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STATE-OF-THE-ART CLINICAL ARTICLE

Cytokines and Chemokines in Meningeal Inflammation: Biology and Clinical
Implications

Martin G. Täuber and Bernhard Moser From the Institute for Medical Microbiology and the Theodor-Kocher
Institute, University of Berne, Berne, Switzerland

The CNS differs from other tissues in the body by the elabo- endothelial-cell activation, leukocyte infiltration, leukocyte
function, and control of the inflammatory response. Much hasration of a tight blood-brain barrier (BBB), which drastically

reduces access of leukocytes and plasma components to the been learned about cytokines and chemokines, and it is the
purpose of this article to summarize the role of these host-subarachnoid space and brain parenchyma. During infections

of the CNS, an inflammatory reaction occurs across the BBB derived mediators in selected CNS infections.
that can affect the subarachnoid space (meningitis), the brain
parenchyma (encephalitis), or both (meningoencephalitis). The

Structure and Biology of Cytokines and Chemokinescomposition and time course of CNS inflammation vary
greatly. Acute bacterial meningitis is characterized by a rapid Table 1 defines the nomenclature, cellular source, and func-
accumulation of granulocytes in the CSF that evolves within tion of cytokines in meningeal inflammation and, in addition,
hours. Viral forms of meningitis are associated with moderate lists five important noncytokine/chemokine agonists. The most
numbers of mononuclear WBCs. The extent of cellular in- prominent endotoxin is lipopolysaccharide (LPS), a cell-wall
flammation in encephalitis can vary from occasional cells in component of gram-negative bacteria. LPS binds to a protein
the parenchyma to extensive perivascular inflammatory cuffs. called CD14 on monocytes and triggers the synthesis of a large

Inflammation of the CNS is of great clinical relevance for number of cytokines, including TNF-a, IL-1, IL-6, IL-10, IL-
at least two reasons. First, the inflammatory reaction to the 12, and chemokines. LPS is also a potent stimulator of B cells.
invading CNS pathogen, rather than the pathogen itself, appears The small formyl-peptide fMLP (N-formyl-L-methionyl-L-leu-
to be largely responsible for the damage that results from many cyl-L-phenylalanine) is a potent chemoattractant and activator
CNS infections. In bacterial meningitis, evidence of brain dam- of granulocytes, and exerts its function by binding to a serpen-
age can progress long after the site of infection has been steri- tine receptor with greatest similarity to chemokine receptors.
lized by antibiotic therapy. Conversely, CNS inflammation that fMLP is produced during bacterial cell lysis and may contribute
is induced without microbial pathogens, for example by ex- to the infiltration of granulocytes to sites of bacterial infection.
pressing a chemokine under a brain-specific promotor, can lead Platelet-activating factor also binds to a serpentine receptor and
to brain damage similar to that seen in infectious encephalitis together with leukotrienes and prostaglandins forms a group of
[1]. Second, CNS inflammation is notably ineffective in elimi- lipid derivatives that are produced by activated macrophages,
nating many pathogens. If bacterial meningitis and acute and neutrophils, or tissue cells during acute neutrophil-dominated
chronic CNS infections caused by other pathogens (e.g., herpes inflammatory responses. These agonists are instrumental in the
simplex virus, spirochetes, rabies virus) are not treated ade- destruction of infectious organisms and the subsequent tissue-
quately, they either progress rapidly to death or establish repair process. (See Suggested Additional Reading at the end
chronic infections. of the article for more information about the general aspects

As in other inflammatory diseases, inflammation of the CNS of cytokines and chemokines.)
is dependent on the local production of soluble mediators in
response to microbial stimuli. These mediators include the nu-
merous cytokines and chemokines, which form complex regu- Cytokines
latory networks and influence key processes such as vascular

IL-1 and TNF-a are the two major cytokines in innate (natu-
ral, T cell– independent) immunity and are produced by hema-
topoietic cells, notably activated macrophages, and by tissue

Publication of this State-of-the-Art Clinical Article has been made possible cells. IFN-g, a cytokine characteristic of type-1 T helper (Th1)
by an educational grant from Roche Laboratories. cells, is an inducer of TNF-a production in macrophages, link-Received September 4, 1998.

ing this cytokine to specific immunity. In addition, IL-1 is aReprints or correspondence: Dr. Martin Täuber, Institute for Medical Micro-
biology, Friedbühlstrasse 51, 3010 Berne, Switzerland (taeuber@imm. potent inducer of TNF-a, but not vice versa. TNF-a binds as
unibe.ch). a homotrimer to two different single-chain receptors (TNF-RI,
Clinical Infectious Diseases 1999;28:1–12 TNF-RII) that are expressed widely in blood and tissue cells.
q 1999 by the Infectious Diseases Society of America. All rights reserved.
1058–4838/99/2801–0001$03.00 IL-1a and IL-1b are two forms of IL-1 that are encoded by
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Table 1. Network of cytokines and other mediators in meningitis.

Cytokines/mediators Production Effects

Cytokines
IL-1 Macrophages, tissue cells Proinflammatory, chemokine/cytokine

production, vascular permeability, nitric oxide
production

TNF-a Macrophages, T and natural killer Proinflammatory, chemokine/cytokine
cells, mast cells production, high levels in CSF correlate with

mortality, nitric oxide production
IFN-g T cells, natural killer cells Proinflammatory, chemokine/cytokine

production, phagocyte activation, T-cell
differentiation, synthesis of MHC molecules

IL-4 T cells, mast cells IgE class switch, allergic inflammation, T-cell
differentiation

IL-5 T cells, mast cells, eosinophils Eosinophil mobilization and activation, allergic
inflammation

IL-6 Monocytes/macrophages, B-cell differentiation, T-cell activation
endothelial cells

IL-10 Monocytes/macrophages, T cells Anti-inflammatory, inhibition of chemokine/
cytokine production

IL-12 Monocytes/macrophages, Cytolysis in natural killer and T cells, IFN-g
dendritic cells production, T-cell differentiation

TGF-b Leukocytes and tissue cells Antiinflammatory, inhibition of proinflammatory
cytokine function, antagonizes IFN effects,
tissue repair

Other mediators
Chemokines Leukocytes and tissue cells Leukocyte recruitment, enhanced immune cell

function
Endotoxins Cell wall component of gram- Proinflammatory, chemokine/cytokine

negative bacteria production, enhanced immune function
fMLP Bacterial cell wall Granulocyte recruitment and activation
Platelet-activating Macrophages, granulocytes, tissue Granulocyte activation, tissue repair

factor, cells
prostaglandins,
leukotrienes

NOTE. fMLP Å N-formyl-L-methionyl-L-leucyl-L-phenylalanine; MHC Å major histocompatibility complex;
TGF-b Å transforming growth factor beta.

two separate genes. It is notable that the formation of active illness when present at high concentrations, including wasting
of muscle and fat cells (cachexia), septic shock, and death.IL-1b depends on proteolytic processing by the IL-1 converting

enzyme (ICE), a cysteine proteinase with similarity to apoptosis IFN-g is produced by activated T cells, including Th1 cells
and natural killer cells. The IFN-g receptor is composed of aproteins.

There are two single-chain receptors for IL-1. Type I is high affinity a-subunit and an accessory b-subunit; the receptor
binds monomeric IFN-g and is present on most hematopoieticconsidered the major receptor and, similar to the TNF receptors,

is expressed throughout blood cells and tissue cells. The type cells and some tissue cells (including epithelial and endothelial
cells). IFN-g is a true proinflammatory cytokine with an essen-II IL-1 receptor is inducible and acts as a ‘‘decoy’’ receptor

by preventing IL-1 binding to the type I IL-1 receptor. In tial role in macrophage-rich inflammatory responses. The most
significant functions of IFN-g include activation of macro-addition, phagocytes produce an IL-1 receptor antagonist (IL-

1ra) that appears similar to IL-1 and binds to both types of IL- phages/granulocytes (phagocytosis, and cytokine and chemo-
kine production), polarization of naı̈ve T cells to Th1 cells,1 receptors but does not induce cellular responses. IL-1ra and

IL-1 receptors are shed from activated cells and neutralize IL- endothelial cell activation, and induction of class I and II major
histocompatibility complex (MHC) molecules in various cell1 function and, thus, are considered important regulators of

immunity to bacterial infections. IL-1 and TNF-a share many types.
IL-4 and IL-5 are typical Th2 cytokines that are secretedfunctions in innate immunity, including induction of synthesis

of chemokines and adhesion molecules, stimulation of phago- upon T-cell activation. The IL-4 receptor consists of a specific
a-subunit, which for signal transduction needs to associate withcytic functions, and tissue repair (angiogenesis and connective

tissue formation). TNF-a, in contrast to IL-1, can cause serious either the IL-13 receptor or the so-called common g-chain of
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Table 2. Chemokines found in patients with meningitis.the IL-2 receptor. The IL-4 receptor is found on resting and
activated T and B cells, macrophages, mast cells, hematopoietic

Chemokines Receptors Target cellsprogenitor cells, and many tissue cells. The receptor for the
homodimeric IL-5 is also composed of an a-subunit, which CXC chemokines
binds IL-5, and an accessory b-subunit that is required for IL-8 CXCR1, CXCR2 Neutrophils, monocytes

GRO-a CXCR2 Neutrophils, monocytes, basophils,signaling and, unlike IL-4, is found primarily on eosinophils
eosinophilsand basophils. IL-4 induces the switch to IgE production in B

IP-10 CXCR3 Activated memory/effector T cellscells, and IL-5 is a potent activator of eosinophils. Thus, both
Mig CXCR3 Activated memory/effector T cells

cytokines play an eminent role in Th2-dominated immune re- I-TAC CXCR3 Activated memory/effector T cells
sponses commonly associated with allergic inflammation and CC chemokines

MCP-1 CCR2 Monocytes, basophils, activatedkilling of intracellular pathogens. In addition, IL-4 is a differen-
memory/effector T cellstiation factor for the generation of Th2 cells and induces the

MIP-1a CCR1, CCR5 Monocytes, basophils, activatedexpression of adhesion molecules and some chemokines in
memory/effector T cells

endothelial cells. MIP-1b CCR5 Cultured monocytes, activated
IL-6 is often detected during gram-negative bacterial infec- Th1-type T cells, dendritic cells

RANTES CCR1, CCR3, Monocytes, eosinophils, basophils,tions and is produced by monocytes/macrophages, endothelial
CCR5 activated memory/effector Tcells, and other tissue cells upon stimulation with IL-1 and, to

cells, dendritic cellsa lesser extent, with TNF-a. IL-6 is also produced by activated
T cells. The IL-6 receptor is present widely on hematopoietic NOTE. GRO-a Å growth-related protein alpha; IP-10 Å IFN-g inducible

10 kD protein; I-TAC Å IFN-inducible T cell alpha chemokine; MCP-1 Åand tissue cells and is composed of a binding subunit and a
monocyte chemotactic protein 1; Mig Å monokine induced by IFN-g; MIP Åsignaling subunit, which is probably shared with other cytokine
macrophage inflammatory protein; RANTESÅ regulated on activation, normal

receptors. IL-6 is primarily a B-cell differentiation factor but T cell expressed and secreted.
is also known to activate T cells, to co-stimulate hematopoietic
progenitor cells, and, similar to TNF-a and IL-1, to contribute
to the acute-phase response in sepsis by induction of fibrinogen tion). TGF-b and IL-10 can be viewed as antiinflammatory
synthesis in hepatocytes. The heterodimeric IL-12 is recognized cytokines that potently inhibit both innate and T cell–depen-
by two separate binding proteins which together may form the dent immune responses.
functional IL-12 receptor. The major sources of functional IL-
12 are activated monocytes/macrophages and dendritic cells.
Cellular responses to IL-12 include activation of cytolysis and Chemokines
induction of IFN-g synthesis in natural killer cells and T cells,
and generation of Th1 cells, thus building a functional bridge Chemoattractants (which induce chemotactic migration in

leukocytes) are classified as chemokines (chemotactic cyto-between innate and specific immunity.
Due to their inflammation-inhibitory effects, IL-10 and trans- kines) and nonchemokines. Well-documented nonchemokines

are few and include fMLP, leukotriene B4, platelet-activatingforming growth factor-beta (TGF-b) need to be discussed sepa-
rately. IL-10 is produced mainly by activated monocytes/mac- factor, and the complement component C5a. In addition, che-

moattractant activity has been reported for TGF-b. In contrast,rophages and T cells, and it binds to a single-chain receptor
with prominent expression in hematopoietic cells, including ú40 human chemokines are presently known and, thus, consti-

tute by far the largest family of cytokines. Chemokines containmacrophages and T cells. IL-10 inhibits accessory functions
(down-modulation of B7-1 and B7-2) in antigen-presenting from 68 to 127 amino acids, share a typical four-cysteine motif,

and, on the basis of the arrangement of the two amino-terminalcells and, more importantly, inhibits production of proinflam-
matory cytokines (TNF-a, IL-1, and IL-12) and some chemo- cysteines (which are either adjacent or separated by a single

amino-acid residue), are further divided into two subfamilies,kines in macrophages. TGF-b is comprised of three related
dimeric proteins (TGF-b 1, 2, and 3). TGF-b1 is produced CC and CXC chemokines. Two additional chemokines, one

that lacks two of the four conserved cysteines and one mem-mainly by inflammatory cells, including activated T cells and
monocytes/macrophages. Two high-affinity single-chain recep- brane-bound form with a tripeptide spacer separating the first

two cysteines, may define two alternative subfamilies. Thetors with a wide range of expression are thought to associate
for signal transduction, and the third type of receptor is of chemokines found thus far in the CSF of patients with meningi-

tis or known to be produced by astrocytes and microglial cellslow affinity and may function as a TGF-b-presenting molecule
through binding of TGF-b to its glycosaminoglycan sites. The are defined in table 2.

Most chemokines are inducible, i.e., they are produced andpleiotropic actions of TGF-b include synthesis of extracellular
matrix proteins, neovascularization, and, most importantly, in- secreted by infiltrated leukocytes and tissue cells upon stimula-

tion with proinflammatory cytokines (IL-1, TNF, IFN-g), endo-hibition of functions mediated by proinflammatory cytokines
(T-cell proliferation and maturation, and macrophage activa- toxins, and phorbol esters. The rapid production of chemokines
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at sites of infection leads to the generation of a chemoattractant zae) or cell-wall components from pneumococci, the rapid ap-
pearance of proinflammatory cytokines (TNF-a, IL-1, IL-6)gradient (possibly through binding to proteoglycans) that en-

ables proper navigation and homing of effector leukocytes. As can be documented in CSF, which is followed by the appear-
ance of granulocytes and increased CSF protein concentrationssuch, induction of chemotactic migration is the prototypical

function of chemokines and is readily assayed for in vitro. [2–4]. The injection of cytokines (e.g., TNF-a and IL-1) di-
rectly into the CSF results in a similar inflammatory responseOther leukocyte responses include enzyme release from intra-

cellular stores, oxygen radical formation, shape change through [5]. The importance of these cytokines is further supported by
the fact that antibodies to them can mitigate the extent ofcytoskeletal rearrangement, generation of lipid mediators, and

induction of adhesion to endothelium or extracellular matrix inflammation in experimental meningitis [3, 5]. Some chemo-
kines (macrophage inflammatory protein [MIP] 1 and 2) areproteins. Induction of adhesion and shape change are integral

elements of the leukocyte recruitment process. Additional func- also involved in the inflammatory response in the subarachnoid
space, e.g., in experimental Listeria monocytogenes meningitistions attributed to some chemokines are induction/inhibition of

angiogenesis, hematopoietic precursor-cell development, and [6]. Cytokines in CSF induce endothelial-derived adhesion
molecules on the cerebral vasculature, such as P and E selectinsembryogenesis. Finally, several more recent chemokines were

found to be constitutively produced in lymphoid organs and [7]. Activation of the cerebral vasculature endothelium repre-
sents an indispensible step in the recruitment of leukocytes tothought to regulate leukocyte trafficking in these organs.

Chemokines are highly diverse in their target-cell selectivity. the site of inflammation [8, 9].
In humans, the classic proinflammatory cytokines (TNF-a,Generally, CXC chemokines are more selective for neutrophils,

T cells, or B cells, whereas CC chemokines act on more than one IL-1, and IL-6) identified in animal models, as well as several
other cytokines, are present in CSF during meningitis (table 1)type of leukocyte but not on neutrophils or B cells (table 2).

Chemokines with the highest selectivity are IP-10 (IFN-g-induc- [10, 11]. In addition, CXC and CC chemokines have been
found in the CSF of these patients (table 2) [12, 13]. Someible 10 kDa protein), Mig (monokine induced by IFN-g), and I-

TAC (IFN-inducible T cell a chemokine) for activated memory/ of the chemokines (IL-8, growth-related protein a [GRO-a],
monocyte chemotactic protein 1 [MCP-1], MIP-1a, and MIP-effector T cells; B cell chemoattractant 1 (BCA-1) for B cells; and

several novel chemokines for resting and/or short-term activated T 1b) are more prominent in bacterial meningitis than in other
forms of meningitis, and the target-cell selectivity of thesecells. Chemokines interact specifically with seven transmembrane

domain receptors that are present on responding leukocytes and chemokines likely contributes to the pronounced early influx
of neutrophils that is followed by monocytes and T cells.which couple to heterotrimeric G proteins for the induction of

immune functions. Signaling leads to activation of serine/threo- In meningitis, as in other infections, the proinflammatory
effect of cytokines is controlled by antiinflammatory cytokinesnine kinases, which prevent further signaling by the rapid phos-

phorylation of chemokine receptors, thus ensuring the transient (IL-10 and TGF-b). IL-10 reduced CSF inflammation in rabbits
after injection of endotoxin or live bacteria into the subarach-nature of chemokine-mediated leukocyte responses. In addition,

chemokine binding induces receptor internalization, which be- noid space [14]. In the CSF of patients with bacterial meningitis
the cytokine is present in high concentrations, persists longercomes re-expressed on cell surfaces after trafficking through endo-

somal compartments. Additional intracellular signaling elements than proinflammatory cytokines and chemokines, and may
down-regulate IFN-g production [10, 15–17]. TGF-b seemsthat become activated include phospholipases that produce lipid

metabolites, kinases that phosphorylate protein and nonprotein to play a role similar to IL-10 in down-modulating inflamma-
tion in meningitis [18]. Antiinflammatory cytokines, while po-targets, and small guanosine triphosphate–binding proteins. The

receptors are divided into two subfamilies, CXCR and CCR, tentially beneficial, may impair host defenses in certain situa-
tions. For example, IL-10 in the CSF inhibited the bactericidalaccording to their selectivity for either CXC or CC chemokines,

and are numbered in order of their discovery. Currently, the genes activity of macrophages against Listeria species [19].
In addition to IL-10 and TGF-b, soluble cytokine receptorsfor 16 individual chemokine receptors are known, and the ones

that recognize those chemokines that are produced in meningitis also modulate the biological activity of cytokines within the
CSF compartment. Both the IL-1 receptor antagonist (IL-1 ra)are listed in table 2.
and the type II IL-1 soluble receptor down-regulate the activity
of IL-1 in meningitis [20]. For the two soluble TNF receptors

Cytokines and Chemokines in CSF in Selected Infections (p55, p75), two potentially opposing effects have been identi-
of the CNS fied. On one hand, TNF receptors are capable of neutralizing

TNF-a activity, which most likely occurs during meningitis
Bacterial Meningitis

[10]. On the other hand, soluble TNF receptors in CSF appear
to stabilize the biologically active forms of TNF-a (i.e., oligo-A critical role of cytokines and chemokines has been care-

fully established in models of bacterial meningitis. Following mers), thereby prolonging the proinflammatory effect of this
cytokine [21, 22]. Thus, the net biological effect of these recep-the injection of endotoxins from gram-negative meningeal

pathogens (Neisseria meningitidis and Haemophilus influen- tors in the CSF is not fully understood.
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Viral Meningitis IL-8 concentrations in tuberculous meningitis were similar to
those in bacterial meningitis, but decreased only after weeks

Viral meningitis (a term used here to describe an aseptic menin-
of adequate therapy, unlike the rapid disappearance (1–2 days)

gitis syndrome of suspected or documented viral etiology) is char-
of IL-8 in bacterial meningitis [38].

acterized by CSF infiltrates of activated T cells and monocytes.
Fungal meningitis. Little is known about the CSF concen-

This syndrome also involves the production of proinflammatory
trations of cytokines in fungal meningitis. In patients with coc-

cytokines, in particular TNF-a and IL-1, which are present at
cidioidomycosis meningitis, CSF levels of TNF-a and IL-1

much lower levels in viral meningitis than in bacterial meningitis
were relatively low and did not change much over time. Only

[23, 24]. IFN-g, in contrast, is present at high levels in the CSF
the IL-1 concentration correlated with the extent of clinical

of viral but not bacterial meningitis [24]. CSF levels of IL-6 in
symptoms and with WBC counts in CSF [39]. CSF levels of

viral meningitis are similar to those in bacterial meningitis, with
several proinflammatory cytokines (except for TNF-a) in AIDS

the notable exception of mumps meningitis [25, 26]. The antiin-
patients with cryptococcal meningitis were high, whereas levels

flammatory cytokines IL-10 and TGF-b, which can be present in
of the antiinflammatory cytokine IL-10 were low. It is notable

the CSF of patients with viral meningitis for several days, may
that the minimal CSF pleocytosis typically found in AIDS

contribute to the moderate extent of inflammation in this disease
patients with cryptococcal meningitis was in contrast to consis-

[16, 27, 28].
tently high levels of the chemokine IL-8 [40].

Several chemokines are also involved in viral meningitis,
where they may play a key role in the recruitment of blood

Source of Cytokines and Chemokines in CSF Duringmononuclear cells. These include MIP-1a, regulated on activa-
CNS Infectionstion, normal T cell expressed and secreted (RANTES), IL-8,

GRO-a, MCP-1, and IP-10 [13, 29]. IL-8 levels correlated with
The majority of cytokines are present at high concentrations

CSF granulocyte counts in patients with viral meningitis, but
in the CSF during meningitis, whereas they are undetectable

not in patients with bacterial meningitis [30, 31]. This chemo-
in plasma, suggesting that the cytokines are produced locally

kine may thus orchestrate early granulocyte influx in patients
[3, 21, 41]. For example, concentrations of TNF-a, IL-1, and

in whom other chemotactic stimuli (e.g., TNF-a and bacterial
their soluble receptors were elevated in the CSF but not in the

products) are absent or present at only low concentrations.
plasma of patients with meningococcal meningitis, whereas the
concentrations of these substances were elevated in the plasma
of patients with meningococcal sepsis without meningitis [20,Other CNS Infections
42]. In addition to the predominant local production of cyto-
kines during CNS infections, some systemically produced cyto-HIV infection. As is true for other viral infections, proin-

flammatory cytokines are expressed in the CSF of HIV-infected kines may enter the CNS by using specific transport systems
in the blood-brain barrier (BBB) [43].patients with symptoms of AIDS. High CSF concentrations of

IL-6 in these patients were associated with expression of other Within the brain parenchyma, microglia (the brain’s resident
macrophages), activated astrocytes, neurons, monocytes, andcytokines in the CSF and with evidence for intrathecal IgG

synthesis [32]. Overall, there is no reliable correlation between microvascular endothelial cells can produce most of the cyto-
kines and chemokines found in CSF inflammation [44, 45]. Incytokine pattern in CSF and clinical manifestions of HIV en-

cephalopathy [33]. The chemokine MCP-1 is markedly ex- diseases affecting the brain parenchyma (encephalitis), produc-
tion of cytokines is likely to originate from cells within thepressed in the CSF of AIDS patients with cytomegalovirus

(CMV) encephalitis, whereas levels of other chemokines are brain parenchyma, primarily from activated glial cells (i.e.,
microglia and astrocytes) [46]. Activated infiltrated WBCs, alow in these patients [34].

Tuberculosis. In contrast to other infections, proinflamma- rich source of cytokines and chemokines, may also contribute
to the production of these substances in encephalitis. For men-tory cytokines are present in the CSF of patients with tubercu-

lous meningitis for weeks to months. In a study of children ingitis, conflicting information is available regarding the cells
that produce the cytokines detected in CSF. In rats with experi-with tuberculous meningitis [35], persistently high IFN-g lev-

els were found in the CSF that did not decline with therapy. mental meningitis, mRNA and proteins of multiple proin-
flammatory and antiinflammatory cytokines are expressed inTNF-a was detectable at low concentrations, and these levels

also failed to decline with therapy. Only IL-1 levels showed a the brain parenchyma [47].
In addition to cells in the parenchyma (likely microglia), wesignificant decline during 4 weeks of therapy. None of the

cytokine levels correlated with the clinical stage of the disease found TNF-a and IL-1 expression within ependymal cells of
the ventricles in infant rats with group B streptococcal meningi-[35]. In addition, TNF receptors are present in CSF for pro-

longed periods [36]. The ratio of TNF receptor to TNF-a in tis (Y. S. Kim, unpublished observation). The ependyma, with
its capacity to produce cytokines in response to bacterial stim-the CSF is unusually high during tuberculous meningitis [37],

which is in marked contrast to bacterial meningitis and may uli, is a plausible early source of proinflammatory cytokines
in meningitis, since meningeal pathogens may enter the CSFreflect inadequate TNF-a production in this chronic infection.
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space across the choroid plexus within the ventricular system tis [64]. Conversely, injection of TNF-a into the CSF of rabbits
resulted in reduced cerebral blood flow and increased cerebral[48]. In contrast to the studies of rats, studies of rabbits with

pneumococcal meningitis revealed mRNA for TNF-a primarily anaerobic metabolism, the latter associated with nitric oxide
production [65]. A direct correlation between TNF-a concen-within WBCs in the area of meningeal inflammation [49, 50].

Similarly, in viral meningitis in humans, mRNA for many of tration and nitric oxide production in CSF has also been docu-
mented in patients with meningitis [66]. Although nitric oxidethe cytokines present in CSF are found in inflammatory cells

within the CSF space [51]. Thus, potential sources of cytokines production is a prominent consequence of cytokines in CNS
infections, the effects of nitric oxide on brain cells depend onhave been identified during meningeal inflammation, both

within the brain parenchyma and in meningeal inflammatory many factors, such as the site of nitric oxide production and
stage of disease progression. Nitric oxide can contribute tocells. Conceivably, the stages in disease development may in-

fluence the type of cells that are actively engaged in cytokine neuronal toxicity [67] and can alter cerebral metabolism [65],
but it also may have beneficial effects such as counteractingand chemokine production.
cerebral ischemia [60].

Effects of Cytokines on the Brain
Cellular Effects of Cytokines

BBB Permeability

Astrocytes are critically important for the proper functioning
Enhanced BBB permeability is a hallmark of many infec-

of neurons and can be severely affected by CNS infections.
tions of the CNS, including bacterial meningitis, and leads to

Endotoxin reduces metabolism and alters morphology in astro-
the leakage of proteins and other molecules from plasma into

cytes in vitro, possibly through the induction of cytokine pro-
the cerebral compartment. This may contribute to CNS in-

duction [68]. TNF-a, for example, was shown to induce in-
flammation and brain damage, including development of vaso-

creases in intracellular Ca2/ concentrations, which resulted in
genic brain edema and alterations of the neuronal microenvi-

changes in the electrochemical properties and functional integ-
ronment. Experimental models of meningitis have shown that

rity of the plasma membrane in astrocytes [69, 70]. Neurons
the injection of TNF-a, and to some extent IL-1, into the CSF

may also be affected directly by cytokines during meningitis
space leads to rapid increases in BBB permeability followed

and other CNS infections. We have recently found that a sub-
by vasogenic brain edema [52–54]. In patients with bacterial

population of neurons, the dentate granule cells of the hippo-
meningitis, BBB damage also correlated primarily with CSF

campus, undergo cell death during experimental bacterial
concentrations of TNF-a, but not concentrations of IL-1 [55].

meningitis, and that this process is mediated by TNF-a [71].
However, additional factors seem to be required for disruption

TNF-a induces the production of reactive oxygen radicals that
of the BBB. These factors include blood-derived leukocytes,

may directly cause cell injury, as evidenced by the dramatic
as evidenced in neutropenic animals that showed minimal BBB

protective effect of an oxygen radical scavenger in experimen-
alterations after injection of proinflammatory cytokines or en-

tal meningitis [59]. As a possible corollary to this form of
dotoxin into the CSF [52, 56]. Other mediators of BBB disrup-

experimental neuronal injury, MRI studies in patients who have
tion that are generated in response to TNF-a include matrix

recovered from meningitis show loss of volume in the hippo-
metalloproteases and other inflammatory cell–derived prote-

campus [72].
ases.

Clinical Implications of CSF Cytokines and Chemokines
Cerebral Blood Flow and Metabolism

Differential Diagnosis of CNS Infections
Inflammation of the meninges profoundly affects cerebral

blood flow and metabolism, and at least two distinct mecha- Soon after the importance of cytokines in CNS infections
was established, it was recognized that some cytokines arenisms responsible for these pathophysiologic alterations are

recognized. First, the inflammatory infiltrate surrounding the present in higher concentrations in CSF during bacterial menin-
gitis than in viral and other forms of meningitis [41]. Thiscerebral vasculature in the inflamed subarachnoid space leads

to vasospasms and thromboses of arteries and veins, and subse- difference was particularly pronounced for TNF-a and IL-1
[24, 73–75]. As a result, these cytokines became useful inquent focal cerebral ischemia [57–61]. Second, global reduc-

tion of cerebral blood flow occurs as a consequence of reduced predicting bacterial meningitis, with a diagnostic specificity
that approached 100% in patients with markedly elevated con-cerebral-perfusion pressure in the setting of impaired cerebral

blood-flow autoregulation [62, 63]. centrations. However, the sensitivity of detection is less than
optimal for the reliable prediction of bacterial meningitisChanges in the cerebral blood flow correlate with cytokine

production in the CSF, as shown by a correlation between high (Ç80%) [74]. In addition, with regard to the differentiation
between bacterial and tuberculous meningitis, TNF-a and IL-CSF concentrations of IL-1 and IL-6 and blood-flow velocity

in the middle cerebral artery in patients with bacterial meningi- 1 are also of limited value [73].
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Differences in concentrations of IL-6 in CSF between bacte- levels of TNF-a and high levels of IL-10 in blood markedly
increased the mortality rate associated with meningococcal dis-rial and other forms of meningitis are inconsistent and are not

large enough to consider this cytokine as a diagnostically useful ease [88]. It is notable that the same constellation (low concen-
trations of TNF-a and high concentrations of IL-10) in theparameter [25, 26, 76–78]. In contrast, the differences in IL-

8 concentrations in the CSF are more reliable, with high con- CSF during meningitis is associated with mild CSF inflamma-
tion (see Bacterial Meningitis) and is, therefore, expected tocentrations in bacterial and low concentrations in viral or asep-

tic meningitis [30, 38, 79], and IL-8 was useful to some degree be associated with a favorable outcome. Obviously, multiple
factors including the compartment in which the inflammationin identifying patients with bacterial meningitis (sensitivity,

81%; specificity, 92%) [80]. There are marked differences in occurs, the stage of the disease, and genetic factors determine
variations in severity and outcome in individual patients.CSF concentrations of other chemokines (e.g., MIP-1a and IP-

10) in bacterial and viral meningitis, but the diagnostic value
of these parameters has not been ascertained [13]. Of all chemo-

Potential of CSF Cytokines and Chemokines as Therapeutic
kines, IP-10, Mig, or most likely I-TAC are predicted to be

Targets
characteristic of viral meningitis, since all three chemokines
are unique in their selectivity for activated T lymphocytes. Cytokines and chemokines represent attractive targets for

the development of therapies aimed at reducing the extent ofIn summary, at present no single cytokine allows a reliable
diagnostic differentiation between bacterial and other forms of brain injury resulting from CNS infections. The topic has re-

cently been reviewed in detail for bacterial meningitis, the CNSmeningitis with a sensitivity and specificity of close to 100%.
In contrast, several easily generated clinical and laboratory infection for which the most data are available [89]. At present,

the most notable approach to adjunctive therapy for this diseasevariables, such as CSF WBC and PMN counts and CSF protein
and glucose concentrations are highly reliable parameters for is the use of corticosteroids, which effectively reduces the pro-

duction of cytokines by mononuclear cells, including glial cellscomputing the likelihood of bacterial vs. aseptic meningitis
[81, 82]. Finally, determination of cytokine concentrations in [90]. Studies of experimental meningitis have documented the

effectiveness of corticosteroids in reducing CSF inflammationCSF is costly and is not performed routinely in most labora-
tories and, consequently, the utility of these parameters in the and associated pathophysiologic changes [3, 91–93]. It is im-

portant to note that this beneficial effect has been duplicateddifferential diagnosis of meningitis is limited at present.
in clinical studies. As summarized in a recent meta-analysis of
controlled studies of dexamethasone in bacterial meningitis

Prognostic Impact of Cytokines and Chemokines
since 1988 [94–103], there is evidence for a beneficial effect
of dexamethasone on hearing loss in meningitis due toA correlation between cytokine levels and outcome of men-

ingitis is suggested by the critical role of inflammation in CNS H. influenzae. A beneficial effect on hearing or overall neuro-
logical outcome in pneumococcal meningitis was evident onlyinjury during infections. In support of this, analyses of CSF

samples from children with bacterial meningitis revealed a cor- when the agent was given before or with the first antibiotic
dose [104]. It is important to note that the majority of patientsrelation of IL-1 with several parameters of CSF inflammation,

such as WBC count and glucose and protein concentrations, included in these studies were children and were infected with
H. influenzae type b, a pathogen now largely eliminated in theand with neurological outcome [83]. In infants with gram-

negative enteric meningitis treated with gentamicin, CSF IL-1 United States, Western Europe, and other countries as a result
of effective vaccination programs.plays a similarly critical role. Increased mortality among infants

receiving gentamicin intraventricularly, as opposed to systemi- Alternative approaches to the use of corticosteroids for con-
trolling the cytokine network have been explored experimen-cally, apparently resulted from an exacerbated release of endo-

toxin with subsequent stimulation of IL-1 production and tally. Pentoxifylline and thalidomide both reduce TNF-a pro-
duction, and both agents have shown some beneficial effectsinflammation [84]. High concentrations of TNF-a and platelet-

activating factor in CSF have also been associated with severity on CSF inflammation in experimental meningitis [105, 106],
but the overall therapeutic potential is modest and clinical trialsof disease and seizures [85]. In addition, CSF concentrations

of soluble TNF receptor and TGF-b, and the ratio of TNF-a have yet to be performed.
The use of antiinflammatory cytokines or endogenous inhibi-to TGF-b were highest in children who died or who were left

with severe neurological sequelae, suggesting that the relative tors of cytokines represents a new approach to the treatment of
meningitis. IL-1 receptor antagonist and a soluble TNF receptorconcentrations of these cytokines critically influence disease

progression [86, 87]. produced only very minimal beneficial changes in experimental
meningitis, and these changes are not likely to translate intoThe extent to which the host responds to the invasion of

pathogens, as indicated by the degree of cytokine production, significant clinical benefits [107]. Somewhat more promising
were results with IL-10 in the same model where the antiin-immune cell recruitment, and other inflammatory mediators, is

an important variable that may be determined by genetic fac- flammatory cytokine reduced TNF-a production and CSF in-
flammation, albeit to a lesser extent than when the cytokinetors. A genetically determined predisposition to produce low
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