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Comparative physiology applies methods established in domestic animal science to a wider variety of species. This can lead to
improved insight into evolutionary adaptations of domestic animals, by putting domestic species into a broader context. Examples
include the variety of responses to seasonally fluctuating environments, different adaptations to heat and drought, and in
particular adaptations to herbivory and various herbivore niches. Herbivores generally face the challenge that a high food intake
compromises digestive efficiency (by reducing ingesta retention time and time available for selective feeding and for food
comminution), and a variety of digestive strategies have evolved in response. Ruminants are very successful herbivores. They
benefit from potential advantages of a forestomach without being constrained in their food intake as much as other foregut
fermenters, because of their peculiar reticuloruminal sorting mechanism that retains food requiring further digestion but clears the
forestomach of already digested material; the same mechanism also optimises food comminution. Wild ruminants vary widely in
the degree to which their rumen contents ‘stratify’, with little stratification in ‘moose-type’ ruminants (which are mostly restricted
to a browse niche) and a high degree of stratification into gas, particle and fluid layers in ‘cattle-type’ ruminants (which are more
flexible as intermediate feeders and grazers). Yet all ruminants uniformly achieve efficient selective particle retention, suggesting
that functions other than particle retention played an important role in the evolution of stratification-enhancing adaptations. One
interesting emerging hypothesis is that the high fluid turnover observed in ‘cattle-type’ ruminants – which is a prerequisite for
stratification – is an adaptation that not only leads to a shift of the sorting mechanism from the reticulum to the whole reticulo-
rumen, but also optimises the harvest of microbial protein from the forestomach. Although potential benefits of this adaptation
have not been quantified, the evidence for convergent evolution toward stratification suggests that they must be substantial. In
modern production systems, the main way in which humans influence the efficiency of energy uptake is by manipulating diet
quality. Selective breeding for conversion efficiency has resulted in notable differences between wild and domestic animals. With
increased knowledge on the relevance of individual factors, that is fluid throughput through the reticulo-rumen, more specific
selection parameters for breeding could be defined to increase productivity of domestic ruminants by continuing certain
evolutionary trajectories.
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Implications

Understanding evolutionary adaptations of ruminants will
have an impact on (i) husbandry of captive wild ruminants,
many of which cannot be kept or fed as domestic ruminants
and (ii) research for continuous refinement of the production
potential of domestic ruminants, by offering a range of
species for investigating seasonal aspects of nutrition and
reproduction and by outlining an important physiological
mechanism: some ruminants (including cattle relatives) have

increased fluid throughput through the forestomach during
evolution. Continuing this evolutionary trajectory, that is
increasing fluid throughput further by selective breeding for
this trait, represents a logical option that should be further
investigated.

Introduction: ruminant research and comparative
herbivore digestive physiology

Vertebrate herbivores cannot digest plant fibre auto-
enzymatically but rely on gut microflora for this purpose.- E-mail: mclauss@vetclinics.uzh.ch
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As self-evident as this statement might seem today, with a large
number of reviews dealing with the contribution of microbial
fermentation to digestion in vertebrates (the most prominent
probably being Stevens and Hume, 1998), the origins of com-
parative herbivore digestive physiology lie in research on
domestic ruminants. Initial observation that fermentative activity
in the large intestine of horses is similar to that in the rumen
(e.g. Elsden et al., 1946; Argenzio and Stevens, 1984) opened
the door for a large-scale recognition of fermentative digestion
in herbivores. Methodological knowledge and concepts gained
in domestic ruminant research were applied to other herbivores
to discover the immense variety of digestive adaptations. Moir
et al. (1954) described a ‘ruminant-like’ digestion in a wallaby
and thereby initiated a new direction of comparative studies on
foregut fermentation strategies. Thus, the history of comparative
digestive research followed a two-fold top-down approach: (i)
from what is probably the most sophisticated digestive system
(ruminant) to fermentative digestion in many other vertebrates
(including fish and tadpoles) and (ii) within the ruminants from
what is probably the most advanced system (cattle) to the
digestive physiology of many other ruminants (including deer,
antelope and giraffe). This top-down approach is reflected by
the fact that many important reviews on comparative herbivore
and ruminant digestive physiology have appeared in the
monograph series of the International Symposium on Ruminant
Physiology or in proceedings of similar symposia (Moir, 1965;
Hörnicke and Björnhag, 1980; Hume and Warner, 1980; Kay
et al., 1980; Stevens et al., 1980; Hofmann, 1988; Hume and
Sakaguchi, 1991; Langer and Snipes, 1991; Van Soest et al.,
1995; Cork et al., 1999).

Aim of this review

Since these beginnings, comparative herbivore physiology
has become a research field in its own right. Comprehensive
reviews of this field can be found in several monographs
(Van Soest, 1994; Hume, 1999; Karasov and Martı́nez del
Rio, 2007) and edited books (Hudson and White, 1985;
Chivers and Langer, 1994) and is not the aim of this con-
tribution. We want to highlight certain research areas, such
as adaptations to seasonality, extreme climate and physio-
logical adaptations to nutritional niches. All these research
fields have drawn upon knowledge gained by, and methods
originally developed for, research on domestic ruminants.
Comparative physiology can offer a concept of where rumi-
nants in general, and domestic ruminants in particular, ‘came
from’ in adaptive terms, and can offer a perspective on what
evolutionary trajectories might be worthwhile pursuing, if
those adaptations that led to their carriers’ present success
should be even reinforced in the future. Therefore, we will
outline our view of the evolutionary position of ruminants.

Foregut and hindgut fermentation: why ruminants
are special

Depending on the site of major microbial digestion, herbivores
are classified as foregut fermenters (primary fermentation

chamber proximal to the small intestine) or hindgut fer-
menters (primary fermentation chamber distal to the small
intestine). Because the small intestine is the major site
of nutrient absorption (with the exception of volatile fatty
acids that are absorbed mainly in the fermentation cham-
bers), a discussion about differences between foregut and
hindgut fermenters is a stimulating didactic exercise. In a
foregut, nutrients are metabolised or modified by microbes
before absorption, leading to energetic loss when substrates
like sugars/starches are fermented rather than being diges-
ted more profitably auto-enzymatically (Stevens and Hume,
1998) and to the higher degree of saturation in the body fats
of foregut fermenters (Clauss et al., 2009a). Hume (1985)
outlined how some differences between foregut and hindgut
fermenters might be less important than usually thought:
although detoxification in the foregut could be considered
advantageous on certain foods rich in plant secondary
metabolites (PSMs), detoxification in the liver is another
viable option for simple-stomached animals that actually
absorb toxins. Also, although protein and vitamins synthe-
sised by the microbial flora might be lost to the host in
hindgut fermenters, this effect may not be relevant under
natural conditions in large herbivores (because of their
relatively low metabolic rates), and is compensated by
coprophagy in small herbivores (Hume, 1985). Additionally,
differences in protein loss in the faeces have yet to be proven
for different digestion types – a preliminary comparative
screening of a large variety of zoo herbivores, including
coprophageous and non-coprophageous hindgut fermenters
as well as ruminant and non-ruminant foregut fermenters, did
not detect any relevant differences in metabolic faecal nitrogen
between the groups (Schwarm et al., 2009c).

Nevertheless, foregut fermentation is usually considered
superior to hindgut fermentation, based on observations on
digestive efficiency in domestic herbivores, on species diversity
today and in the recent fossil record (Moir, 1968), or predictions
by gut models (Alexander, 1993). However, this view often
equates ‘foregut fermenters’ with ‘ruminant’ – either sub-
consciously, or consciously as stated by Janis (1976): ‘I will
use ‘ruminant’ to designate any animal that ferments cellulose
in its forestomach.’ Such an approach ignores two facts:
(i) when compared with ruminants, non-ruminant foregut
fermenters do not appear as successful in terms of species
diversity (Langer, 1991, 1994). An exception is the macropodid
marsupials on the Australian continent (Cardillo et al., 2003),
which is a special case because of its low-primary productivity
(Milewski and Diamond, 2000), and historical lack of eutherian
competitors and (ii) ruminants have evolved the peculiar
adaptation of rumination, which sets them apart from other
foregut fermenters (Fritz et al., 2009; Schwarm et al., 2009a;
Figure 1). Equating ruminants and non-ruminant foregut
fermenters denies the relevance of this adaptation.

To explore the role of the different digestive strategies, we
base our approach on the supposition that species evolve to
maximise energy intake. Higher energy intake should allow a
higher level of metabolism, which has certain competitive
advantages (McNab, 2006). Higher energy intake can be
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achieved by increasing food intake, and/or by increasing
digestive efficiency. Digestive efficiency is mainly determined
by food quality, by ingesta retention time and ingesta
particle size (Hume, 2005). Ingesta retention and particle
size can actually compensate for each other (Clauss et al.,
2009b), with longer retention and smaller particles enhan-
cing digestive efficiency. Ingesta retention can be described
as a function of gut capacity (Langer and Snipes, 1991) and
of food intake (Clauss et al., 2007b). Increasing food intake
may mean less time for selecting high-quality food, less time
for mastication (leading to larger particle size) and shorter
ingesta retention. However, animals differ in the extent
to which food intake levels influence ingesta retention
(Clauss et al., 2007c). This trade-off between food intake and
digestive efficiency means that animals rarely optimise
digestive efficiency, but seek to maximise net energy gain by
a compromise between these two factors (Hume, 2005).

The difference between hindgut and foregut fermentation
is often summarised in the literature by a low-intake, high-
efficiency strategy in ruminants as opposed to a high-intake,
low-efficiency strategy in equids (e.g. Janis, 1976). Actually,
it appears more plausible to characterise the digestion types
in a different way (Table 1; Clauss et al., 2008d), based on
the prerequisites that (i) fermentative digestion of fibre
requires more time than fermentative digestion of easily
digestible substrates and (ii) that auto-enzymatic digestion
of easily digestible substrates is energetically more efficient
than fermentative digestion of these substrates: hindgut
fermenters can pursue both strategies, either high-intake/
low-efficiency or low-intake/high-efficiency, because auto-
enzymatic digestion will always be efficient and subsequent
fermentative digestion can be either thorough or cursory.
Non-ruminant foregut fermenters, however, cannot adopt
the high-intake/low-efficiency strategy, because they lose
the easily digestible nutrients to the foregut microflora but
would not achieve thorough fibre fermentation, having only
the disadvantages of both ways. The only way to avoid this
problem would be through a ‘bypass’ of the foregut fer-
mentation system by easily digestible nutrients. Although
such bypass has been proposed to occur not only in suckling
but also in adult ruminant and non-ruminant foregut fer-
menters, current experimental evidence does not support
this concept (reviewed in Lechner et al., 2009): the excretion
of orally ingested fluid markers is not different from particles
in foregut fermenting primates, or from fluid markers inser-
ted into the rumen in ruminants.

We term this particular predicament – the limitation of a
conventional foregut to a low-intake/high-efficiency strategy –
the ‘foregut fermentation trap’ and hypothesise that it
represents a major constraint for the evolutionary success of

Figure 1 Mean particle size of faeces in mammalian hindgut fermenters,
nonruminant foregut fermenters and ruminants of varying body size (Fritz
et al., 2009); note that ruminants produce finer faecal particles than other
herbivores of comparable body size.

Table 1 Concept of differences in metabolic options available to herbivores of different digestive strategies (adapted from Clauss et al., 2008b and 2008d)

Strategy/metabolic rate Hindgut fermentation Foregut fermentation
Foregut fermentation and

rumination
1 2 3

Low food intake
Long ingesta retention
Low metabolic rate

A
Auto-enzymatic digestion

followed by thorough
fermentative digestion

(Thorough) fermentative digestion
followed by autoenzymatic
digestion of products (and remains)

As 2A combined with an effective
but time-consuming sorting
mechanism

Intermediate/high food
intake

Selective ingesta retention
High metabolic rate

B

– – As 2A combined with an efficient
sorting mechanism that only
retains particles that need
further digestion and increases
chewing efficiency

High food intake
Short ingesta retention
High metabolic rate

Auto-enzymatic digestion
followed by cursory
fermentative digestion (can
increase as chewing
efficiency increases)

Cursory fermentative digestion mainly
of autoenzymatically digestible
components followed by ineffective
autoenzymatic digestion of
undigested fiber? ‘foregut
fermentation trap’

Examples: 1A koala (Phascolarctos cinereus); 1B equids; 2A hippo (Hippopotamus amphibius); 2B none; 3A camelids; 3B true ruminants.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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non-ruminant foregut fermentation, limiting this strategy to
herbivores with relatively low metabolic rates (Clauss et al.,
2008b). Although this hypothesis remains to be tested, avail-
able data suggest that whereas hindgut fermenters display a
large range of food intakes and metabolic rates, non-ruminant
foregut fermenters are limited to low intakes and low metabolic
rates (Figure 2). Consistent with this view, the only geographic
region where a large species radiation of non-ruminant foregut
fermenters is documented, Australia, is generally marked by
low-primary productivity and a mammal population (the mar-
supials) that is characterised by relatively low metabolic rates
(McNab, 2008). In non-ruminant foregut fermenters, particle
retention in the foregut is indiscriminate (Schwarm et al., 2008,
2009b), meaning that particles are retained irrespective
of their size and digestion status. In contrast, the sorting
mechanism in the forestomach of ruminants selectively retains
those particles that can be further digested but expels those
that already are – thus conceptually allowing a higher intake in
ruminants than in non-ruminant foregut fermenters (Clauss
et al., 2007b; Schwarm et al., 2009a; Figure 2a). Additionally,
this sorting mechanism represents the most efficient mechan-
ism by which mammals can increase their chewing efficiency in
terms of ingesta particle size (Fritz et al., 2009). Distal to the
forestomach, ingesta particle size is lower in ruminants than in
other mammals of comparable size (Figure 1). It is tempting to
speculate that a basic difference in the sorting mechanism
between camelids (with the little-understood retention of large
particles in the third forestomach compartment, Lechner-Doll
and von Engelhardt, 1989) and ruminants prevents the former
from achieving the high food intakes, metabolic rates (Van
Saun, 2006; Maloiy et al., 2009), species diversity and geo-
graphic distribution of the ruminants. Until the particle flow
in the camelid forestomach is characterised in more detail,

this must remain speculative. To conclude, it is most likely
not foregut fermentation per se, but its combination with an
ingesta sorting and comminution mechanism, that repre-
sents the most successful adaptation to herbivory, which is
reflected in the high species diversity of ruminants as we
know them today.

However, the presumed selective advantage of the ruminant
sorting mechanism comes at a price. The ruminant sorting
mechanism depends largely on particle density (Lechner-Doll et
al., 1991). Because this mechanism depends on the interplay
between the position of certain ruminant anatomical features
and gravity, ruminants cannot rest lying on their side – as do
horses, rhinoceroses, or elephants – but must always keep their
forestomach in the vertical plane by standing up or resting in
sternal recumbency (Clauss, 2004). Also, when comparing
measurements of methane emission in ruminants against the
few available measurements in non-ruminating foregut fermen-
ters (Kempton et al., 1976; von Engelhardt et al., 1978; Dellow et
al., 1988) or equids (Pagan and Hintz, 1986; Vermorel et al.,
1997), it seems that energetic losses due to methane production
represent another cost associated with ruminant digestive phy-
siology – although the causes remain to be explored.

Comparative studies on ruminants

Seasonality
Like other animals, ruminants are subjected to seasonal
rhythms of body mass gain or loss, food intake (Barry et al.,
1991; Rhind et al., 2002), energy expenditure and metabo-
lism (Mauget et al., 1997; Arnold et al., 2004) and repro-
duction (Asher et al., 1999; Santiago-Moreno et al., 2006).
Two major mechanisms for this seasonality are recognised:
the availability of resources (resource-induced seasonality)

Figure 2 (a) Differences in relative dry matter intake (rDMI, per unit metabolic body weight; means, ranges and 25% to 75% percentile) between hindgut
fermenters (n 5 49 species), nonruminant foregut fermenters (n 5 19) and ruminants (n 5 25) (data from Clauss et al., 2007b). When tested by one-way
ANOVA (P 5 0.001) and post-hoc tests with Sidak adjustment, differences between nonruminant foregut fermenters and both hindgut fermenters (P 5 0.002)
and ruminants (P 5 0.004) were significant, but not between hindgut fermenters and ruminants (P 5 0.997). (b) Variation of relative basal metabolic rate
(rBMR, per unit metabolic body weight) in mammalian herbivores (species selected from the collation of Savage et al., 2004; see White and Seymour, 2005 on
the problem of measuring BMR in large herbivores). Note the generally higher range of rBMR measured in ruminants as compared with nonruminant foregut
fermenters and the large range of rBMR measured in hindgut fermenters.
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and hormonal control triggered by photoperiod (endogenous
seasonality) (Loudon, 1991). High-latitude habitats have a
reliable and predictable seasonal rhythm of resource avail-
ability, and it is adaptive to regulate physiology in synchrony
with this rhythm. More tropical habitats may also experience
fluctuations in resource availability, but the predictability of
this fluctuation might not be high enough to make an
endogenous synchronization adaptive. Alternatively, the
partial or complete absence of photoperiodicity in the tropics
might have prevented the evolution of endogenous rhythms.

An easy way to identify the seasonality type of a species is
to evaluate breeding records of captive animals (Kirkwood
et al., 1987; Piening et al., 2009). Cervidae (deer), Caprinae
(sheep, goats and relatives) or muskoxen have an endo-
genous seasonality that persists even when offered food and
shelter ad libitum in captivity (under natural photo-
periodicity). Other ruminants, such as cattle, antelope, and
giraffe, have resource-induced rhythms that do not persist in
the presence of ad libitum resources in captivity. The same
pattern is observed in domestic ruminants: seasonal phy-
siological or reproductive patterns are much less pronounced
in cattle than in sheep and goats. In general, the expression
of seasonal patterns is considered less pronounced in
domestic than in wild ruminants (Rhind et al., 2002).

Interrelationships between photoperiod and nutritional
state have long been suspected and have been demon-
strated by experiments in which photoperiod and dietary
resources were uncoupled (Heydon et al., 1993; Webster
et al., 2001; Soppela et al., 2008). In particular, leptin would
appear a suitable modulator of food intake and animal
metabolism. Leptin normally reflects body fat levels (Suzuki
et al., 2004; Becker and Katz, 2005; Chilliard et al., 2005;
Ostrowski et al., 2006), but is modified by photoperiod and
sex hormones (Chilliard et al., 2005; Gaspar-López et al.,
2009); yet, exact pathways remain to be elucidated. High
levels of circulating leptin have been shown to reduce food
intake and increase energy expenditure, and low levels to
enhance food intake and decrease energy expenditure
(Chilliard et al., 2005). It would, therefore, appear logical
that seasonal modulation of leptin (through melatonin)
should lead to a suppression of leptin levels during summer,
to reduce the putative intake-depressive effect of leptinemia
and to allow the animal to increase its body fat stores
beyond a maintenance level. For the winter season, reductions
in both activity (including foraging) and energy expenditure
should be beneficial, but it appears that leptin alone cannot
explain these two effects. The facts that long day periods do
not lead to a decrease in leptin levels, yet food intake and fat
accretion are nevertheless not limited during this period, and
that short day periods lead to a marked decrease in leptin
levels irrespective of food intake or nutritional status (Chilliard
and Bocquier, 2000; Soppela et al., 2008), indicate that other
factors must be involved in the regulation of food intake and
animal metabolic rate. Comparative (multi-species) studies
of the interaction of leptin, photoperiod/melatonin, dietary
resources and other mediators, especially between species of
different seasonality type, are needed.

Heat and drought
A large body of research has investigated adaptations of
ruminants and other animals to heat and drought (Silanikove,
1994; Cain et al., 2006). Apart from behavioural adaptations to
reduce heat load and to increase water uptake, desert-adapted
ruminants have particularly long distal colons (Woodall and
Skinner, 1993) and produce very dry faeces (Clauss et al., 2004).
They also probably have longer loops of Henlé or a thicker renal
medulla (e.g. Horst and Langworthy, 1971; Dunson, 1974) and
produce less and more concentrated urine (Maloiy et al., 1979;
Beuchat, 1990). Desert species generally show a lower field
metabolic rate and a lower water turnover (Cain et al., 2006).
Larger horns in bovid species from arid areas, with thinner
keratin sheaths than in temperate species, facilitate heat loss
(Picard et al., 1999).

The rumen has been considered a water reservoir in desert
ruminants (Silanikove, 1994). Water ingestion during rehydra-
tion does not lead to an increased rumen fluid outflow, in
contrast to the ingestion of isotonic fluid (Shkolnik et al.,
1980). Particularly long fluid retention times in the rumen of
desert ruminants may support the water reservoir function
(Hummel et al., 2008a). Whether ingested drinking water is
actively retained in the rumen in rehydration, or whether fluid
absorption across the rumen wall and rapid recycling through
saliva (Silanikove, 1994) prevents (non-absorbable) fluid mar-
kers from leaving the rumen, remains to be investigated.

Perhaps the most controversial concept of heat adaptation
in ruminants is a putative heterothermy that allows an
increase in body temperature to minimise evaporative
water loss. First proposed for ruminants by Taylor (1969), this
concept has become textbook knowledge (Jessen, 2001), yet
has been criticised for deriving from spurious results caused
by unnatural husbandry of experimental animals (e.g. Fuller
et al., 2004). Experimental data from free-ranging animals
gained by remote-sensing temperature measurements have
yielded conflicting evidence (Ostrowski et al., 2003; Fuller
et al., 2004; Ostrowski and Williams, 2006). Either hetero-
thermy does occur but might do so less frequently than
previously thought, or many of the recent studies might have
been limited by a lack of extreme environmental conditions.

Nutritional niche

Natural forages: grass, browse and fruits
Wild ruminant diets include grasses, browse (forbs/herbs, leaves
and twigs of woody plants) and wild fruits. In contrast to a
common preconception of browsing animals as ‘concentrate
selectors’ (see below), grasses are not generally less digestible
than browse (reviewed in Clauss et al., 2008a). Grasses are
peculiar in that they appear to deviate from the common pattern
found in other forages of increasing lignin with increasing cell
wall content (Figure 3a); the fibre component of grasses
contains particularly high percentages of hemicellulose and
cellulose. Browse typically has a higher lignin content but
also contains rapidly fermentable fibre such as pectins. As a
result, grass has fundamentally different fermentation char-
acteristics than browse (Hummel et al., 2006a), with a slower
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fermentation rate but potentially higher total digestibility, which
means that grass can profitably be retained in the fermentation
chamber longer than browse (Figure 3b). As a defense against
herbivory, browse often contains PSMs that require neutraliza-
tion/detoxification by the consumer. On the other hand, grasses
contain abrasive phytoliths (silica) that require more durable
(higher-crowned or hypsodont) teeth. Although the kinetics of
digestion-induced density changes of forage particles remain to
be investigated systematically between forages, rumen contents
of grazing or browsing ruminants are similar in that they
separate according to particle size by their functional density
(Figure 4) – thus all meeting the prerequisite for the reticulo-
rumen (RR) separation mechanism (Sutherland, 1988; Baumont
and Deswysen, 1991; Lechner-Doll et al., 1991). Masticatory
adaptations in ruminants suggest that grasses are physically
more demanding to chew than browse (Archer and Sanson,
2002; Clauss et al., 2008c; Kaiser et al., 2010), but systematic
comparative investigations on forages are lacking. It is com-
monly assumed that wild fruits represent particularly high-
quality food; however, wild fruits have little in common with
produce cultivated for human consumption (Schwitzer et al.,
2009) and contain more fibre than usually thought; their
fermentative and physical characteristics remain to be
investigated.

Historical note: the browser-grazer concept
Differences in the anatomy of the digestive tract between
ruminant species have been known for a long time (e.g. Garrod,
1877; Neuville and Derscheid, 1929). They were investigated
systematically by Hofmann (1973, 1988, 1989) who observed
that these differences corresponded to differences in natural
diet. Three major feeding types were defined (grazers – animals
consuming grass; browsers – animals consuming tree leaves
and twigs as well as herbs/forbs; intermediate feeders – ani-
mals consuming a mixture of grass and browse on a continuous
basis or changing seasonally between the two) that are charac-
terised by morphological differences (see below). Additionally,
a series of physiological hypotheses, for example regard-
ing fibre digestibility or ingesta retention, were formulated.
Other authors reported similar observations (Kay et al., 1980;

Kay, 1989), the browser-grazer dichotomy has been used by
researchers worldwide (reviewed in Clauss et al., 2008a) and
incorporated into textbooks (Robbins, 1993; Van Soest, 1994;
Karasov and Martı́nez del Rio, 2007). However, the concept has
been criticised, mainly because the original work included more
photographic material than original data, hardly any statistical
data evaluation, and because physiological hypotheses
remained untested (Gordon and Illius, 1994; Robbins et al.,
1995; Pérez-Barberı̀a et al., 2001a). Nonetheless experiences
in the husbandry of wild ruminants in zoological collections
support the concept that major differences exist in the digestive
strategy of browsers and grazers, because browsing ruminants
are notoriously difficult to feed in captivity (see below). Also,
a large number of Hofmann’s original observations and
hypotheses have been corroborated in recent studies, leading to
a more refined concept of comparative ruminant digestive
physiology (see below).

Precautionary note: nomenclature reflects concepts
The terminology used in the classification of ruminant ‘feeding
types’ must be defined. The selection of the natural diet of
herbivores can be described in botanical terms (browser/grazer)
or in terms of diet quality (selective/unselective). Although the
degree of selectivity usually declines with body mass of a spe-
cies (i.e. larger species often consume food of higher fibre
content, Owen-Smith, 1988; Codron et al., 2007), there is no
similar body size gradient in terms of the botanical composition
of the diet (Clauss et al., 2008a).

Figure 3 (a) Relationship between cell wall (NDF) and lignin (ADL) content in different forages; note the low proportion of lignin in grasses. (b) Comparative
decrease of absolute gas production rate (ml gas/(200 mg dry matter (DM)3hour)) in different forage classes (PEG 5 polyethylene glycol); note the slower
decrease in grass (from Hummel et al., 2006a).

Figure 4 Mean particle size (MPS) of floating and sedimenting fraction of
rumen contents in free-ranging or naturally fed wild ruminants. Note that
sedimenting particles are always smaller than floating ones (from Clauss
et al., 2009d, 2009e).
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The initial concept proposed by Hofmann (1973 and 1989)
used the term ‘concentrate selector’ as a description of
browsing ruminants, thus equating botanical and nutritive
characteristics of the natural diet – an equation which is not
supported by empirical data (Robbins, 1993; Clauss et al.,
2008a). One effect of the amalgamation of botanical com-
position and nutritive quality probably is that nowadays,
even the lay community equates a ‘browser’ with a highly
selective animal choosing only high-quality material – no
one would think of searching the internet with a ‘web-grazer’.
Another effect is that, in zoo settings, feeding regimes
are often difficult to change because it does not appear
logical to reduce the amount of ‘concentrates’ given to a
‘concentrate selector’. Hence the term is best avoided.
Concepts that treat both botanical and nutritive aspects in
an integrated way have been developed (Demment and
Longhurst, 1987) and can explain evolutionary adaptations
at finer levels than the botanical approach alone (Codron
et al., 2008b). When appropriate, the terms ‘selective/unselective
browser/grazer’ should be applied.

Another conceptual difficulty arises from the fact that in
some of the original work, it was unclear what the classifi-
cation of a ruminant species was based on – on its natural
diet, or on morphological adaptations (cf. the legend to
Figure 3 in Hofmann, 1985). Only if the natural diet and the
morphophysiological adaptations are clearly separated can
we test whether the latter actually represent adaptations to
the former. In this respect, it appears problematic to describe
a certain set of parameters as a typical ‘grazer anatomy’ or
‘grazer physiology’ because these anatomical/physiological
features might also occur in animals that can ingest other
forage types. Ideally, the terms ‘grazer/browser’ should be
reserved to descriptions of the natural diet, whereas mor-
phophysiological types should be denoted by other terms. In
this chapter we will use the terms ‘moose-type’ (for a typical
‘browser’) and ‘cattle-type’ (for the most advanced ‘grazer’).

Ruminant forestomach physiology: why ‘cattle-type’
ruminants are special?
Although, it is usually thought that intermediate feeders and
grazers evolved from browsing ruminants (Hofmann, 1989;
Pérez-Barberı̀a et al., 2001b), recent evidence suggests that
both strict browsers and strict grazers evolved from inter-
mediate-type ruminants (Codron et al., 2008a; DeMiguel
et al., 2008). In this respect, we consider the ‘moose-type’
and the ‘cattle-type’ both as extremes of a range of extant
ruminant digestion types.

Because grass ferments more slowly than browse, grazers
probably have longer particle retention times (Hummel et al.,
2006a; Clauss et al., 2007b), but they also have more volu-
minous forestomachs, which avoids a constraint on food
intake (Clauss et al., 2003b). In ‘cattle-type’ ruminants, this
forestomach capacity increase may have led to a space
competition with other organs of the body cavity, such as the
lungs or the distal colon, leading to compensatory high
respiratory rates (Mortolaa and Lanthier, 2005) and moist
faeces of a ‘pie’ consistency (Clauss et al., 2003c).

The stratification of rumen contents (Figure 5a) is well-
described in domestic (‘cattle-type’) ruminants (cf. Hummel
et al., 2009). It is considered responsible for the regional dif-
ferences in papillation of the ruminal mucosa (Figure 6, right
side) and recognised as part of the selective particle retention
mechanism (the ‘filter bed-effect’, Faichney, 2006). The stronger
rumen pillars of ‘cattle-type’ ruminants (Clauss et al., 2003b)
are considered adaptations for contracting against a distinct
fibre mat. In contrast, the rumen contents of more ‘moose-type’
ruminants are much less stratified or not at all (Figure 5b): Such
ruminants have an even ruminal papillation (Clauss et al.,
2009c; Figure 6 left side), no distinct gas dome (Tschuor and
Clauss, 2008), weaker rumen pillars, more viscous rumen fluid
(Clauss et al., 2009d; Clauss et al., 2009e), and a less distinct
difference between fluid present in the dorsal and the ventral
rumen (Figure 7). The higher fluid viscosity, and the ensuing
inclusion of gas bubbles in the fluid in ‘moose-type’ ruminants
(Figure 5b) lead to a typical ‘frothy’ appearance of the ingesta
(Clauss et al., 2001), and might also lead to a higher buffering
capacity of the ingesta (because of CO2 inclusion), which might
require a thicker layer of the acid-producing abomasal mucosa
(Hofmann, 1988). It was previously thought that the lack
of stratification resulted in less efficient particle separation,
leading to larger faecal particles in browsing than in grazing
ruminants kept in zoos (Clauss et al., 2002). More recent results
have shown that such differences do not occur if species are
measured on their natural diets (Hummel et al., 2008b; Lechner
et al., 2010). Correspondingly, no difference in particle dis-
crimination (mean retention of large vs. small particles in the RR)
was evident between ‘moose-type’ and ‘cattle-type’ ruminants

Figure 5 Schemes of the ruminal mucosa and rumen contents in (a)
‘cattle-type’ and (b) ‘moose-type’ ruminants (modified by Jeanne Peter
from Clauss et al., 2003b; Tschuor and Clauss, 2008; Hummel et al., 2009;
inserts on omasum size from Hofmann, 1973). The dorsal and ventral
rumen, the Atrium ruminis (Atr) and the reticulum (Ret) are indicated. Note
a distinct gas dome in ‘cattle-type’ in contrast to a frothy inclusion of small
gas bubbles in ‘moose-type’, a distinct fibre mat and fluid pool in ‘cattle-
type’ and the relatively larger omasum in ‘cattle-type’ ruminants.

Ruminant evolutionary adaptations

985

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1751731110000388
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 19:47:38, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1751731110000388
https:/www.cambridge.org/core


(Figure 8a). These results lead to the conclusion that strati-
fication of RR contents is not an obligatory prerequisite for
the particle sorting mechanism and raises questions about
the adaptive relevance of RR contents stratification.

The most obvious physiological difference between the
ruminant digestion types is the difference in the ratio of
small particle v. fluid retention in the RR (Clauss and Lechner-
Doll, 2001; Hummel et al., 2005; Clauss et al., 2006a; Figure
8b). Higher ratios in ‘cattle-type’ ruminants are not only an
effect of longer particle retention, but also of a relatively
shorter fluid retention (Figure 9). Moister RR contents and
higher fluid throughput are possibly compensated by the
larger fluid-absorbing omasum of ‘cattle-type’ ruminants
(Clauss et al., 2006b; Figure 5) that ensures that ingesta
flowing to the abomasum is not unduly diluted. Higher
reticular crests in ‘cattle-type’ ruminants possibly allow
complete lumen closure of the reticulum during contractions,
which can quickly refill with material from the ventral rumen.

In ‘moose-type’ ruminants with drier ventral rumen contents,
refilling of the reticulum would be more difficult, complete
lumen closure of the reticulum might therefore not be
advantageous, and hence reticular crests may have been
reduced in height (Clauss et al., 2010).

Why this difference in fluid content and passage? ‘Moose-
type’ ruminants might have evolved a saliva that contains
defences against PSMs, is therefore particularly protein-rich
and viscous, and requires large salivary glands that still
cannot secrete particularly large amounts without compro-
mising the salivary composition (Hofmann et al., 2008).
‘Cattle-type’ ruminants might not be constrained by such a
requirement, and could evolve to pass large amounts of fluid
through their RR. On the one hand, more fluid in the RR
would enhance the stratification of rumen contents, with the
formation of a fibre mat and the consequent ‘filter-bed
effect’ that increases the retention of small particles, thus
probably facilitating the higher fibre digestibilities achieved by
‘cattle-type’ ruminants (Pérez-Barberı̀a et al., 2004). On the
other hand, an increased fluid passage will also potentially lead
to increased yields of bacteria from the RR (reviewed e.g. in
Harrison and McAllan, 1980), increasing the harvest of
microbes by flushing them out of the RR, and thus selecting for
bacterial strains with high compensatory growth capacity.
Although we cannot yet easily quantify the potential profits of
these adaptations in ruminants on average forage diets, the
evidence for convergent evolution toward such mechanisms
suggests that they must be substantial.

Consequences

Dietary niches of wild ruminants and feeding in domestic
ruminants
No comprehensive treatment of natural diet selection in all
ruminant species exists, but the limited data collections indi-
cate that there is little correlation between botanical diet

Figure 6 Samples of mucosa from the dorsal rumen (top set), the atrium ruminis (middle set) and the ventral rumen (bottom set) of nine ruminant species.
Note that while the atrium ruminis is always heavily papillated, papillation of the dorsal and ventral wall appears to decrease from the browsing species (left)
to the intermediate feeders (centre) and the grazers (right) (from Clauss et al., 2009c).

Figure 7 Dry matter concentration in dorsal and ventral rumen and reticular
contents in cattle and moose (data from Clauss et al., 2009e; Hummel et al.,
2009). Note the gradient between dorsal and ventral rumen and the similarity
between ventral rumen and reticulum in cattle and the homogeneity in the
rumen contents of moose with a higher fluid content in the reticulum only.
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composition and body mass (Clauss et al., 2008a). However, it
seems that ‘strict browsers’ – animals with a presumptive
‘moose-type’ physiology – are limited to browse-only diets,
whereas a ‘cattle-type’ physiology appears to allow a wider
range of dietary niches. In this respect, it has been suggested
that ‘browsers’ (i.e. ‘moose-type’ ruminants) can be char-
acterised as ‘non-grazers’, whereas ‘grazers’ (i.e. ‘cattle-type’
ruminants) might add varying proportions of browse
to their natural diet of grass (Van Wieren, 1996; Clauss et al.,
2003b). Consider, for example, species like muskoxen (Ovibos
moschatus), wood bison (Bison bison athabascae), European
bison (Bison bonasus), red forest buffalo (Syncerus caffer
nanus) and anoa (Bubalus depressicornis), all of which have a
‘cattle-type’ anatomy yet presumably ingest significant
amounts of browse in the wild. Similarly, range cattle may also
include significant amounts of browse in their diet (Holechek
et al., 1982). This flexibility is used in pasture programs aimed
at maintaining botanical species diversity (Rutter, 2006). How
the ruminant digestion types are linked to their dietary niches
requires more detailed investigation.

It has been shown that the inclusion of tree leaves in the
diet of ‘cattle-type’ ruminants increases food intake (and

potentially accelerates ingesta passage) (Tomkins et al.,
1991; Boyd et al., 1996), although quantitative effects,
including thresholds, remain to be investigated. In contrast,
the inclusion of woody twigs in the diet prolongs retention
and reduces food intake (Baker and Hobbs, 1987). Although
the reasons remain to be elucidated, it can be speculated
that this is due to physical and fermentation characteristics
of browse. Similar effects are reported in domestic ruminants
when legumes or straw are included in their diets (Prigge
et al., 1990; Goodchild and McMeniman, 1994). Browse
(tree leaves and twigs) historically had some relevance in the
feeding of domestic ruminants in Central Europe (Nehring
and Schütte, 1950, 1951a, 1951b; Nehring, 1965), but the
logistic challenges to grow and harvest browse prevent its
use in intensive systems. In contrast, the nutritional value of
browse in more extensive agricultural systems in the tropics
is an area of increasing research (Ben Salem et al., 2008).

Implications for ruminant welfare
Apart from comparisons of the natural diet of wild ruminants
and the artificial diets used in intensive production systems,
with their consequences on animal health, animal longevity,
and global ecology (Hofmann, 1989; Knaus, 2009), most
welfare-related consequences of the physiological adapta-
tions presented in this review are relevant for zoo animals.

A seasonal nutritional regime, including fattening in summer
and body mass loss in winter, has long been recommended in
the zoo literature (Lechner-Doll et al., 2000). However, such
regimes are not in wide use to our knowledge, and their effects
on captive wildlife health remain to be investigated.

With respect to temperature physiology, it has been sug-
gested that wild ruminants with obligatory passive hetero-
thermy might be particularly susceptible to cold stress in the
temperate zone (Clauss et al., 1999). Yet, so far, physiological
and epidemiological evidence for this suspicion is lacking.

Just as ‘moose-type’ ruminants ingest very little grass in the
wild, such animals often refuse to ingest grass hay in captivity
(Clauss et al., 2003a), which might lead to a disproportionately
high-intake of concentrates with consequences such as acidosis

Figure 8 Relationship of mean retention time (MRT) in the reticulorumen (RR) of individual ruminant animals of two different ‘rumen physiology types’ for (a)
small particles (2 mm) and large particles (20 mm) as measured by chromium and rare earth-mordanted fibre (data for the ‘browser’ moose and for the
‘grazers’ cattle, muskox, sheep from Lechner et al., 2010 and from M. Lechner-Doll, personal communication). (b) Fluid and small particles (2 mm) as
measured by cobalt-EDTA and chromium-mordanted fibre (data for the ‘browsers’ moose, giraffe, okapi, roe deer and for the ‘grazers’ cattle, banteng, addax,
muskox, sheep, mouflon from Clauss et al., 2006a; Hummel et al., 2008a; Schwarm et al., 2008; Lechner et al., 2010). Solid lines denote y 5 x.

Figure 9 Mean retention time (MRT) of fluid in the reticulorumen (RR) of
cattle and moose of various body masses (data from Clauss et al., 2006a;
Lechner et al., 2010). Note the generally shorter fluid MRTs in cattle as
compared with moose.
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(Clauss et al., 2003a), laminitis (Zenker et al., 2009), oral ste-
reotypies (Hummel et al., 2006b) and urolithiasis (Wolfe et al.,
2000). The physical inadequacy of grass hay for a ‘moose-type’
rumen may lead to bezoars or RR blockage (Hummel and
Clauss, 2006). Additionally, conventional zoo diets, which con-
tain abrasive silicates either in pelleted feeds or in grass-based
forages, result in unnatural tooth wear in browsing ruminants
(Clauss et al., 2007a; Kaiser et al., 2008). The problem of pro-
viding adequate nutrition for ‘moose-type’ ruminants is finally
reflected in their relatively short average life expectancies in
captivity (Müller et al., 2010). Therefore, feeding such rumi-
nants requires strategies to increase fibre content in the com-
pound feeds offered to them (Clauss and Dierenfeld, 2008), to
replace grain components in such feeds with pectins (Hummel
et al., 2006c), and to ensure continuous provision of browse
forage – if necessary by browse plantations (Höllerl et al., 2006)
and browse silage (Hatt and Clauss, 2006).

Implications for modern production systems
With respect to the physiology of seasonality, current
research activities aim to unveil the underlying mechanisms
with the aim of ultimately overcoming the constraints imposed
on production systems by the ingrained seasonal rhythms of
some domestic ruminants (Chemineau et al., 2008).

With respect to adaptations to heat and drought, research
focus is on identifying breeds that allow optimal productivity
under given conditions (e.g. Alamer and Al-hozab, 2004).

Because the rumen contents of ‘moose-type’ ruminants
(Figure 5b) bear some resemblance to those of cattle suf-
fering from frothy bloat, further inquiries into adaptations of
‘moose-type’ ruminants on RR motility, and how fermenta-
tion gases are dealt with, could enhance our understanding
of the etiopathology of bloat in cattle.

With respect to the demonstrated evolutionary trajectory
of ‘cattle-type’ ruminants for high fluid throughput through
the RR, it has long been recognised that increasing RR
fluid throughput could enhance the ruminant productivity
(Chalupa, 1977; Croom et al., 1993), mainly because of
increased yields of rumen microbes. Different ways of
increasing RR fluid throughput have been tested. Infusions
of water (or efforts to increase water intake) are ineffective
(Harrison and McAllan, 1980), because of the homoeostatic
mechanism mentioned in the ‘adaptation to heat/drought’
section. However, the infusion of saline solutions or artificial
saliva, as well as inclusion of mineral salts in the diet, can be
used to increase the RR fluid throughput (Chalupa, 1977).
Offering of saline drinking water leads to an increase in
water intake in ruminants (e.g. Kii and Dryden, 2005;
Valtorta et al., 2008) that translates into increased RR fluid
throughput, but investigations are so far concentrated on the
negative effects of saline water rather than on potentially
positive effects of isotonic drinking solutions. Pharmacolo-
gical approaches have been pursued using salivary stimu-
lants and positive effects were demonstrated such as
increased bacterial protein outflow from the RR (Wiedmeier
et al., 1987; Froetschel et al., 1989; Bird et al., 1993).
However, pharmacological solutions appear less attractive

than selective breeding for certain traits. Given that frothy
bloat in cattle is linked to low-saliva production (Mendel and
Boda, 1961; Gurnsey et al., 1980) and long fluid retention in
the RR (Majak et al., 1986; Okine et al., 1989), and that
selective breeding against bloat susceptibility can be successful
(Morris et al., 1997), selective breeding for increased saliva
production and hence increased RR fluid throughput should be
attempted. Cattle with higher salivary flow rates would also
appear desirable in terms of their capacity to buffer high-energy
rations used in modern production systems. Consistent selec-
tion criteria could be followed under standardised conditions
in animals with flow probe implants (Meot et al., 1997).
Whether measurable improvements are possible under
modern production systems, so that breeding programs that
continue the evolutionary trajectory of ‘cattle-type’ ruminants
become an attractive strategy, and whether it would have other
effects, for example on methane production, remains to be
demonstrated.
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Hummel J 2009e. Physical characteristics of rumen contents in four large
ruminants of different feeding type, the addax (Addax nasomaculatus), bison
(Bison bison), red deer (Cervus elaphus) and moose (Alces alces). Comparative
Biochemistry and Physiology A 152, 398–406.

Clauss M, Hofmann RR, Streich WJ, Fickel J and Hummel J 2010. Convergence in
the macroscopic anatomy of the reticulum in wild ruminant species of different
feeding types and a new resulting hypothesis on reticular function. Journal of
Zoology. In press, DOI:10.1111/j.1469-7998.2009.00675.x.

Codron D, Lee-Thorp JA, Sponheimer M, Codron J, de Ruiter D and Brink JS
2007. Significance of diet type and diet quality for ecological diversity of African
ungulates. Journal of Animal Ecology 76, 526–537.

Codron D, Brink JS, Rossouw L and Clauss M 2008a. The evolution of ecological
specialization in southern African ungulates: competition or physical environ-
mental turnover? Oikos 117, 344–353.

Codron D, Brink JS, Rossouw L, Clauss M, Codron J, Lee-Thorp JA and
Sponheimer M 2008b. Functional differentiation of African grazing ruminants:
an example of specialized adaptations to very small changes in diet. Biological
Journal of the Linnaean Society 94, 755–764.

Cork SJ, Hume ID and Faichney GJ 1999. Digestive strategies of nonruminant
herbivores: the role of the hindgut. In Nutritional ecology of herbivores.
Proceedings of the 5th International Symposium on the Nutrition of Herbivores
(ed. HJG Jung and GC Fahey), pp. 210–260. American Society of Animal Science,
Savoy, IL, USA.

Ruminant evolutionary adaptations

989

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1751731110000388
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 19:47:38, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1751731110000388
https:/www.cambridge.org/core


Croom WJ, Bird AR, Blacks BL and McBride BW 1993. Manipulation of
gastrointestinal nutrient delivery in livestock. Journal of Dairy Science 76,
2112–2124.

Dellow DW, Hume ID, Clarke RTJ and Bauchop T 1988. Microcbial activity in the
forestomach of free-living macropodid marsupials: comparisons with laboratory
studies. Australian Journal of Zoology 36, 383–395.

DeMiguel D, Fortelius M, Azanza B and Morales J 2008. Ancestral feeding state
of ruminants reconsidered: earliest grazing adaptation claims a mixed condition
for cervidae. BMC Evolutionary Biology 8, 13.

Demment MW and Longhurst WH 1987. Browsers and grazers: constraints on
feeding ecology imposed by gut morphology and body size. In Proceedings of the
IVth International Conference on Goats (ed. OP Santana, AG da Silva and WC
Foote), pp. 989–1004. Departimento de Disuao de Tecnologia, Brazilia, Brasil.

Dunson WA 1974. Some aspects of salt and water balance of feral goats from
arid islands. American Journal of Physiology 226, 662–669.

Elsden SR, Hitchcock MWS, Marshall RA and Phillipson AT 1946. Volatile acids
in the digesta of ruminants and other animals. Journal of Experimental Biology
22, 191–202.

Faichney GJ 2006. Digesta flow. In Quantitative aspects of ruminant digestion
and metabolism (ed. J Dijkstra, JM Forbes and J France), pp. 49–86. CAB
International, Wellingford, UK.

Fritz J, Hummel J, Kienzle E, Arnold C, Nunn C and Clauss M 2009. Comparative
chewing efficiency in mammalian herbivores. Oikos 118, 1623–1632.

Froetschel MA, Amos HE, Evans JJ, Croom WJ and Hagler WM 1989. Effects of a
salivary stimulant, slaframine, on ruminal fermentation, bacterial protein synthesis
and digestion in frequently fed steers. Journal of Animal Science 67, 827–834.

Fuller A, Maloney SK, Mitchell G and Mitchell D 2004. The eland and the oryx
revisited: body and brain temperatures of free-living animals. International
Congress Series 1275, 275–282.

Garrod AH 1877. Notes on the visceral anatomy and osteology of the ruminants,
with a suggestion regarding a method of expressing the relations of species by
means of formulae. Proceedings of the Zoological Society of London, 2–18.
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