleton layer (which otherwise would
correspond more to behavior). For the sake of this analysis, how-
ever, it is not relevant to analyze these differences to a further
extent.

These ‘‘requirements patterns’’ and ‘‘patterns for the conceptual
implementation of a user interface’’ are described below. The def-
initions are meant to distinguish between these two types of
ction design patterns.



Fig. 5. Comparison of the models of Garrett (2002) and Baxley (2003).

194 C. Hübscher et al. / Interacting with Computers 23 (2011) 189–201
patterns. It is important so separate them accurately otherwise this
extended model will not work as an organizational model.
3.2.1. Requirements patterns
Patterns describing abstract features that allow the user to

achieve a certain goal are what we call ‘‘requirements patterns’’.
In the example of a fictitious ‘‘publish to Twitter’’ function, the pat-
tern would focus on the goal of the user (let friends know of dis-
coveries made while surfing). This pattern would focus on why a
user needs a ‘‘publish to Twitter’’ function as opposed, say, to a
‘‘subscribe to RSS feed’’ function. These patterns focus on the forces
that distinguish the different goals a user could have, but they do
not describe the way that the user achieves these goals in the form
of an interaction. This would be described independently of the
conceptual and technical implementation. The forces are described
on the level of a goal that a user wants to achieve as opposed to an-
other goal. The patterns aim at the optimization of utility (Grudin,
1992). If such patterns are described independently of their imple-
mentation, the patterns are valid under different circumstances
and on different technical platforms. If, on the other hand, the fea-
ture is described as a pattern ‘‘Twitter icon’’, the user requirement
is mixed up with the conceptual implementation and the solution
is no longer the best if circumstances change. In a situation in
which multiple such functions (for Twitter, Facebook, etc.) have
to be provided for a certain object, the function would no longer
be implemented as an icon but would maybe rather be part of a
menu. Thus described in an implementation-agnostic way, the
requirement pattern ‘‘publish to Twitter’’ would be ‘‘stable’’ under
various circumstances.

The patterns discussed above are functional requirements but
there are also patterns that describe non-functional requirements.
The pattern ‘‘site accessibility’’ (van Duyne et al., 2007) is such an
example. It is a very high-level pattern, which might also contain
several more detailed patterns (e.g. ‘‘hidden jump to navigation
link’’ for users with screen readers, good contrast, the use of certain
HTML tags). So the category of ‘‘requirements patterns’’ is meant to
include both functional and non-functional requirements that have
an impact on perceived aspects of the user interface.
3.2.2. Patterns for the conceptual implementation of a user interface
The patterns for the conceptual implementation of a user inter-

face describe ways to realize user requirements on a conceptual le-
vel. These patterns are the different parts used for the
implementation of a user requirement. Which of these parts does
this best depends on the specific circumstances. These patterns fo-
cus on the forces, which are influenced by different configurations
of such patterns. If a function is the only function to be used in a
list of objects, this function can be conceptually implemented as
an icon. If this function is one among many others it might be
implemented as a menu. These patterns do not focus on ‘‘specific
end goals’’ of users but more on ‘‘generic sub-goals’’. The patterns
aim at the optimization of one aspect or more of usability – the
effectiveness, efficiency, or satisfaction of the user (Hornbaek,
2006) – but not on the utility (Grudin, 1992). With the help of Bax-
ley’s model, the different solutions for the conceptual implementa-
tion can be broken down into nine categories.
3.2.3. The scope of platform applicability of Baxley’s model
Because Baxley (2002) introduced his model to explain ‘‘how to

make the web work’’, one might ask whether this model is also va-
lid for other platforms. Baxley later started to call it the ‘‘Universal
Model of the User Interface’’ and discussed ATMs, DVD menu sys-
tems, Amazon.com and Microsoft Word to support this point
(Baxley, 2003). The fact that IBM (1992) used the same layers of
design in a pre-web area shows that at least the main tiers
structure, behavior, and presentation are relevant beyond the web.
But one might ask, where do the patterns for mobile or rich web
interaction design belong? To explain this, it is better to look at
the relationship between the layers of Baxley’s model and the tech-
nical platform.

In the logic of the model, different platforms can be seen as
orthogonal to the tiers structure, behavior, and presentation (see
Fig. 6). Tidwell’s (2006) patterns are more or less platform-agnostic
and can be used on several platforms. Her ‘‘one-window drill-
down’’ pattern works on different platforms and she uses examples
from the iPod, Mac OS X, and a character-based e-mail application
to explain the pattern. The platform-independent description of



Fig. 6. Pattern collections for different platforms.

C. Hübscher et al. / Interacting with Computers 23 (2011) 189–201 195
the pattern and also the implementations on the different plat-
forms unambiguously belong to the structure tier. Although her
pattern ‘‘movable panels’’ is not so platform-independent it never-
theless belongs to the behavior tier. The pattern ‘‘expanding screen
width’’ (van Duyne et al., 2007) is rather web-specific but it applies
to both ‘‘classic’’ and ‘‘rich’’ websites and belongs to the presenta-
tion tier. On the other hand, the pattern ‘‘self-healing transition’’
(Yahoo! Inc., 2009) is a pattern from the behavior tier (user assis-
tance, because it helps the user to better understand the effects
of a manipulation) and is targeted at rich interaction web inter-
faces. It cannot be used in ‘‘classic’’ web applications, because of
technical limitations, even though this distinction will fade away
more and more with the establishment of new web standards.
However, the ‘‘self-healing transition’’ could also be used on a
desktop OS or a modern mobile OS.

These examples show that there are whole pattern collections
that are rather platform-independent (e.g. Tidwell, 2006). How-
ever, in collections written for special platforms there are also pat-
terns that are more or less platform-independent whereas others
make no sense in another environment. Aside from the question
of platform, all the patterns concerned with the conceptual imple-
mentation of the user interface can be categorized into Baxley’s
model in a stable way.

4. The analysis of four pattern collections

Following the presentation of Baxley’s model, we discuss some
interaction design pattern collections in relation to the following
eleven categories (10 for interaction design patterns):

� Requirements (with an impact on perceived aspects of the user
interface).
� Conceptual Model.
� Task Flow.
� Organizational Model.
� Viewing and Navigation.
� Editing and Manipulation.
� User Assistance.
� Layout.
� Style.
� Text.
� Software Design (user interface software design patterns).

Because there are dozens of interaction design pattern collec-
tions (some published as books but most of them available in the
World Wide Web), the analysis focuses on a small sub-set:

� Book: Designing Interfaces by Jenifer Tidwell (2006).
� Book: The Design of Sites by van Duyne et al. (2007).
� Website: ‘‘Welie.com’’ by Martijn van Welie (2009).
� Website: ‘‘Yahoo! Design Pattern Library’’ by Yahoo! Inc.

(2009).

These four interaction design pattern collections have been cho-
sen for this analysis because on the one hand, they contain a cer-
tain number of patterns similar in scope but on the other hand,
they are well established; i.e., it is likely that they will still be
around in the future. In 1997, Tidwell started with an online pat-
tern language called ‘‘Common Ground’’ (Tidwell, 2009) and then,
based on that work, published the book Designing Interfaces
(Tidwell, 2006), making it the pattern book with the longest trace-
able history. The book The Design of Sites (van Duyne et al., 2007)
has already been published in its second edition. The first edition
dates back to 2002 (van Duyne et al., 2002), which makes it the
first fully-fledged collection of interaction design patterns avail-
able in the form of a book. The roots of the website ‘‘Welie.com’’
by van Welie (2009) date back at least to 2000 (see van Welie
and Trætteberg, 2000) thus it can be said that it is one of the most
established online collections of interaction design patterns. The
Yahoo! Design Pattern Library (Yahoo! Inc., 2009) is the most



196 C. Hübscher et al. / Interacting with Computers 23 (2011) 189–201
recent collection in this analysis, and contains the least number of
patterns. However, the fact that it is the only corporate collection
of interaction design patterns that is at least partially public makes
it an interesting candidate for this analysis. There is also a case study
available for the Yahoo! Pattern Library (Leacock et al., 2005).

4.1. The process of categorization

In the analysis of these four collections, all the patterns were
put into the proposed categories in order to explore whether:

� All patterns can be classified into the categories.
� There are layers that do not have any patterns in them.
� The distribution of patterns across the layers is even or not.
� There is any ambiguity in classifying patterns in such a way.

The first author conducted the analysis of the four pattern col-
lections. It was identified, for each pattern, on which layers its
forces operate. Because there are certain patterns with forces on
different levels, the analysis distinguishes a first and a lower prior-
ity of mapping. However, for all the patterns it was possible to de-
cide on which level the forces mainly operate.

To control for interrater effects, the second author performed an
independent categorization for the first priority mapping of 20% of
the patterns from each pattern collection (74 patterns). An inter-
rater reliability analysis using the Kappa statistics was performed
to determine consistency among raters. The interrater reliability
was found to be high, with Kappa = 0.766 (p < 0.000), 95% CI
(0.662, 0.870).

The analysis of the mappings has shown that indeed most of the
patterns could be categorized into these layers (see Section 4.2)
and a comparison of these mappings over all the collections shows
interesting differences (see Section 4.3). There were also several
patterns that could be mapped onto multiple layers (see Sec-
tion 4.4). The detailed results of the analysis can be found on
http://goo.gl/OWQI2.

4.2. The analysis of the pattern collections

The first priority mapping of patterns from Tidwell (2006), van
Duyne et al. (2007), van Welie (2009), and Yahoo! Inc. (2009) is
shown in the following tables (Table 2–5).

4.2.1. Book ‘‘Designing Interfaces’’ by Jenifer Tidwell
The scope of Tidwell’s (2006) patterns is the design of desktop

applications, websites, web applications, and mobile devices. The
Table 2
Tidwell’s categories (Tidwell, 2006) mapped onto the layers.

Layer Tidwell’s categories (number of patterns)

Organizing the
Content

Getting
Around

Organizing
the Page

Doing
Things

S
C

Requirements
Conceptual Model 1
Task Flow 5 5 1 2
Organizational

Model
Viewing and

Navigation
1 4 2

Editing and
Manipulation

1

User Assistance 1 1 2 6
Layout 6 2
Style 1
Text
Software Design
Total 8 11 12 10 1
patterns are rather platform-independent and they are illustrated
with examples from several platforms. Her book Designing Inter-
faces uses the following organization scheme for a total of 82
patterns:

� Organizing the Content.
� Getting Around.
� Organizing the Page.
� Doing Things.
� Showing Complex Data.
� Getting Input From Users.
� Builders and Editors.
� Making It Look Good.

All of these patterns could be classified into the layers of Bax-
ley’s model; there are no requirements and no software design pat-
terns (see Table 2). There are layers of Baxley’s model that remain
empty. There were no patterns for the organizational model, despite
Tidwell discussing models of organization in the introduction to
chapter 2. There were no patterns for text and only one for concep-
tual model. The other layers contain patterns, but most patterns are
situated in the behavior tier. The structure tier contains the fewest
patterns.
4.2.2. Book ‘‘The Design of Sites’’ by van Duyne et al.
The patterns of van Duyne et al. (2007) are written especially

for the design of pre-Web 2.0 websites. The 107 patterns in their
book, The Design of Sites, are organized in the following way:

� Site Genres.
� Creating a Navigation Framework.
� Creating a Powerful Homepage.
� Writing and Managing Content.
� Building Trust and Credibility.
� Basic E-Commerce.
� Advanced E-Commerce.
� Helping Customers Complete Tasks.
� Designing Effective Page Layouts.
� Making Site Search Fast and Relevant.
� Making Navigation Easy.
� Speeding Up Your Site.
� The Mobile Web.

Most of these patterns could be fitted into Baxley’s model (see
Table 3) but 10 of them are software design patterns (e.g.,
Total

howing
omplex Data

Getting Input
From Users

Builders and
Editors

Making It Look
Good

0
1

13
0

7 14

2 7 10

4 8 2 24
2 10
1 1 7 10

0
0

4 11 9 7 82

http://goo.gl/OWQI2


Table 4
Van Welie’s categories (van Welie, 2009) mapped onto the layers.

Layer Van Welie’s categories (number of patterns)

User needs (83) Application needs (12) Context of design (35)

Navigating
around

Basic
interactions

Searching Dealing with
data

Personalizing Shopping Making
choices

Giving
input

Miscellaneous Drawing
attention

Feedback Simplifying
interaction

Site
types

Experiences Page
types

Total

Requirements 1 1 1 4 1 8 2 18
Conceptual Model 14 14
Task Flow 1 3 3 2 8 1 1 9 28
Organizational

Model
0

Viewing and
Navigation

25 4 5 8 2 44

Editing and
Manipulation

1 2 1 4

User Assistance 1 4 1 1 2 2 2 13
Layout 1 1 1 3 6
Style 4 4
Text 0
Software Design 0
Total 25 7 13 14 3 9 5 3 5 8 2 2 14 8 13 131

Table 3
Categories of van Duyne et al. (2007) mapped onto the layers.

Layer Categories of van Duyne et al. (number of patterns) Total

Site
Genres

Creating a
Navigation
Framework

Creating a
Powerful
Homepage

Writing and
Managing
Content

Building
Trust and
Credibility

Basic E-
Commerce

Advanced
E-
Commerce

Helping
Customers
Complete Tasks

Designing
Effective Page
Layouts

Making Site
Search Fast and
Relevant

Making
Navigation
Easy

Speeding
Up Your
Site

The
Mobile
Web

Requirements 1 3 8 4 5 1 1 1 1 25
Conceptual Model 12 12
Task Flow 1 1 4 2 5 2 15
Organizational Model 6 6
Viewing and

Navigation
1 2 6 1 10

Editing and
Manipulation

2 1 3

User Assistance 4 3 7
Layout 1 2 1 6 1 1 12
Style 1 1 2
Text 3 2 5
Software Design 3 1 1 5 10
Total 12 9 2 11 9 9 7 13 6 3 17 6 3 107

C.H
übscher

et
al./Interacting

w
ith

Com
puters

23
(2011)

189–
201

197



Table 5
Yahoo!’s categories (Yahoo! Inc., 2009) mapped onto the layers.

Layer Yahoo!’s categories (number of patterns) Total

Search Navigation Browsing Selection Rich interaction Social

Requirements 12 12
Conceptual Model 0
Task Flow 1 1
Organizational Model 0
Viewing and Navigation (1) 4 2 1 7
Editing and Manipulation 1 1
User Assistance 2 15 17
Layout 1 1
Style 0
Text 0
Software Design 0
Total (1) 4 3 3 16 13 39

198 C. Hübscher et al. / Interacting with Computers 23 (2011) 189–201
fast-loading images) and 25 describe requirements patterns (e.g., e-
mail notifications).

With the other patterns, all nine layers of Baxley’s model are
covered. The patterns are more or less evenly distributed across
all the three tiers. It is interesting to see that there are some cate-
gories that fit directly into one tier of Baxley’s model, whereas oth-
ers show up in two tiers, and still others are spread across all three
tiers; for example, the patterns under ‘‘site genres’’ all fit into the
conceptual model layer, whereas the patterns from the chapter
‘‘the mobile web’’ are spread across all three tiers.

4.2.3. Website ‘‘Welie.com’’ by Martijn van Welie
Earlier versions of van Welie’s website distinguished the pat-

terns in web design patterns, GUI patterns, and mobile UI design pat-
terns but today, he just lists patterns in the categories below and
the examples all seem to be from websites and web applications
(van Welie, 2009).

The actual online catalogue Welie.com (May 2009) contains 131
patterns and has the following structure:

� User needs
– Navigating around.
– Basic interactions.
– Searching.
– Dealing with data.
– Personalizing.
– Shopping.
– Making choices.
– Giving input.
– Miscellaneous.
� Application needs

– Drawing attention.
– Feedback.
– Simplifying interaction.
� Context of design

– Site types.
– Experiences.
– Page types.

All but 18 of van Welie’s patterns can be classified into Baxley’s
model. They are all requirements patterns and include all ‘‘experi-
ences (context of design)’’ patterns and some of the ‘‘user needs’’
type patterns (e.g., the pattern testimonials). There are no software
design patterns in this collection. There are patterns distributed
across most of the layers of Baxley’s model but the text and the
organizational model layers have no patterns. The other patterns
are distributed more or less evenly across structure and behavior
but with a few in the presentation tier. All but one of the ‘‘shop-
ping’’ patterns fit into the task flow layer.
4.2.4. Website ‘‘Yahoo! Design Pattern Library’’ by Yahoo! Inc.
The public patterns of the Yahoo! Design Pattern Library (Yahoo!

Inc., 2009) cover different web design issues and many of them are
Web 2.0 specific. The actual online catalogue contains 39 patterns
(May 2009) and has the following structure:

� Search.
� Navigation.
� Browsing.
� Selection.
� Rich interaction.
� Social.

All but the ‘‘social’’ patterns, which can be seen mostly as
requirements, could be classified into Baxley’s model (see Table 5;
Yahoo! categorized the pattern search pagination under ‘‘search’’
and ‘‘browsing’’, so by category the count of viewing and navigation
patterns is 8 and the total count of patterns is 40). There are no
software design patterns in Yahoo!’s pattern library. In the Yahoo!
library, only one pattern could be found that fitted into the struc-
ture tier (sign-in continuity) and the presentation tier (page grids),
respectively; the other patterns all fitted into the behavior tier.
What is interesting about Yahoo!’s organization of the patterns is
that there are some higher-level patterns (e.g., pagination) that
contain sub-patterns (item pagination and search pagination in this
case) as different solutions to these higher-level patterns. Table 5
only counts the ‘‘leaf patterns’’; i.e. the higher-level patterns (e.g.,
pagination) have not been counted.
4.3. The pattern collections in comparison

Table 6 shows an overview of the mappings of the different pat-
tern collections onto our categories. It shows that some of the four
collections cover all (van Duyne et al., 2007) or most of the nine
layers (van Welie, 2009) of Baxley’s model. Other collections focus
on behavioral issues, with only a few patterns related to structure
or presentation (Tidwell, 2006; Yahoo! Inc., 2009). Van Duyne
et al.’s (2007) collection is the only one that also contains software
design patterns (the others all focus on interaction design patterns)
whereas Tidwell’s (2006) is the only one that also contains no
requirements patterns but is fully focused on the conceptual imple-
mentation of the user interface. In this overview, there are clearly
identifiable gaps in the pattern collections. It is also apparent what
other collections one could consider to fill the gaps. An overview of
the original categories of the pattern collections shows that such a
comparison is not possible there because the libraries only have
categories where they have patterns and the different categories
are very hard to reconcile (see Table 7).



Table 7
Original category names of the four pattern collections (Tidwell, 2006; van Duyne et al., 2007; van Welie, 2009; Yahoo! Inc., 2009).

Tidwell Van Duyne et al. Van Welie Yahoo!

� Organizing the Content
� Getting Around
� Organizing the Page
� Doing Things
� Showing Complex Data
� Getting Input From Users
� Builders and Editors
� Making It Look Good

� Site Genres
� Creating a Navigation Framework
� Creating a Powerful Homepage
� Writing and Managing Content
� Building Trust and Credibility
� Basic E-Commerce
� Advanced E-Commerce
� Helping Customers Complete Tasks
� Designing Effective Page Layouts
� Making Site Search Fast and Relevant
� Making Navigation Easy
� Speeding Up Your Site
� The Mobile Web

User needs:
� Navigating around
� Basic interactions
� Searching
� Dealing with data
� Personalizing
� Shopping
� Making choices
� Giving input
� Miscellaneous

Application needs:
� Drawing attention
� Feedback
� Simplifying interaction

Context of design:
� Site types
� Experiences
� Page types

� Search
� Navigation
� Browsing
� Selection
� Rich interaction
� Social

Table 6
Comparison of the four pattern collections (Tidwell, 2006; van Duyne et al., 2007; van Welie, 2009; Yahoo! Inc., 2009) by percentage (and by number of patterns).

C. Hübscher et al. / Interacting with Computers 23 (2011) 189–201 199
Going back to the comparison using the unified categories (Ta-
ble 6), one could see for example where to look to make Tidwell’s
(2006) collection more complete. It contains only one conceptual
model and no organizational model patterns but the collection of
van Duyne et al. (2007) has some of them. The missing text pat-
terns could also be found there. Van Welie (2009) has more than
three times the number of viewing and navigation patterns, so there
might also be some potential here.

4.4. The patterns categorized into multiple layers

As mentioned above, there are several patterns that could be
mapped onto multiple layers. This means that these patterns are
not written with a clear focus in relation to these layers but de-
scribe aspects, which sometimes contain aspects of multiple layers
in one pattern. An example from van Duyne et al. (2007) is the pat-
tern ‘‘category pages’’, which covers aspects of structure, behavior,
and presentation. The pattern describes how users should be able
to navigate across different parts of a large site and that these parts
should be organized into categories (organizational model). These
categories should have a consistent navigation (viewing and navi-
gation) placed in the layout in a consistent way (layout). The use
of color coding (style) should support discrimination between
these categories. Van Welie’s (2009) pattern ‘‘home link’’ has
aspects of the structure of navigational pathways (task flow) and
of navigational elements (viewing and navigation).
5. Conclusions

We conclude with a discussion of the characteristics of the dif-
ferent interaction design approaches first. We then discuss Baxley’s
(2003) model and its extension, together with the analysis of the
four pattern collections. In a final step, we present our concluding
vision and suggest further steps that might be taken in order to
achieve it.

5.1. The characteristics of different interaction design approaches

This study looks at several approaches to interaction design, to
find out how the categorization of interaction design pattern lan-
guages can be enhanced by basing it on the structural characteris-
tics of these approaches. Analysis of design approaches shows that
most of them do not go into much detail in the stage where inter-
action design patterns come into play; i.e., when the user interface
is designed. This raises an interesting question: why do most
approaches see the task of designing the user interface rather like
a black box? One explanation for this could be that experienced
designers and researchers like Schön (1984) consider the process
of design as unpredictable to some extent. Schön sees design as
an ongoing reflective conversation with the entity to be designed.
Thus the path to the final design cannot be predicted; it is devel-
oped de novo in every project. This is why a linear process is not
a realistic model for design activities. On the other hand, it can



200 C. Hübscher et al. / Interacting with Computers 23 (2011) 189–201
be argued that the performance of a reflective practitioner has certain
distinguishable stages anyhow. Just as an artist would usually first
use a pencil to sketch the overall form of a picture and later progress
to oil-based paint to finish it, the work of the interaction designer
moves through certain phases, building on each other. The different
layered design processes can be seen as a task analysis in this sense.
So even if the real process is not linear in nature, one can say that the
organization of interaction design patterns, according to such a
model, is ‘‘alongside the design process’’.

5.2. Baxley’s model

We have identified Baxley’s (2003) ‘‘Universal Model of the User
Interface’’ as an interaction design approach with a very detailed
description of the design phase. This model is based on common
principles of design processes, such as a layered procedure, but
its distinction of design sub-tasks is much more fine-grained than
that of the other design processes. So it fulfills two important
requirements of models for the organization of a pattern language:
it is based on a design process and it provides enough ‘‘slots’’ to
perform an effective organization. We have learned that the model
does not cover all the interaction design patterns as defined by
Dearden and Finlay (2006) but can be extended slightly to achieve
this. However, 80% of all the analyzed patterns fall into the catego-
ries covered by Baxley’s model. The model has been extended with
a new category called ‘‘requirements patterns’’ as a working title:
this is a category for the interaction design patterns that are
‘‘above’’ Baxley’s model. For our analysis, this is detailed enough
but for other pattern collections it may be valuable to sub-divide
this category even further.

Even though Baxley’s model has been developed in the context
of web design, it seems to be robust enough to work on different
platforms. The platforms can be seen as orthogonal to the model,
and the ‘‘requirements patterns’’, as defined here, are ideally plat-
form-independent. It can be said that the highest level of categori-
zation with the tiers structure, behavior, and presentation is much
more robust than the nine levels or even the sub-categories used
by Baxley (2002). A voice user interface also has certain structure,
behavior, and presentation aspects to it. But if one looks closer at
the nine layers of Baxley’s model, it can be seen that most notably
the presentation tier is more focused on visual than on voice user
interfaces. On the other hand, the speech of a voice user interface
also has certain ‘‘layout’’ characteristics (e.g. order), a ‘‘style’’ (e.g.
consistency to brand), and is made up of ‘‘text’’ (e.g. superfluous
text should be avoided).

There are possible aspects to a user interface, such as audio and
video, that are missing from the model. It would be necessary to
add these categories to the model to make it more complete for
other collections of patterns.

5.3. The analysis of the four pattern collections

To answer the question whether it is possible to organize inter-
action design patterns according to an extended version of Baxley’s
(2003) model, an analysis of four pattern collections was con-
ducted. It cannot be guaranteed that this categorization is correct
in every aspect, but we are convinced that this approach can make
important aspects of pattern categorization visible. The aim of this
work is not to discuss how individual patterns are categorized but
to show the benefits of taking such a ‘‘unified’’ top-down approach
to pattern categorization for the construction of pattern languages.

One result of the analysis is that all of the patterns focusing on
interaction design could be fitted into these categories. The analy-
sis of the four pattern collections has also shown that some of them
cover most or all of the categories. However, some collections focus
on behavioral issues with only few patterns related to structure or
presentation issues. From this, it can be concluded that some
collections are more complete than others, in the sense that they
span the whole problem space of user interface design in a system-
atic and detailed way. The extended model provides a stable
framework of ‘‘problem slots’’.

These conclusions indicate that the use of such a model helps to
build a pattern language that is not only complete, but also actively
supports the process of identifying new patterns; i.e., it is predic-
tive. In striving for a complete pattern language, one is forced to de-
scribe the full range of ‘‘user interface problems’’ and has to find all
the common solutions to a given level of the model. For the indi-
vidual patterns, the implication is that they cannot only describe
solutions on a merely morphological or behavioral level (i.e. how
they look or work) but must also describe them on a semantic level
(i.e. what they are used for in the user interface). A certain user
interface mechanism can be used for different purposes; for exam-
ple the component of a drop-down list box can be used for filtering
a table (viewing and navigation) or for the selection of different gi-
ven values for data entry (editing and manipulation). Following this
thinking, one is forced to describe not the user interface mecha-
nisms per se but the solution to the user’s problems.

5.4. A common model for the organization of interaction design
patterns

As Gabriel (1996) reports from the area of software engineering,
patterns are not used enough in projects in this field and we think
that the same can be said for the field of HCI. From our point of
view, one of the biggest problems is that existing pattern collec-
tions are far from complete and it is not easy for the individual de-
signer to know where to look for missing patterns. This searching
for patterns is time-consuming. The vision of this work is for pat-
tern collections to be written on the same basis – for example,
based on the extended model presented here – enabling individual
patterns to move freely between collections to make them more
complete.

Even with the extended model as defined above, there are still
some problems to be solved before the vision can be fulfilled. There
are patterns that do not fit unambiguously into the model; they
have mixed forces according to the levels of the model. So if one
were to write patterns with forces precisely formulated in relation
to the model, the particular patterns would therefore be accurately
separated; this would lead to clearer identification of the levels on
which gaps in a certain pattern collection exist.

Another issue is that of platform. As it has been shown above,
there are patterns that are platform-independent and others that
are not. We think that it makes no sense to demand patterns to
be fully platform-independent in every case. This would unreason-
ably limit the range of issues that can be described as interaction
design patterns. However, it would be a requirement to describe
individual patterns as platform-independent as possible to make
them available on a wide range of technical platforms. Then, in or-
der to know which patterns can be moved from one collection to
another, the patterns need to be tagged by platform-dependence
to filter them accordingly.

5.5. Outlook

This work shows why Baxley’s model may be a good foundation
for the organization of interaction design patterns to achieve pat-
tern collections that allow a free transfer of patterns. But there
are several other milestones to be met before this vision can be
achieved. The first is that although the logic of the model seems
to work there are several gaps in it (audio, video, etc.) that have
to be filled to make it universally applicable. To handle large num-
bers of patterns, the category of ‘‘requirements patterns’’ on the



C. Hübscher et al. / Interacting with Computers 23 (2011) 189–201 201
one hand and the nine layers of Baxley’s model on the other should
be made more fine-grained in a robust way. Also, new trends in the
technology have to be taken into account. It is not the aim of this
work to prove that Baxley’s model is the only one capable of per-
forming such a task, but rather to show the advantages of such a
‘‘unified model’’. For the moment, no better model could be found.

Because in this study we have focused more on the construction
of complete interaction design pattern languages, in the next stage
it would be important to focus on the usage of these languages by
interaction designers. It would be very interesting to investigate
whether interaction designers engaged in a design activity could
specify – when interrupted and asked – to which level of the model
this activity belonged.

There is another issue that must be mentioned: This work fo-
cuses on the structural aspects of pattern organization. As men-
tioned in the introduction, there are two main aspects to pattern
organization: the organization according to several levels of design
and the network of patterns defined by reference. There is already
some research about the linking of design patterns (van Welie and
van der Veer, 2003), but it would be interesting to explore this
question to a further extent, also taking into consideration the
findings presented here.
Acknowledgement

The authors would like to thank Zürcher Kantonalbank (ZKB) in
Zurich, Switzerland for the support and funding of this research as
part of the UCD ZKBconnect project.
References

Alexander, C., 1964. Notes on the Synthesis of Form. Harvard University Press,
Cambridge.

Alexander, C., 1979. The Timeless Way of Building. Oxford University Press, New
York.

Alexander, C., 1999. The origins of pattern theory: the future of the theory, and the
generation of a living world. IEEE Software 16 (5), 71–82.

Alexander, C., Ishikawa, S., Silverstein, M., 1977. A Pattern Language: Towns,
Buildings, Construction. Oxford University Press, New York.

Baxley, B., 2002. Making the Web Work: Defining Effective Web Applications. New
Riders.

Baxley, B., 2003. Universal model of a user interface. In: Proceedings of the 2003
Conference on Designing for User Experiences. ACM, New York, NY, USA, p.
1–14.

Beyer, H., Holtzblatt, K., 1998. Contextual Design: Defining Customer-centered
Systems. Morgan Kaufmann, San Francisco, CA.

Borchers, J., 2000. Interaction design patterns: twelve theses. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, vol. 2, p. 3.

Borchers, J., 2001. A Pattern Approach to Interaction Design. Wiley, Chichester,
England.

Constantine, L.L., Lockwood, L.A.D., 1999. Software for Use: A Practical Guide to the
Models and Methods of Usage-centered Design. Addison Wesley, Reading, Mass.

Cooper, A., Reimann, R., Cronin, D., 2007. About Face 3: The Essentials of Interaction
Design. Wiley Pub., Indianapolis, IN.

Dearden, A., Finlay, J., 2006. Pattern languages in HCI: a critical review. Human–
Computer Interaction 21 (1), 49–102.

Dimitriadis, Y., Goodyear, P., Retalis, S., 2009. Using e-learning design patterns to
augment learners’ experiences. Computers in Human Behavior 25 (5), 997–998.

Fincher, S., 2002. Patterns for HCI and cognitive dimensions: two halves of the same
story. In: Kuljis, J., Baldwin, L., Scoble, R. (Eds.), Proceedings of the Fourteenth
Annual Workshop of the Psychology of Programming Interest Group, pp. 156–
172.

Fincher, S., 2003. PLML: pattern language markup language report of workshop held
at CHI September 2003. Interfaces 56, 26–28.

Fincher, S., Windsor, P., 2000. Why patterns are not enough: some suggestions
concerning an organising principle for patterns of UI design. In: CHI’2000
Workshop on Pattern Languages for Interaction Design: Building Momentum.

Gabriel, R., 1996. Patterns of Software: Tales from the Software Community. Oxford
University Press, New York.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co.
Inc., Boston.

Garrett, J.J., 2002. The Elements of User Experience. User-centered Design for the
Web. New Riders, Indianapolis, IN.

Granlund, Å., Lafrenière, D., Carr, D.A., 2001. A pattern-supported approach to the
user interface design process. In: Proceedings of 9th International Conference
on Human–Computer Interaction HCI International.

Grudin, J., 1992. Utility and usability: research issues and development contexts.
Interacting with Computers 4 (2), 209–217.

Hornbaek, K., 2006. Current practice in measuring usability: challenges to usability
studies and research. International Journal of Human–Computer Studies 64 (2),
79–102.

IBM Corporation, 1992. Object-oriented Interface Design: IBM Common User Access
Guidelines. QUE, New York.

Kohls, C., Uttecht, J., 2009. Lessons learnt in mining and writing design patterns for
educational interactive graphics. Computers in Human Behavior 25 (5), 1040–
1055.

Leacock, M., Malone, E., Wheeler, C., 2005. Implementing a pattern library in the real
world: a Yahoo! case study. In: American Society for Information Science and
Technology Information Architecture Summit, Montréal, Québec, Canada.

Leuthold, S., Schmutz, P., Bargas-Avila, J.A., Tuch, A.N., Opwis, K., 2011. Vertical
versus dynamic menus on the world wide web: eye tracking study measuring
the influence of menu design and task complexity on user performance and
subjective preference. Computers in Human Behavior 27 (1), 459–472.

Mayhew, D.J., 1999. The Usability Engineering Lifecycle: A Practitioner’s Handbook
for User Interface Design. Morgan Kaufmann Publishers, San Francisco, CA.

Nielsen, J., 1993. Usability Engineering. Academic Press, Boston.
Pauwels, S.L., Hübscher, C., Leuthold, S., Bargas-Avila, J.A., Opwis, K., 2009. Error

prevention in online forms: use color instead of asterisks to mark required
fields. Interacting with Computers 21 (4), 257–262.

Pauwels, S., Hübscher, C., Bargas-Avila, J., Opwis, K., 2010. Building an interaction
design pattern language: a case study. Computers in Human Behavior 26 (3),
452–463.

Rantzer, M., 1996. Field Methods Casebook for Software Design: The Delta
Method – A Way to Introduce Usability. John Wiley & Sons, Inc., New York,
NY. pp. 91–112.

Robert, D., 1998. Designing for the User with OVID: Bridging User Interface Design
and Software Engineering. Software Engineering Series. Macmillan Technical
Pub., Indianapolis, IN.

Schön, D., 1984. The Reflective Practitioner: How Professionals Think in Action.
Basic Books.

Sharp, H., Rogers, Y., Preece, J., 2007. Interaction Design, second ed. Wiley, New
York.

Tidwell, J., 2006. Designing Interfaces. O’Reilly, Beijing.
Tidwell, J., 2009. Common Ground: A Pattern Language for Human–Computer

Interface Design. <http://www.mit.edu/~jtidwell/common_ground.html>
(accessed 07.05.09).

van Duyne, D.K., Landay, J.A., Hong, J.I., 2002. The Design of Sites: Patterns,
Principles, and Processes for Crafting a Customer-centered Web Experience.
Wesley Professional, Addison.

van Duyne, D.K., Landay, J.A., Hong, J.I., 2007. The Design of Sites: Patterns for
Creating Winning Web Sites, second ed. Prentice Hall, Upper Saddle River, NJ.

van Welie, M., 2009. Patterns in Interaction Design. <http://www.welie.com/
patterns/> (accessed 07.05.09).

van Welie, M., Trætteberg, H., 2000. Interaction patterns in user interfaces. In: Proc.
Seventh Pattern Languages of Programs Conference: PLoP, pp. 13–16.

van Welie, M., van der Veer, G., 2003. Pattern languages in interaction design:
structure and organization. In: Proceedings of Interact, vol. 3, pp. 1–5.

Yahoo! Inc., 2009. Design Pattern Library. http://developer.yahoo.com/ypatterns/
(accessed 29.05.09).

http://www.mit.edu/~jtidwell/common_ground.html
http://www.welie.com/patterns/
http://www.welie.com/patterns/
http://developer.yahoo.com/ypatterns/

	The organization of interaction design pattern languages alongside the design process
	Introduction
	The problem of pattern categorization
	Interaction design patterns and pattern languages
	Recent work on the organization of interaction design patterns

	Structural characteristics of interaction design approaches
	A model for the organization of interaction design patterns
	The original structure of Baxley’s model
	An extension of Baxley’s model
	Requirements patterns
	Patterns for the conceptual implementation of a user interface
	The scope of platform applicability of Baxley’s model


	The analysis of four pattern collections
	The process of categorization
	The analysis of the pattern collections
	Book “Designing Interfaces” by Jenifer Tidwell
	Book “The Design of Sites” by van Duyne et al.
	Website “Welie.com” by Martijn van Welie
	Website “Yahoo! Design Pattern Library” by Yahoo! Inc.

	The pattern collections in comparison
	The patterns categorized into multiple layers

	Conclusions
	The characteristics of different interaction design approaches
	Baxley’s model
	The analysis of the four pattern collections
	A common model for the organization of interaction design patterns
	Outlook

	Acknowledgement
	References


