GENERALIZED PRIME MODELS

ROBERT FITTLER

Introduction. A prime model O of some complete theory T is a model which can be elementarily imbedded into any model of T (cf. Vaught [7, Introduction]). We are going to replace the assumption that T is complete and that the maps between the models of T are elementary imbeddings (elementary extensions) by more general conditions. T will always be a first order theory with identity and may have function symbols. The language L(T) of T will be denumerable. The maps between models will be so called F-maps, i.e. maps which preserve a certain set Fof formulas of L(T) (cf. I.1, 2). Roughly speaking a generalized prime model of T is a denumerable model O which permits an F-map $O \rightarrow M$ into any model M of T. Furthermore O has to be "generated" by formulas which belong to a certain subset G of F. Such a model O will be called an F_{c} -prime model of T (cf. I.19). For a complete theory T the set F is usually the set of all formulas i.e. F = L(T). Thus the F-maps are the elementary extensions (cf. I.3). Here the set G coincides with F(cf. I.15) and the F_{G} -prime models are the usual prime models (cf. I.20). In universal algebra or for a universal theory Ω_n (cf. I.16) F and G are chosen so that the F-maps are the homomorphisms and the F_{g} -prime models are the models which are freely generated by *n* elements a_1, \dots, a_n (cf. I.21). A generalization of this is Grätzer's so called Σ -structures (cf. [4, 3.1]). The F_{G} -prime models then are the free Σ -structures generated by *n* elements (cf. I.5 and 22).

In Part I we introduce different modifications of the model theoretic concept of a "type" of elements (cf. Vaught [6, p. 304]) called *F*-type, F_{G} -type etc. (cf. I.6, 8, 11). Thus we can characterize the F_{G} -prime models of *T* by the *F*-types of their elements (cf. Proposition I.25) if the theory *T* fulfills certain conditions (cf. Definition I.14 of an F_{G} -complete theory). This is a generalization of Vaught's characterization of prime models (cf. I.26). It also applies to universal theories as well as Σ -structures because the corresponding theories turn out to be F_{G} -complete too (cf. I.15, 16, 17).

In Part II we generalize the concept of an atom (cf. Vaught [7, 1.2.1]) and of an atomic model (cf. II.1, 2). Similar to Vaught [7, 3.2 and 3.3] we get the uniqueness of F_{σ} -atomic models up to isomorphism (cf. I.3, 4) for F_{σ} -complete theories as well as the F_{σ} -homogeneity of F_{σ} -atomic models (cf. I.6, 7). The concept of a complete atomistic theory (cf. Vaught [7, 1.2.3]) is generalized in I.15. The existence of an F_{σ} -prime model then implies that T is F_{σ} -atomistic (cf. I.1.16) if T is a so called F_{σ} -elementary theory (cf. Definition II.9). The latter condition is fulfilled in all the examples mentioned above (cf. II.10, 11, 12). For a universal theory Ω_n to be F_{σ} -atomistic means that Ω_n has Grätzer's property P_n (cf. [3, §4], see also II.18).

Recieved May 8, 1970.

In Part III we assume that T is F_{σ} -atomistic in order to construct an extension T_{∞} of T (cf. III.6). If T is F_{σ} -complete, T_{∞} turns out to be a strictly conservative extension of T (cf. I.12 and III.10). The language of T_{∞} contains the language of T and an additional denumerable set of new individual constants.

In Part IV we give an explicit construction of an F_{G} -atomic model O of T. Its underlying set is the set of new individual constants in T_{∞} , modulo some equivalence relation (cf. IV.15, 16). For this purpose we have to make some assumptions about T and F (cf. IV.1 and 8 for the definitions of an F-theory and an F_{G} -theory respectively) which one needs to carry out certain proofs by induction with respect to the structure of formulas (cf. IV.7, 15). We also show the equivalence between T being F_{G} -atomistic, T having an F_{G} -atomic model and T having an F_{G} -prime model (cf. VI.17). This generalizes Vaught's theorem [7, 3.5]. It can also be applied to certain Σ -structures (cf. IV.20) for example to the *m*-complemented lattices (cf. IV.5, 12, 21) of Chen and Grätzer (cf. [1]). An example, not carried out here, would be the algebraic field extensions.

Another application concerns the F_{g} -initial models, i.e. the F_{g} -prime models which permit precisely one *F*-map into any model of *T* (cf. IV.22). Proposition IV.25 characterizes those F_{g} -complete, F_{g} -elementary F_{g} -theories which have an F_{g} -initial model (cf. also Fittler [2]).

It is interesting to notice that there actually are theories T which have F_{g} -prime models that are not F_{g} -atomic models. Thus T has nonisomorphic F_{g} -prime models (cf. IV.18).

In this paper we will use Gödel's completeness theorem as well as many other standard methods of model theory without always referring to them explicitly. The denotations hopefully are self-explanatory.

§I. F_{G} -prime models.

I.1. By T and L(T) we denote a first order theory and its language respectively. By an *n*-ary formula we understand a formula with at most *n* different free variables. We assume that L(T) contains equality and that L(T) is a denumerable set. L(T)may also contain function symbols. We will consider the maps $h: M \to N$ between models M, N, which preserve a certain given set F of formulas in L(T). They are called F-maps. Thus, a map $h: M \to N$ is an F-map if for all *n*-ary formulas $\mu \in F$ and any *n*-tuple \vec{m} of elements in M which fulfills $M \models \mu(\vec{m})$ we also have $N \models$ $\mu(h(\vec{m}))$ (for all integers $n \ge 1$).

I.2. Furthermore we assume that F

(a) contains the formulas x = y for any pair (x, y) of individual variables in L(T),

(b) is closed under substitution of individual variables by individual variables and individual constants,

(c) is closed under conjunction,

(d) is closed under disjunction,

(e) is closed under existential quantification,

(f) is closed under equivalence of formulas (with respect to the theory with language L(T) of T, but without the nonlogical axioms of T).

Notice that any set E of formulas of L(T) induces a set F by closing E according to (a)-(f). The following special cases will be referred to repeatedly.

I.3. Complete theories. If T is a complete theory we choose F to be the set L(T) of all formulas. Thus the F-maps are the elementary imbeddings.

I.4. Universal theories. Let Ω be a universal theory, its language containing the predicate constants r, s, \cdots and the function symbols f, g, \cdots .

We assume that the axioms are stated in the prenex normal form, i.e. they look like $\forall \vec{x} \alpha(\vec{x})$, where the matrix α is quantifier free. The set F is induced (according to I.2) by the set of formulas containing

$$r(x_1, \cdots, x_m), \qquad s(x_1, \cdots, x_n), \cdots$$
$$x_0 = f(x_1, \cdots, x_p), \qquad y_0 = g(y_1, \cdots, y_q), \cdots$$

and all the formulas α which are the matrices of the axioms of Ω .

The F-maps in this case are usually called homomorphisms.

I.5. Σ -structures (cf. [4]). This is a generalization of I.4. We consider a theory Σ with predicate constants r, s, \cdots and function symbols f, g, \cdots .

The axioms of Σ are in the following (prenex normal) form

$$\forall x_0 \exists y_0 \forall x_1 \exists y_1 \cdots \exists y_k \forall x_{k+1} \psi(x_0, y_0, x_1, y_1, \cdots, y_k, x_{k+1})$$

where ψ is quantifier free.

Following G. Grätzer (cf. [4, Definition 1.3 and 4]) one can introduce the so called *m*-ary Σ -polynomials $p(x_1, \dots, x_m)$ ($m \ge 0$), their interpretation being *m*-ary multivalued functions.

The set F of formulas will be induced (according to I.2) by the formulas

(i) $r(x_1, \dots, x_m), s(x_1, \dots, x_n) \dots$

(ii) $x_0 = f(x_1, \dots, x_p), y_0 = g(x_1, \dots, x_q), \dots$

and the formulas expressing

(iii) $x_0 \in P(x_1, \cdots, x_m), y_0 \in Q(x_1, \cdots, x_n), \cdots$

(iv) $\forall y_e(y_e \in P(x_1, \dots, x_t) \Rightarrow y_e = y_1 \lor y_e = y_2 \lor \dots \lor y_e = y_{e-1})$, for all Σ -polynomials P, Q and all $e \ge 1$.

Because of (iv) any F-map $h: M \to N$ maps $P(m_1, \dots, m_t)$ surjectively onto $P(h(m_1), \dots, h(m_t))$ if $P(m_1, \dots, m_t)$ is finite $(m_1, \dots, m_t \in M)$. In case all Σ -polynomials in M are finite the set of F-maps $h: M \to N$ into any Σ -structure N coincides with the set of the so-called Σ -homomorphisms $M \to N$ (cf. Grätzer [4, Definition 2.1]).

I.6. DEFINITION. An *m*-ary *F*-type *I* of *T* is a consistent set of formulas of *F* having at most *m* distinct free variables, which is closed with respect to conjunction.

I.7. Remark. An *m*-ary *F*-type *I* with free variables x_1, \dots, x_m or \vec{x} we will sometimes denote by $I(x_1, \dots, x_m)$ or $I(\vec{x})$ respectively.

I.8. DEFINITION. An *m*-ary *F*-prime type $I\langle \vec{x} \rangle$ is an *m*-ary *F*-type which contains $\mu(\vec{x})$ or $\neg \mu(\vec{x})$ in case both $\mu(\vec{x})$ and $\neg \mu(\vec{x})$ are contained in *F*.

I.9. DEFINITION. Let G be a subset of the set F of formulas. An m-ary F_{G} -(prime) type I is an m-ary F-(prime) type which contains a formula of G having as free variables all free variables of any formula in I.

I.10. Remark. The set I of all m-ary formulas of F which hold for a given mtuple \vec{c} in some model M is an F-prime type. It is called the F-prime type of \vec{c} .

We say that \vec{c} realizes a given $F_{(\sigma)}$ -type J if all formulas of J hold for \vec{c} . In short $M \vdash J\langle \vec{c} \rangle$.

I.11. DEFINITION. An $F_{(G)}$ -(prime) type which is realized in every model of T is called an $F_{(G)}$ -(prime) character.

I.12. Remark. If M is a model of T and I is an m-ary F-character then M is a reduct of a model of the theory T_I which consists of the theory T together with new individual constants c_1, \dots, c_m and the new axioms $\mu(c_1, \dots, c_m)$ ($\mu \in I$).

In general a theory T' which is a conservative extension of a theory T will be called a strictly conservative extension of T if any model of T is a reduct of a model of T'.

In general a conservative extension T' of T is not a strictly conservative extension of T.

I.13. Remark. If I is an m-ary F-character in T which in each model M is realized by precisely one m-tuple of elements \vec{c} , then I is equivalent to some m-ary formula μ , i.e. for all $M, M \vdash I\langle \vec{c} \rangle$ if and only if $M \vdash \mu(\vec{c})$. The proof is a straight forward application of Beth's definition theorem.

I.14. DEFINITION. The theory T is called F_{σ} -complete if for each model M and each F_{σ} -prime character I there is a formula $\mu_M \in I$ which fulfills $M \vdash \mu_M(\vec{c})$ if and only if $M \vdash I\langle \vec{c} \rangle$.

I.15. Complete theories. We set G = F = L(T). The *m*-ary F_{G} -prime types I are usually called (dual) prime ideals of *m*-ary formulas (cf. Vaught [7, 1.2.4]). It can be proved (cf. [7, 2.1]) that such a prime ideal I is realized in all models if and only if it is a principal prime ideal, i.e. I consists of all *m*-ary formulas with $T \vdash (\mu \Rightarrow \gamma)$ for a so called atom $\mu \in I$. Thus $M \vdash I\langle \vec{c} \rangle$ if and only if $M \vdash \mu(\vec{c})$, for any M and \vec{c} in M. Hence the complete theory T is $L(T)_{L(T)}$ -complete.

I.16. Universal theories. Let Ω_n be the theory arising from Ω (cf. I.4) by adjoining the new individual constants a_1, \dots, a_n . The new set F is supposed to be induced by the same set E as in the case of Ω . The subset $G \subseteq F$ shall consist of the conjunctions of the formulas expressing

$$x = \tau(a_1, \cdots, a_n)$$

where the τ 's are terms "fed" by the new individual constants a_1, \dots, a_n . Notice that the *m*-tuples of elements in some model M of Ω_n which have an F_{G} -type are the ones which are contained in the submodel in M generated by a_1, \dots, a_m .

I.17. Σ -structures. In analogy to I.16 we adjoin new individual constants a_1, \dots, a_n to the theory Σ (cf. I.5) and get the new theory Σ_n . The new set F is supposed to be induced by the old set E (cf. I.5 (i)-(iv)). The formulas in G are supposed to be the conjunctions of the formulas expressing

$$x = P(a_1, \cdots, a_n)$$

where the *P*'s are *n*-ary Σ -polynomials.

THEOREM. Σ_n is F_c -complete if the n-ary Σ -polynomials are bounded. PROOF. The n-ary Σ -polynomials being bounded means that for any model M of Σ_n , the *n*-ary polynomials *P* have a restricted cardinality $||P(c_1, \dots, c_n)|| \le K_P$ where K_P is some positive integer (cf. Grätzer [4, Theorem 3.1]). Thus any *m*-ary F_G -type *I* is realized in any *M* by only finitely many *m*-tuples. It follows readily that there is a formula $\mu \in I$ with $M \vdash \mu(c)$ if and only if $M \vdash I(c)$. O.E.D.

Notice that the elements which realize some F_{g} -type in some model M of Σ_{n} are the ones which constitute the submodel of M generated by a_{1}, \dots, a_{n} .

I.18. LEMMA. Let T be an F_{G} -complete theory and I an (m + n)-ary F_{G} -prime character. For any model M of T and any m-tuple \vec{c} in M there is an n-tuple \vec{d} in M such that $M \vdash I\langle \vec{c}, \vec{d} \rangle$ if and only if $M \vdash \exists \vec{x} \mu(\vec{c}, \vec{x})$ for all $\mu \in I$.

PROOF. Clearly $M \vdash I\langle \vec{c}, \vec{d} \rangle$ implies $M \vdash \exists \vec{x} \mu(\vec{c}, \vec{x})$ for all $\mu \in I$. Conversely assume $M \vdash \exists \vec{x} \mu(\vec{c}, \vec{x})$ for all $\mu \in I$. As T is F_{σ} -complete there is a formula $\mu_M \in I$ which fulfills $M \vdash \mu_M(\vec{c}, \vec{d})$ if and only if $M \vdash I\langle \vec{c}, \vec{d} \rangle$. But $M \vdash \exists \vec{x} \mu_M(\vec{c}, \vec{x})$ implies $M \vdash \mu_M(\vec{c}, \vec{d})$ for some \vec{d} , hence $M \vdash I\langle \vec{c}, \vec{d} \rangle$. Q.E.D.

I.19. DEFINITION. An F_{G} -prime model O of T is a denumerable model of T which permits an F-map $O \rightarrow M$ into any model M of T, and is such that the F-type of any *m*-tuple of elements in O is an F_{G} -prime type.

I.20. Complete theories. The L(T)-prime models of a complete theory are usually called prime models (Vaught [7, Introduction]).

I.21. Universal theories. The F_{σ} -prime models of the universal theory Ω_n are the structures $F_{\Omega}(n)$ which are freely generated (by the *n* elements a_1, \dots, a_n) in the category of all models of Ω and their homomorphisms. Here the F_{σ} -prime models O of Ω_n permit precisely one F-map $O \to M$ into any model M of Ω_n .

I.22. Σ -structures. Here the F_{G} -prime models are what Grätzer calls the free Σ -structures generated by the *n* elements a_1, \dots, a_n (cf. [4, §3, Definition 1]), provided that the Σ -polynomials are bounded.

I.23. DEFINITION. A denumerable model O of an F_{G} -complete theory is called an F_{G} -model if the F-type of each m-tuple of elements in O is an F_{G} -prime character.

I.24. Complete theories. An $L(T)_{L(T)}$ -model O of a complete theory T is, according to I.15, a model where each *m*-tuple of elements fulfills an atom. Thus O is a so called atomic model of T (cf. Vaught [7, §3]).

I.25. PROPOSITION. A model O of an F_{g} -complete theory T is an F_{g} -model if and only if it is an F_{g} -prime model.

PROOF. Let O be an F_{σ} -prime model. The F-type I of any m-tuple c of elements in O is an F_{σ} -prime type. I is realized in any model M of T by the m-tuple h(c) in M, where $h: O \to M$ is one of the F-maps from O into M. Hence O is an F_{σ} -model. Conversely let O be an F_{σ} -model and $c_1, c_2, \dots, c_n, \dots$ an enumeration of its underlying set. We show that there is an F-map $O \to M$ into any model M of T by generalizing Vaught's proof [7, 3.1]. Proceeding by induction we assume that the first n elements c_1, \dots, c_n are already mapped into d_1, \dots, d_n in M respectively. Furthermore, if I is the F-type of (c_1, \dots, c_n) in O, the n-tuple (d_1, \dots, d_n) realizes I in M. Using the (n + 1)-ary F-type J of $(c_1, \dots, c_n, c_{n+1})$ in O which is an F_{σ} prime character we can define $c_{n+1} \mapsto d_{n+1}$ in the following way. As T is F_{σ} -complete there is a (n + 1)-ary formula $\mu_M \in J$ "representing" J in M.

$$\exists x \mu_M(c_1, \cdots, c_n, x)$$

is in *I*, as all formulas $\exists x \mu(c_1, \dots, c_n, x)$, $\mu \in J$. Hence $M \vdash \exists x \mu_M(d_1, \dots, d_n, x)$. Choose d_{n+1} to be one of the elements *m* in *M* which fulfill $\mu_M(d_1, \dots, d_n, m)$. Thus we get an *F*-map: $O \rightarrow M$. Q.E.D.

I.26. Complete theories. Proposition I.25 is a straightforward generalization of Vaught's theorem saying that a denumerable model of a complete theory T is a prime model if and only if it is an atomic model.

I.27. Σ -structures and universal theories. The Σ -structures (resp. models of Ω) freely generated by *n* elements a_1, \dots, a_n are F_G -models of Σ_n (resp. Ω_n) by Proposition I.25, provided that the Σ -polynomials are bounded.

§II. F_{G} -atomic models.

II.1. DEFINITION. An F_{G} -atom I is an F_{G} -prime character which is not contained in any other F_{G} -prime character, and is such that for any $\alpha, \beta \in F, \alpha \lor \beta \in I$ implies that $\alpha \in I$ or $\beta \in I$.

II.2. DEFINITION. An F_{G} -atomic model O of T is a denumerable model of T such that the *F*-type of any *m*-tuple of elements of O is an F_{G} -atom. Notice that an F_{G} -atomic model of T is a special case of an F_{G} -model of T.

II.3. THEOREM. Any two F_{g} -atomic models O and O' of an F_{g} -complete theory T are isomorphic.

PROOF. Generalizing Vaught's proof of [7, 3.2], let c_1, c_2, \cdots and c'_1, c'_2, \cdots be enumerations of the elements of O and O' respectively. Going forward and backward we will define, by induction, a correspondence between the elements of Oand O' which is easily seen to be an isomorphism. Assume that for c_{i_1}, \cdots, c_{i_n} in Oand $c'_{j_1}, \cdots, c'_{j_n}$ in O' we already have a correspondence, c_{i_k} corresponding to c'_{j_k} and the *F*-types of $(c_{i_1}, \cdots, c_{i_n})$ in O and $(c'_{j_1}, \cdots, c'_{j_n})$ in O' respectively coincide. In the case that n is odd choose i_{n+1} to be the smallest positive integer which does not occur in i_1, \cdots, i_n . We determine the corresponding $c'_{j_{n+1}}$ in the way the d_{n+1} was determined in the proof of Proposition I.25. The (n + 1)-tuple $(c_{i_1}, \cdots, c_{i_n}, c_{i_{n+1}})$ in O has the same *F*-type J as $(c'_{j_1}, \cdots, c'_{j_n}, c'_{j_n+1})$, because J is an F_{G} -atom. The latter also guarantees that $c'_{j_{n+1}}$ is different from the c_{j_1}, \cdots, c_{j_n} .

If n is even the roles of O and O' are reversed. Q.E.D.

II.4. Complete theories. The m-ary $L(T)_{L(T)}$ -atoms coincide with the $L(T)_{L(T)}$ prime characters which are the m-ary principal prime ideals (cf. I.15). Theorem II.3
generalizes Vaught's theorem [7, 3.2] which states that two atomic denumerable
models of a complete theory T are isomorphic.

II.5. Universal theories. As any m-ary F_{G} -type is realized by at most one mtuple of elements in each model of Ω_n , the F_{G} -models coincide with the F_{G} -atomic models.

II.6. DEFINITION. A model M of T is called F_{σ} -homogenous if for any two *m*-tuples \vec{c} and \vec{d} in M which have the same F_{σ} -type there is an automorphism of M carrying \vec{c} into \vec{d} .

II.7. THEOREM. An F_{G} -atomic model of an F_{G} -complete theory is F_{G} -homogeneous (cf. also Vaught [7, 3.3]).

The proof is an inessential variation of the proof of Theorem II.3.

II.8. DEFINITON. Let M be any model of T. Two *m*-ary F_{G} -types are called M-equivalent if they are realized in M by the same set of *m*-tuples.

II.9. DEFINITION. The theory T is called F_{g} -elementary if for any model M of T and any F_{g} -prime character I there are only finitely many M-inequivalent F_{g} -types which contain I.

II.10. Complete theories. As any principal prime ideal of *m*-ary formulas of a complete theory T is not contained in any other $L(T)_{L(T)}$ -type, it follows that T is $L(T)_{L(T)}$ -elementary.

II.11. Universal theories. The universal theory Ω_n is an F_G -elementary theory because any *m*-ary F_G -prime character is realized in any model *M* by precisely one *m*-tuple of elements.

II.12. Σ -structures. Assuming that the *n*-ary Σ -polynomials are bounded (cf. I. 17) any *m*-ary F_{σ} -prime character I is realized in any model M by only finitely many *m*-tuples of elements. Thus there can be only finitely many *M*-inequivalent F_{σ} -types which contain I.

II.13. DEFINITION. Let M be any model of T. An *m*-ary F_{g} -prime type is called *M*-maximal if it is realized in M and if it is not contained in any other F_{g} -type which is realized in M.

II.14. LEMMA. Any m-ary F_{G} -prime character I of an F_{G} -elementary theory T is contained in an M-maximal m-ary F_{G} -prime type for every model M of T.

PROOF. The *M*-equivalence classes of *m*-ary F_{g} -prime types can be partially ordered by setting $J \leq K$ if the set M_{J} of *m*-tuples which realize J is contained in M_{K} .

There are "minimal" elements L in this partial ordering, because it is finite. Define an F_{σ} -type \overline{I} by setting $\mu \in \overline{I}$ if μ is contained in some F_{σ} -type of L. Thus \overline{I} is an M-maximal F_{σ} -prime type which contains I. Q.E.D.

II.15. DEFINITION. A theory T is called F_{g} -atomistic if every F-character is contained in some F_{g} -atom.

II.16. THEOREM. An F_{G} -complete, F_{G} -elementary theory T which has an F_{G} -prime model O is F_{G} -atomistic.

PROOF. Any *m*-ary *F*-character *I* is realized in *O* by an *m*-tuple which has an F_{σ} -prime type *J*. Hence $I \subseteq J$. *J* is even an F_{σ} -prime character, by Proposition I.25. According to Lemma II.14 *J* is contained in some *O*-maximal F_{σ} -prime type *L*. But *L* is an F_{σ} -atom. Q.E.D.

II.17. Complete theories. An $L(T)_{L(T)}$ -atomistic theory is what Vaught calls an atomistic theory (cf. [7, 1.2.3]).

II.18. Universal theories. If the axioms of Ω_n are reduced in the sense of Grätzer [3, 3], and Ω_n is F_{G} -atomistic, it follows easily that Ω_n has the property (P_n) of [3, 4].

It is also possible though harder to show that the property (P_n) implies that Ω_n is F_{σ} -atomistic. All this will also be a consequence of the forthcoming proposition IV. 17.

II.19. Σ -structures. Assuming that the *n*-ary Σ -polynomials are bounded the following statement is a consequence of a theorem of Grätzer (cf. [4, Theorem 5.1]). For any model A of Σ_n which is generated by a_1, \dots, a_n (i.e. all *m*-tuples have an F_{G} -type, $m \ge 1$) and any model B of Σ_n there is some model C of Σ_n which permits F-maps $C \to A$ and $C \to B$ if and only if Σ_n has an F_{G} -prime model O. Combining this with Theorem II.16 we conclude: If for any model A of Σ_n , generated by

 a_1, \dots, a_n , and any model B there is a model C which permits F-maps $C \to A$ and $C \to B$, then Σ_n is F_{G} -atomistic.

§III. Some strictly conservative extensions. We are going to construct by induction for an F_{G} -atomistic F_{G} -complete theory T, a sequence of theories T_{n} , $n \ge 0$. This construction is a partial generalization of Vaught's construction of the theory T_{2} in the proof of [7, 2.1].

III.1. DEFINITION OF T_0 . The language $L(T_0)$ of T_0 consists of the language L(T) together with an enumerable set c_1, \dots, c_n, \dots of new individual constants. The axioms of T_0 are the same ones as in T. For the forthcoming definition we fix an enumeration of all finitary tuples $(c_{k_0}, \dots, c_{k_q})$ of the new individual constants of $L(T_0)$. Furthermore we enumerate by $\varphi_m(x), m \ge 1$ the unary formulas of $L(T_0)$ one gets by replacing some free variables of formulas in F by new individual constants c_i .

III.2. DEFINITION OF T_{n+1} . We assume that T_n is already defined such that it is a strictly conservative extension of T. We set $L(T_{n+1}) = L(T_n)$ and add the following new axioms to T_n .

(a) For all $i, 1 \le i \le n$, for which $T_n \vdash \exists x \varphi_i(x)$ holds, we add the axioms $\varphi_i(c_{k_i})$, where k_i is the smallest number such that c_{k_i} occurs in none of the axioms of T_n and in none of the new axioms $\varphi_j(c_{k_j})$ for j < i, nor in $\varphi_i(x)$.

(b) Let (d_1, \dots, d_q) denote the (n + 1)st finitary tuple of new constants c_i , and e_1, \dots, e_r be the distinct c_j 's occurring in the axioms of T_n and in the newly added axioms $\varphi_j(c_{k_j})$, which are different from the d_1, \dots, d_q . Let *I* be the set of (q + r)-ary formulas $\gamma \in F$ such that $\gamma(d_1, \dots, d_q, e_1, \dots, e_r)$ is provable in T_n together with the new axioms $\varphi_j(c_{k_j})$. Then *I* is an *F*-character. As *T* is F_{G} -atomistic *I* is contained in an F_G -atom *J*. The formulas $\exists y_1 \exists y_2 \dots \exists y_r \gamma(x_1, \dots, x_q, y_1, \dots, y_r), \ \gamma \in J$ constitute an *F*-character *L*. As *T* is F_G -atomistic there is an F_G -atom I_{n+1} containing *L*. The new axioms we are going to add now are the formulas $\alpha(d_1, \dots, d_q)$, where $\alpha \in I_{n+1}$.

III.3. Remark. The assumption that T_n is a strictly conservative extension of T implies that T_{n+1} is so too. This can be shown step by step: Obviously T_n together with $I\langle d_1, \dots, d_q, e_1, \dots, e_r \rangle$ is a strictly conservative extension of T. The same then holds for T_n together with $J\langle d_1, \dots, d_q, e_1, \dots, e_r \rangle$. It carries over to T_n together with $L\langle d_1, \dots, d_q \rangle$ (use Lemma I.18), hence to T_n together with $I_n+1\langle d_1, \dots, d_q \rangle$.

As T_0 is obviously a strictly conservative extension of T it follows that all T_n 's, $n \ge 0$, are strictly conservative extensions of T.

III.4. COROLLARY. If T is consistent then so are the T_n 's, $n \ge 0$.

III.5. Remarks. (a) The axioms of T_{n+1} , $n \ge 0$, which are not axioms of T, constitute an F-character $K_{n+1}\langle d_1, \cdots, d_q, e_1, \cdots, e_r \rangle$.

(b) If $n_1 > n_2$ then $K_{n_1} \supseteq K_{n_2}$.

III.6. DEFINITION OF T_{∞} . T_{∞} has the same language as T_0 . The axioms of T_{∞} are all the axioms of all T_n 's, $n \ge 0$.

III.7. Remarks. T_{∞} is consistent if T is an F_{G} -complete, F_{G} -atomistic consistent theory, because any contradiction in T_{∞} would already be provable in some T_{n} .

The axioms of T_{∞} which are not axioms of T are of the form $\gamma(\vec{c})$, where $\gamma \in F$ and \vec{c} is a finitary tuple of individual constants c_i .

III.8. LEMMA. The subset I of m-ary formulas $\gamma \in F$ which, for some fixed mtuple \vec{c} of $L(T_0)$, fulfill $T_{\infty} \vdash \gamma(\vec{c})$ is an F_{σ} -atom $(m \ge 1)$.

PROOF. Let \vec{c} be the *n*th finitary tuple in our enumeration. By Definition III.2 we know $T_n \models I_n \langle \vec{c} \rangle$, where I_n is an F_G -atom. Hence $I_n \subseteq I$. Conversely if $\gamma \in I$, i.e. $T_{\infty} \models \gamma(\vec{c})$ it follows that for some $n_1 \ge 0$ $T_{n_1} \models \gamma(\vec{c})$, thus both $I_n \langle \vec{c} \rangle$ and $\gamma \langle \vec{c} \rangle$ are provable in T_{n+n_1} . As T_{n+n_1} is a strictly conservative extension of T and I_n is an F_G -atom, it follows that $\gamma \in I_n$. Q.E.D.

III.9. LEMMA. If $T_{\infty} \vdash \exists x \varphi_n(x)$ (cf. III.1 and 2) then there is an individual constant $c_k \in L(T_0)$ such that $T_{\infty} \vdash \varphi_n(c_k)$.

PROOF. $T_{\infty} \models \exists x \varphi_n(x)$ implies $T_m \models \exists x \varphi_n(x)$ for some $m \ge 0$. Definition III.2 implies that $T_{m+n+1} \models \varphi_n(c_k)$ for a certain c_k . Hence $T_{\infty} \models \varphi_n(c_k)$. Q.E.D.

III.10. THEOREM. The theory T_{∞} is a strictly conservative extension of the theory T, if T is F_{g} -atomistic and F_{g} -complete.

PROOF. For any model M of T we determine the interpretations of the individual constants $c_1, c_2, \dots, c_n, \dots$ by induction with respect to n. Assume m_1, \dots, m_n in M are already determined to be the interpretations of c_1, \dots, c_n respectively, fulfilling $M \vdash I \langle m_1, \dots, m_n \rangle$ where I is the F_G -atom of all formulas $\gamma \in F$ such that $T_{\infty} \vdash \gamma(c_1, \dots, c_n)$ (cf. III. 8). Let J be the F_G -atom corresponding to $(c_1, \dots, c_n, c_{n+1})$. The formulas $\exists x \gamma(c_1, \dots, c_n, x), \gamma \in J$, are contained in I. Because of Lemma I.18 there is an element $m_{n+1} \in M$ such that $M \vdash J \langle m_1, \dots, m_n, m_{n+1} \rangle$. We set the element m_{n+1} to be the interpretation of c_{n+1} . Q.E.D.

III.11. Remark. The proof of Theorem III.10 shows that the theory T_{∞} is a strictly conservative extension of the theory T together with the axioms $\gamma(c_1, \dots, c_n)$, where γ is contained in the F_{G} -atom corresponding to (c_1, \dots, c_n) in T_{∞} .

III.12. DEFINITION OF \overline{T}_{∞} . The language $L(\overline{T}_{\infty})$ is the same as the language of T_{∞} . For each *m*-tuple \vec{c} of constants from c_1, c_2, \cdots and each *m*-ary formula $\alpha \in F$, for which $\alpha(\vec{c})$ is not provable in T_{∞} we add a new axiom $\neg \alpha(\vec{c})$.

III.13. LEMMA. \overline{T}_{∞} is consistent if T is a consistent F_{G} -atomistic and F_{G} -complete theory.

PROOF. Assume it were not consistent. This implies that for some $m \ge 0$, T_m , together with some formulas $\neg \alpha(\vec{a})$, $\neg \beta(\vec{b})$, \cdots , $\neg \gamma(\vec{c})$ (each one being consistent with T_{∞}) is inconsistent. Hence $T_m \models \alpha(\vec{a}) \lor \beta(\vec{b}) \lor \cdots \lor \gamma(\vec{c})$. This implies that $\alpha(\vec{x}) \lor \beta(\vec{y}) \lor \cdots \lor \gamma(\vec{z})$ is contained in the F_G -atom corresponding to $(\vec{a}, \vec{b}, \cdots, \vec{c})$ (cf. III. 8). Hence, so is one of the formulas $\alpha(\vec{x}), \beta(\vec{y}), \cdots, \gamma(\vec{z})$, say $\alpha(\vec{x})$, i.e. $\alpha(\vec{a})$ is provable in T_{∞} . This contradicts our assumption on $\alpha(\vec{a})$ (cf. also III.7). Q.E.D.

§IV. F_a-theories.

IV.1. DEFINITION. The theory T is called an F-theory if for any formula (written in prenex normal form)

$$\forall \vec{x}_0 \exists \vec{y}_0 \forall \vec{x}_1 \exists \vec{y}_1 \cdots \forall \vec{x}_k \exists \vec{y}_k \psi(\vec{x}_0, \vec{y}_0, \vec{x}_1, \vec{y}_1, \cdots, \vec{x}_k, \vec{y}_k)$$

which is either an axiom (without any free variables) or which belongs to F (and may have free variables), all the formulas

$$\forall \vec{x}_{i+1} \exists \vec{y}_{i+1} \cdots \forall \vec{x}_k \exists \vec{y}_k \psi(\vec{x}_0, \vec{y}_0, \cdots, \vec{y}_i, \vec{x}_{i+1}, \vec{y}_{i+1}, \cdots, \vec{x}_k, \vec{y}_k)$$

belong to $F(0 \le i \le k)$.

Notice that in this denotation it is assumed that the $\vec{y_i}$'s for $0 \le i \le K - 1$ actually occur.

IV.2. Remark. Definition IV.1 could be weakened for our purpose by replacing the passage "or which belongs to F" by "or which belong to some *F*-character". But in the applications we will always verify the first version.

IV.3. Complete theories are L(T)-theories, because any theory T is an L(T)-theory.

IV.4. Universal theories. Ω_n is an F-theory by definition of its set F. F was chosen the way that any $\alpha \in F$ has only existential quantifiers in prenex normal form (cf. I. 4).

IV.5. Complemented lattices. The *m*-complemented lattices are examples of Σ -structures (cf. Chen and Grätzer [1], and Grätzer [4, §3, Remark]). The language of their theory $\Sigma^{(m)}$ contains the binary function symbols \cup and \cap and the individual constants 0, 1 for zero and unit.

The axioms are the idempotent, commutative, associative and absorption laws (cf. $[5, 0. \S3]$), as well as the formulas

$$\forall x \exists y_1 \cdots \exists y_m (x = 0 \lor x = 1)$$
(a) $\lor [x \cup y_1 = \cdots = x \cup y_m = 1 \land x \cap y_1 = \cdots = x \cap y_m = 0$
 $\land y_1 \neq y_2 \land \cdots \land y_i \neq y_{i+k} \land \cdots \land y_{m-1} \neq y_m])$

and

(b)

$$\forall x \forall y_1 \cdots \forall y_{m+1} ([x \neq 0 \land x \neq 1 \land x \cup y_1 = \cdots = x \cup y_{m+1} = 1 \land x \cap y_1 = \cdots = x \cap y_{m+1} = 0]$$

$$\Rightarrow [y_1 = y_2 \lor \cdots \lor y_i = y_{i+k} \lor \cdots \lor y_m = y_{m+1}])$$

expressing that each element x which is not 0 or 1 has at least (resp. at most) m different complements y_1, \dots, y_m .

The set F is induced (according to I.2) by the formulas x = y, $x = y \cup z$, $x = y \cap z$ and the two formulas which are the matrices of the above mentioned axioms (a) and (b). This also guarantees that any F-map f sends the set of all complements of any element x surjectively onto the set of all complements of f(x).

It follows easily that the F-maps are the Σ -homomorphisms of Grätzer (cf. [4, §2, Definition 1)] which preserve the constants a_1, \dots, a_n . It is also easy to see that $\Sigma_n^{(m)}$ is an F-theory.

IV.6. DEFINITION. Let M be any model of T_{∞} . By M_c we denote the substructure of M which consists of all elements m_i in M which correspond to the new individual constant c_i of $L(T_{\infty})$.

IV.7. THEOREM. M_c is a model of T_{∞} if M is a model of T_{∞} and T is an F_{G} -atomistic and F_{G} -complete F-theory.

PROOF. According to Remark III.7 we are to show that $T_{\infty} \vdash \alpha(\vec{c})$ implies $M_c \vdash \alpha(\vec{m})$, where \vec{m} is the finitary tuple of elements in *M* corresponding to \vec{c} , and

 $\alpha \in F$, or α is an axiom of T (and therefore there is no \vec{c} in it). Both cases can be handled simultaneously. We proceed by induction with respect to the length of the quantifier string of $\alpha(\vec{m})$ (in prenex normal form). If α has no quantifiers the assertion holds because M_c is a substructure of M.

(a) $\alpha(\vec{c})$ is of the form $\exists x \beta(\vec{c}, x)$. It follows that $\beta(\vec{z}, x)$ is in F. By Lemma III.9 there is a c_k such that $T_{\infty} \vdash \beta(\vec{c}, c_k)$. $\beta(\vec{z}, x)$ having a shorter quantifier string than $\alpha(\vec{z})$, we conclude $M_c \vdash \beta(\vec{m}, m_k)$, i.e. $M_c \vdash \exists x \beta(\vec{m}, x)$.

(b) $\alpha(\vec{c})$ is of the form $\forall \vec{x}\beta(\vec{c}, \vec{x})$, where $\beta(\vec{z}, \vec{x})$ is in F. $T_{\infty} \vdash \forall \vec{x}\beta(\vec{c}, \vec{x})$ implies $T_{\infty} \vdash \beta(\vec{c}, \vec{d})$ for each \vec{d} . $\beta(\vec{z}, \vec{x})$ having a shorter quantifier string than $\alpha(\vec{z})$ we conclude $M_c \vdash \beta(\vec{m}, \vec{n})$ for each \vec{n} in M_c , i.e. $M_c \vdash \forall \vec{x}\beta(\vec{m}, \vec{x})$.

For the remaining axioms (cf. III.7) one can proceed in exactly the same way. Q.E.D.

IV.8. DEFINITION. Let T be an F-theory (cf. IV.1) and I an m-ary F_{G} -prime character. By $T_{I\langle\delta\rangle}$ we denote the theory T enriched by an m-tuple \vec{c} of new individual constants and the axioms $\gamma(\vec{c}), \gamma \in I$. T will be called an F_{G} -theory if for any I and any m-ary formula $\forall \vec{x}\beta(\vec{y}, \vec{x})$ in $F(\beta)$ in prenex normal form) the formula $\forall \vec{x}\beta(\vec{c}, \vec{x})$ is provable in $T_{I\langle\delta\rangle}$ in case every model M of $T_{I\langle\delta\rangle}$ contains a substructure M' of M (in the sense of the language of $T_{I\langle\delta\rangle}$) which is also a model of $T_{I\langle\delta\rangle}$ and which fulfills $M' \vdash \forall \vec{x}\beta(\vec{c}, \vec{x})$.

IV.9. Remark. In order to check if some F-theory T is an F_G -theory it suffices to check all the formulas of the form $\forall \vec{x} \beta(\vec{y}, \vec{x})$ which lie in some inducing set E (cf. I.2). The analogous simplification works for showing that some theory is an F-theory.

IV.10. Complete theories. Any complete theory T is an $L(T)_{L(T)}$ -theory. What is left to be shown (cf. IV.3) is $T_{I\langle \vec{c} \rangle} \vdash \forall \vec{x}(\vec{c}, \vec{x})$, under the assumptions of Definition IV.8, $I\langle \vec{c} \rangle$ can be replaced by $\alpha(\vec{c})$ where α is an atom (cf. I.15). Thus it can be shown that $T \vdash \forall \vec{y}(\alpha(\vec{y}) \Rightarrow \forall \vec{x}\beta(\vec{y}, \vec{x}))$, i.e. $T_{I\langle \vec{c} \rangle} \vdash \forall \vec{x}\beta(\vec{c}, \vec{x})$.

IV.11. Universal theories. Ω_n is an F_G -theory because it is an F-theory (cf. IV.4) and because F is induced by a set E of formulas which does not contain any universal quantifier (cf. IV.9).

IV.12. Complemented lattices. It is obvious that the theory $\Sigma_n^{(m)}$ is an F_{g} -theory.

IV.13. LEMMA. Let T be an F_{a} -atomistic and F_{a} -complete F_{a} -theory and O a model of \overline{T}_{∞} . For any $\alpha \in F$ and any m-tuple \vec{c} of elements of O_{c} we have $T_{\infty} \models \alpha(\vec{c})$ if and only if $O_{c} \models \alpha(\vec{c})$.

PROOF. What is left to be shown is that $O_c \vdash \alpha(\vec{c})$ implies $T_{\infty} \vdash \alpha(\vec{c})$ (cf. Theorem IV.7). Applying induction with respect to the length of the quantifier string of α (in prenex normal form) we have two different cases:

(a) $\alpha(\vec{y})$ is of the form $\exists x \beta(\vec{y}, x)$. $O_c \vdash \alpha(\vec{m})$ implies that there is an $n \in O_c$ such that $O_c \vdash \beta(\vec{m}, n)$. \vec{m} corresponds to $\vec{c} \in L(T_{\infty})$ and n to some d. By induction we have $T_{\infty} \vdash \beta(\vec{c}, d)$ i.e. $T_{\infty} \vdash \exists x \beta(\vec{c}, x)$. Thus we have $T_{\infty} \vdash \alpha(\vec{c})$.

(b) $\alpha(\vec{y})$ is of the form $\forall \vec{x}\beta(\vec{y}, \vec{x})$. $O_c \vdash \alpha(\vec{m})$ implies that for all \vec{n} in O_c we have $O_c \vdash \beta(\vec{m}, \vec{n})$. Again \vec{m} corresponds to \vec{c} and each \vec{n} to some \vec{d} in $L(T_{\infty})$. Thus for all \vec{d} in $L(T_{\infty})$ we have, by induction $T_{\infty} \vdash \beta(\vec{c}, \vec{d})$. It follows that any model M of T_{∞} contains a submodel M_c (cf. IV.6 and IV.7) such that $M_c \vdash \forall \vec{x}\beta(\vec{c}, \vec{x})$. Let now I be the F_{σ} -atom consisting of all formulas $\gamma(\vec{x})$ such that $T_{\infty} \vdash \gamma(\vec{c})$ (cf. III.8). The theory T_{∞} is a strictly conservative extension of the theory $T_{I\langle t\rangle}$ (cf. III.11 and IV.8). Thus every model M of $T_{I\langle t\rangle}$ has a submodel M_c such that $M_c \vdash \forall \vec{x}\beta(\vec{c}, \vec{x})$. Since T is an F_{σ} -theory it follows that $T_{I\langle t\rangle} \vdash \forall \vec{x}\beta(\vec{c}, \vec{x})$, hence $T_{\infty} \vdash \forall \vec{x}\beta(\vec{c}, \vec{x})$. Q.E.D.

IV.14. COROLLARY. O_c is a model of \overline{T}_{∞} .

PROOF. As O_c is a model of T_{∞} (cf. IV.7) it only has to be shown that the axioms of the form $\neg \alpha(\vec{c})$ of \overline{T}_{∞} ($\alpha \in F$) are fulfilled in O_c . Assume such an axiom $\neg \alpha(\vec{c})$ were not fulfilled in O_c , thus $O_c \models \alpha(\vec{c})$. This would imply (by IV.13) that $T_{\infty} \models \alpha(\vec{c})$, thus $\overline{T}_{\infty} \models \alpha(\vec{c})$, in contradiction to Lemma III.13. Q.E.D.

IV.15. THEOREM. Let T be an F_{G} -complete, F_{G} -atomistic F_{G} -theory and O a model of \overline{T}_{∞} (cf. III.12) (which exists because of III.13). Thus it follows that $O_{\mathfrak{o}}$ is an F_{G} -atomic (denumerable) model of T.

PROOF. It is to be shown that the *F*-type *I* of any *m*-tuple \overline{c} of O_e is an F_{σ} -atom. This follows from Lemma III.8 and IV.13. Q.E.D.

IV.16. Remark. If O' is another model of \overline{T}_{∞} , Theorem II.3 implies that O'_c is isomorphic to O_c .

It is also possible to describe an F_{σ} -atomic model O of T in the following way: the underlying set of O is the set of constants c_i of $L(T_{\infty})$ modulo the relation: $c_i \sim c_j$ if $T_{\infty} \models c_i = c_j$. The *m*-ary predicate constant α is determined by: $\alpha(c_{i_1}, \dots, c_{i_m})$ holds if $T_{\infty} \models \alpha(c_{i_1}, \dots, c_{i_m})$. For this construction we have to assume that all predicate constants of T and all the formulas $x_0 = f(x_1, \dots, x_n)$ are contained in the set F, determining the maps between the models.

IV.17. PROPOSITION. For an F_G -complete and F_G -elementary F_G -theory the following statements are equivalent

(a) T has an F_{G} -prime model,

(b) T has an F_{G} -atomic model,

(c) T is F_{G} -atomistic.

PROOF. (a) implies (c) because of Theorem II.16. (c) implies (b) because of Theorem IV.15. (b) implies (a) because of Proposition I.25.

IV.18. Remark. An F_{G} -atomic model of T is an F_{G} -model, i.e. an F_{G} -prime model. But an F_{G} -(prime) model of T need not be an F_{G} -atomic model, in general. It only guarantees the existence of an F_{G} -atomic (prime) model.

The following is an example of a theory T which fulfills the assumption of Proposition IV.17 and which has an F_{G} -(prime) model which is not F_{G} -atomic. The individual constants of T are $d_1, d_2, \dots, d_n, \dots, n < N$, where N is finite or ω . There is one unary predicate constant p(x). F is induced by p(x); and G is F itself. The only axiom is $\exists xp(x)$. The following structure O is an F_{G} -prime model which is not F_{G} -atomic. The underlying set of O consists of the elements $m_1, m_2, \dots, m_n, \dots,$ n < N (corresponding to the d_n^* s) and two elements a and b. p is defined by $O \models p(a), O \models \neg p(b)$ and $O \models \neg p(m_n), n < N$. By omitting the element b one gets an F_{σ} -atomic model of T.

IV.19. Complete theories. Proposition IV.17 is a generalization of Vaught's theorem [7, 3.5].

IV.20. Σ -structures. If the theory Σ_n is an F_G -theory which has an F_G -prime model O (i.e. the free Σ -structure generated by the *n* elements a_1, \dots, a_n exists) then O can be constructed according to Remark IV.16.

IV.21. Complemented lattices are an example for IV.20 (cf. also IV.12). That $\Sigma_n^{(m)}$ is F_{σ} -complete and F_{σ} -elementary follows from I.17 and II.12 respectively.

The existence of the free *m*-complemented lattices generated by *n* elements (cf. Chen and Grätzer [1]) implies that the theory $\Sigma_n^{(m)}$ is F_G -atomistic. Using the uniqueness theorem [1, §2, Theorem 3], it is easy to see that the F_G -atomic model is the free *m*-complemented lattice generated by the *n* elements a_1, \dots, a_n .

IV.22. DEFINITION. An F_{G} -initial model O is an F_{G} -prime model of T which has precisely one F-map $h: O \rightarrow M$ into any model M of T.

IV.23. THEOREM. An F_{g} -initial model O of some F_{g} -elementary and F_{g} -complete F_{g} -theory is an F_{g} -atomic model where each m-ary F_{g} -atom is realized by precisely one m-tuple of elements in O.

PROOF. By Proposition IV.17 there is an F_{c} -atomic model O' of T. There are also F-maps $h: O \rightarrow O'$ and $k: O' \rightarrow O$. kh is the identity of O because O is F_{c} -initial. This implies that for any m-tuple \vec{c} of elements in O, the F-type $I\langle \vec{c} \rangle$ of \vec{c} in O coincides with the F-type J of $f(\vec{c})$ in O'. As O' is F_{c} -atomic, so is O. Now assume that some m-ary F_{c} -atom were realized by two different m-tuples \vec{c} and \vec{d} . According to Theorem II.7 there would be an F-map carrying \vec{c} into \vec{d} . Thus $id_{0}: O \rightarrow O$ would not be the only F-map $O \rightarrow O$. Q.E.D.

IV.24. THEOREM. An F_{g} -atomic model O is an F_{g} -initial model if and only if any m-ary F_{g} -atom is realized in any model M of T by precisely one m-tuple of elements $(m \ge 1)$, provided that T is F_{g} -complete.

PROOF. If each *m*-ary F_{G} -atom is realized by precisely one *m*-tuple of elements in each model *M* then there can be only one *F*-map $h: O \rightarrow M$.

If for some model M there would be two different *m*-tuples \vec{c} and \vec{d} which realize some *m*-ary F_{σ} -atom I then one could construct two different *F*-maps $h, k: O \to M$. Namely let \vec{a} be an *m*-tuple of elements in O realizing the F_{σ} -atom I. Consider the maps which send \vec{a} into \vec{c} and \vec{a} into \vec{d} respectively. They both can be extended to *F*-maps by the procedure applied in the proof of I.25. Q.E.D.

IV.25. PROPOSITION. An F_{q} -complete and F_{q} -elementary F_{q} -theory T has an Finitial model if and only if it is F_{q} -atomistic and each m-ary F_{q} -atom is realized by at most one m-tuple of elements in each model ($m \ge 1$).

This follows from Theorems IV.23 and 24. Applying Remark I.13 we can prove IV.26. COROLLARY. An F_{G} -complete and F_{G} -elementary F_{G} -theory T has an Finitial model if and only if T is F_{G} -atomistic and each m-ary F_{G} -atom is equivalent to an m-ary formula $\mu(\vec{x})$ which is preserved by F-maps and which is fulfilled by only one mtuple of elements in each model of T(m > 0). It even can be shown that μ is a formula of F itself (cf. Fittler [2]).

ROBERT FITTLER

REFERENCES

[1] C. C. CHEN and G. GRÄTZER, On the construction of complemented lattices, Journal of Algebra, vol. 11 (1969), pp. 56-63.

[2] R. FITTLER, Categories of models with initial objects, Category theory, homology theory and their application. I, Springer Lecture Notes, vol. 86, 1969.

[3] G. GRÄTZER, On the existence of free structures over universal classes, Mathematische Nachrichten, vol. 36 (1968), pp. 135-140.

[4] ——, Free Σ -structures, Transactions of the American Mathematical Society, vol. 135 (1969), pp. 517–542.

[5] -----, Universal algebra, Van Nostrand, Princeton, N.J., 1968.

[6] R. L. Vaught, Models of complete theories, Bulletin of the American Matematical Society, vol. 69 (1963), pp. 299-313.

[7] ——, Denumerable models of complete theories, Infinitistic methods, Proceedings of the Symposium on Foundations of Mathematics (Warsaw, 1959), Warszawa, 1961, pp. 303-321.

UNIVERSITÄT ZURICH ZURICH, SWITZERLAND