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EIGENVALUES OF THE RADIALLY SYMMETRIC
p-LAPLACIAN IN R

n

B. M. BROWN and W. REICHEL

Abstract

For the p-Laplacian ∆pv = div(|∇v|p−2∇v), p > 1, the eigenvalue problem −∆pv+q(|x|)|v|p−2v =
λ|v|p−2v in R

n is considered under the assumption of radial symmetry. For a first class of potentials
q(r)→∞ as r→∞ at a sufficiently fast rate, the existence of a sequence of eigenvalues λk →∞
if k→∞ is shown with eigenfunctions belonging to Lp(Rn). In the case p = 2, this corresponds
to Weyl’s limit point theory. For a second class of power-like potentials q(r)→−∞ as r→∞ at
a sufficiently fast rate, it is shown that, under an additional boundary condition at r =∞, which
generalizes the Lagrange bracket, there exists a doubly infinite sequence of eigenvalues λk with
λk → ±∞ if k→ ±∞. In this case, every solution of the initial value problem belongs to Lp(Rn).
For p = 2, this situation corresponds to Weyl’s limit circle theory.

1. Introduction and main results

The spectral theory of (−∆+ q(x)) on bounded and unbounded domains Ω ⊂ R
n

with homogeneous boundary conditions is well established (cf. Edmunds and Evans
[13]). The linear theory is the starting point for the investigation of nonlinear
perturbations

(−∆ + q(x))v = f(x, v) in Ω, Bv = 0 on ∂Ω,

where Bv stands for homogeneous boundary conditions, for example zero Neumann
or Dirichlet conditions. For nonlinearities of the form f(x, s)= λs+o(s) as s→ 0, we
mention bifurcation theory (cf. Chow and Hale [7]) as a representative theory which
has its origin in linear spectral theory. Bifurcation theory exhibits the eigenvalues
λi of −∆ + q(x) as those parameter values where multiplicity changes in the set of
solutions can be expected.

The p-Laplacian operator ∆pv = div (|∇v|p−2∇v) with p > 1 has recently at-
tracted similar attention to that formerly paid to the Laplace operator. For those
following in the footprints of the development of bifurcation theory, it seems
natural to ask first for eigenvalues λi of −∆pv + q(x)|v|p−2v =λ|v|p−2v with appro-
priate boundary conditions and then to pass to the perturbed problem −∆pv +
q(x)|v|p−2v = f(x, v), where f(x, s)= λ|s|p−2s + o(|s|p−2s) as s→ 0. Indeed, for a
bounded domain Ω, this direction was successfully pursued by Guedda and Veron
[15] and DelPino and Manásevich [10, 11] . The cases considered in these papers
included the bounded one-dimensional interval, the radially symmetric case on balls
and annuli, and the general multidimensional case with bifurcation from the first
eigenvalue λ1.

These results depended on a sufficient understanding of the eigenvalue theory for
the p-Laplacian. For the case p �= 2, a complete eigenvalue theory is not available.
However, in the case of a bounded interval or for radially symmetric eigenfunctions
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on balls and annuli, such an eigenvalue theory exists (see Elbert [14], DelPino
and Manásevich, [10] and Reichel and Walter [19]). On general domains, the
understanding of the eigenvalues is still sparse; cf. De Thelin [9], Barles [4],
Bhattarcharya [5] and Anane [1].

The goal of this paper is to extend the eigenvalue theory to the radially symmetric
problem

−∆pv + q(|x|)|v|p−2v = λ|v|p−2v on R
n, v ∈Lp(Rn), (1)

with a radially symmetric potential q(|x|). The value λ∈R is called an eigenvalue if
a solution v �= 0 of (1) exists. We seek only radially symmetric eigenfunctions v. For
radially symmetric functions v(x)= u(r) with r = |x|, we find (∆pv)(x) = (Lpu)(r)
with Lpu = r1−n(rn−1|u′|p−2u′)′ being the radially symmetric p-Laplacian. The
notation s(t) = |s|t−1s, s∈R, t > 0 for the odd tth-power-function is used throughout
the paper. The eigenvalue problem (1) is then

−Lpu + q(r)u(p−1) = λu(p−1) in (0,∞),
u′(0)= 0, u∈Lp(0,∞; rn−1),

(2)

where Lp(0,∞; rn−1) is the set of all measurable functions u on (0,∞) such that∫∞
0

rn−1|u(r)|p dr <∞. Depending on the nature of the potential q, we may have
to impose a second boundary condition at ∞. After multiplication with rn−1, (2)
takes the form

−
(
rn−1u′(p−1))′ + rn−1q(r)u(p−1) = λrn−1u(p−1) in (0,∞),

u′(0)= 0, u∈Lp(0,∞; rn−1).
(3)

We will always assume that the potential q is continuous on [0,∞). Solutions of
(2) are supposed to satisfy u∈C1[0,∞), rn−1u′(p−1) ∈C1[0,∞). The condition
u′(0)= 0 makes the initial value problem u′(0)= 0, u(0)= c well defined for (2)
(cf. Section 2.2). Thus r = 0 is no longer considered a singular endpoint.

1.1. A limit point type situation

For the case p = 2, the famous theory of Weyl [22] classifies the endpoint r =∞
as a limit point endpoint if the initial value problem for (2) at r = 1 has at most
one linearly independent solution u∈L2(1,∞; rn−1). It follows that at r =∞, a
boundary condition on u is neither necessary nor admissible. It suffices to consider
the problem

−L2u + q(r)u = λu in (0,∞), u′(0)= 0, u∈L2(0,∞; rn−1) (4)

to obtain full spectral information. If the potential q(r)�−const. r2 at ∞, then
r =∞ is indeed a limit point endpoint [8, Chapter 9.3] . If q(r)→∞ as r→∞, then
(4) has a discrete spectrum; see Titchmarch [20]. (Note that u(r)r(n−1)/2 = v(r)
transforms (4) into −v′′ +(q(r)+((n2 + 3 − 4n)/4)v =λv on (0,∞). It follows that
u∈L2(1,∞; rn−1) if and only if v ∈L2(1,∞). In this form the criteria from [8, 20]
apply.)

For the radially symmetric p-Laplacian we do not have a theory of similar
generality. However, we can exhibit a class of potentials q tending sufficiently fast
to +∞ as r→∞ for which the sole requirement of Lp-integrability is enough to
obtain a discrete set of eigenvalues.
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Theorem 1. Suppose that q : [0,∞)−→R is a given C1-potential with the
following two properties.

(i) There exist α > 0 and β > max{(p − n)/(p − 1), 0} such that q(r)� αrβ for
large r.

(ii) q′(r)/q(r)1+1/p → 0 as r→∞.

Then, without an additional boundary condition at ∞, problem (2) has a
countable number of simple eigenvalues λ1 < λ2 < . . . , limk →∞ λk =∞, and no
other eigenvalues. The corresponding eigenfunction uk has k − 1 simple zeroes in
(0,∞). Between r = 0 and the first zero of uk, between any two consecutive zeros
of uk, and also to the right of the last zero of uk, there is exactly one zero of uk+1.

Remark 2. (a) Notice that (i) is satisfied if q(r)� αrβ with β > 1 and α > 0.
Hence (i) and (ii) are both satisfied for q(r)= αrβ with β > 1 and α > 0.

(b) It is interesting to compare Theorem 1 with the very similar conditions
from the classical result of Titchmarch [20], where for p = 2, a discrete spectrum is
found provided that q(r)→∞ as r→∞, q′ > 0 at ∞, q′′ has one sign at ∞, and
q′(r)= O(q(r)c) for 0< c < 3/2.

1.2. A limit circle, oscillatory type situation

Again in the case p = 2, Weyl’s theory [22] classifies the endpoint r =∞ as a limit
circle endpoint if every solution u of the initial value problem for (2) at r = 1 is in
L2(1,∞; rn−1). For a suitable spectral theory, it is necessary to require an additional
boundary condition at r =∞. This is done in the following way: choose a non-zero
function u0 : [0,∞)−→R with u′

0(0)= 0 and u0, r
n−1u′

0 absolutely continuous such
that

u0 ∈L2(0,∞; rn−1), r1−n(−(rn−1u′
0)

′ + rn−1qu0)∈L2(0,∞; rn−1).

Then the Lagrange bracket

[u, u0]∞ := lim
r→∞

rn−1(u′(r)u0(r) − u(r)u′
0(r))

is used to define the eigenvalue problem

−L2u + q(r)u = λu in (0,∞), u′(0)= 0, [u, u0]∞ = 0.

Each admissible function u0 creates a different boundary condition at ∞.
Equivalently (see Zettl [23]), one may choose a value λ0 ∈R and define u0 :
[0,∞)−→R as a solution of the initial value problem −L2u0 + qu0 =λ0u0 with
u′

0(0)= 0 on (0,∞). Each different value of λ0 creates a different boundary condition
at ∞.

All problems with limit circle endpoints have discrete spectrum (cf. Coddington
and Levinson [8, Chapter 9.4]). Potentials which generate a limit-circle endpoint
at r =∞ are given by the class q ∈C1[1,∞) such that q(r)� 0, W (r)=
q′(r)/|q(r)|3/2 ∈BV (0,∞), W (r)→ 0 as r→∞ and 1/|q(r)|1/2 ∈L1(1,∞) (cf. Hille
[16, Section 10]). Important examples are q(r)=−rα with α > 2. Then the discrete
spectrum of (4) extends to ±∞.

For the radially symmetric p-Laplacian we do not have such a general theory.
However, we can exhibit again a class of power-like potentials q tending sufficiently
fast to −∞ as r→∞, for which we can formulate a substitute for the Lagrange
bracket as a boundary condition at +∞.
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Theorem 3. Suppose that q(r)=−rα for large r with α > p/p − 1. Then every
solution of the initial value problem (2) lies in Lp(0,∞; rn−1). For a fixed λ0, let
u0 be a reference solution of −Lpu+q(r)u(p−1) = λ0u

(p−1) in [0,∞) with u′
0(0)= 0.

Then (2) together with the boundary condition

lim
r→∞

(
r(n−1)p

/
(p−1)(−q(r))

)(p−2)/p2

r(n−1)/(p−1)(u′(r)u0(r) − u(r)u′
0(r))= 0 (5)

has a countable number of simple eigenvalues {λi}i∈Z, limk →∞ λk =∞,
limk→−∞ λk =−∞ and no other eigenvalues. Each eigenfunction has an infinite
number of zeros. Different choices of λ0 lead to different boundary conditions at ∞,
and hence to different sets of eigenvalues.

Remark 4. (a) Note that in the case p = 2, the new boundary condition (5)
is precisely [u, u0]∞ = 0. Only for the cases p �= 2 does a new factor involving the
potential q explicitly appear.

(b) For p = 2, the above theorem reproduces the familiar restriction α > 2.

We mention that we could have included a weight w(|x|) in the right-hand side
of (1) or (2). In order to keep the conditions in Theorem 1 and Theorem 3 simple,
we decided to consider only the case w≡ 1.

2. The generalized Prüfer transformation

Instead of working directly with equation (3), we transform it into a more
convenient representation via the generalized Prüfer-transformation, which we
discuss in what follows.

2.1. The generalized sine function

Generalized sine functions have been well studied in the literature (see Lindqvist
[17]). The generalized sine function sinp is first defined locally as the solution of
the differential equation

u′p +
up

p − 1
= 1, u(0)= 0, u′(0)= 1. (6)

Equation (6) arises as a first integral of (u′(p−1))′ +u(p−1) = 0. The solution defines
the function Sp(φ)= sinp(φ) as long as it is increasing, that is, for φ∈ [0, πp/2],
where

πp

2
=

∫ (p−1)1/p

0

dt

1 − tp/(p − 1)1/p
=

(p − 1)1/p

p sin(π/p)
π. (7)

Since S′
p(πp/2)= 0, we define Sp on the interval [πp/2, πp] by Sp(φ)= Sp(πp − φ),

and for φ∈ (πp, 2πp] we put Sp(φ)=−Sp(2πp − φ) and extend Sp as a 2πp-periodic
function on R. In the special case p = 2, S2(x)= sin x and π2 =π. The following
properties of Sp will be used frequently.

Lemma 5. For p > 1, the generalized sine functions Sp have the following
properties.

(i) Sp, S
′
p
(p−1)

are C1-functions on R with L∞-norms ‖Sp‖∞ = (p − 1)1/p,

‖S′
p‖∞ = 1 and ‖(S′

p
p−1)′‖∞ = (p − 1)(p−1)/p.
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Figure 1. Sp , p = 1.4, 2, 5.

(ii) Sp solves |S′
p|p + |Sp|p/(p − 1)= 1 on R.

(iii) |S′
p(t + (πp/2))|p � (p − 1)|t|p/(p−1) for t∈R.

(iv) For 1< p� 2, the function S′
p is C1, whereas for p � 2, the function S′

p is
1/(p − 1)-Hölder continuous.

Proofs can be obtained from the results of Lindqvist [17]. We show in Figure 1
the graphs of the function Sp for p = 1.4, 2, 5. As p→∞, the function Sp converges
to 1 − |x − 1| and as p→ 1, it approaches 0.

2.2. Generalized phase-plane coordinates

The main sources for the results in this section are Reichel and Walter [19] and
Brown and Reichel [6]. With the help of the generalized sine function, we transform
any solution of (2) into phase space via generalized polar coordinates ρ and φ.{

rn−1u′(r)(p−1) = ρ(r)S′
p(φ(r))(p−1),

Q(r)(p−1)/pu(r)(p−1) = ρ(r)Sp(φ(r))(p−1).
(8)

Here Q : [0,∞)−→ (0,∞) is an arbitrary positive C1-function, which will be chosen
later. A calculation using the defining properties of Sp and S′

p as in Lemma 5(ii)
leads to the pair of equations

φ′ =
rn−1

p − 1
(−q(r) + λ)Q(r)(1−p)/p|Sp(φ)|p +

Q′(r)
pQ(r)

Sp(φ)S′
p(φ)(p−1)

+ r(1−n)/(p−1)Q(r)1/p|S′
p(φ)|p, (9)

ρ′ = ρ

{(
rn−1(q(r) − λ)Q(r)(1−p)/p + r(1−n)/(p−1)Q(r)1/p

)
Sp(φ)(p−1)S′

p(φ)

+
Q′(r)
pQ(r)

|Sp(φ)|p
}

. (10)

The main feature of the system is the fact that the φ-equation (9) is independent of
ρ. Moreover, the ρ-equation (10) is linear in ρ. Solutions of (9) and (10) are denoted
by φ(r;λ) and ρ(r;λ), respectively.

Radially symmetric solutions of (2) satisfy u′(0)= 0. This amounts (in a suitable
normalization) to φ(0)= πp/2. The value ρ(0) may be chosen arbitrarily. This
reflects the invariance of (2) under scaling.

A more detailed analysis shows that the angular function φ(r;λ) of a radially
symmetric solution u of (2) satisfies φ(r;λ)−πp/2= O(rn) as r→ 0 (cf. Reichel and
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Walter [19]). Therefore, a solution of the φ-equation (9) with φ(r;λ)−πp/2= O(rn)
will be called a tamed solution. In the next lemma we recall from Brown and Reichel
[6, Lemma 9] that (9) is uniquely solvable in the class of tamed solutions. As an
aside, we note that (9) also has solutions φ(r;λ) − πp/2= O(rn−p), which do not
correspond to radially symmetric solutions on balls.

Lemma 6. (i) For a tamed solution φ(r;λ) of (9), we find the relation

lim
r→0

(φ(r;λ) − πp/2)r−n =
1
n

(−q(0) + λ)Q(0)(1−p)/p.

(ii) The initial value problem (9) with initial value πp/2 at r = 0 has a unique
tamed solution.

Remark 7. The restriction to tamed solutions of the φ-equation is equivalent to
the well-posedness of the initial value problem for u at r = 0 with u(0)= c, u′(0)= 0.
Alternatively, we could have considered r = 0 as a singular endpoint itself. For n� p,
the endpoint r = 0 is of limit-point type. The Lp-integrability condition at 0 uniquely
selects the solution with u′(0)= 0. For 1< p < n, the endpoint r = 0 is of limit-circle
type (cf. the weakly regular case in Brown and Reichel [6]), that is, the initial value
problem at r = 0 is well defined for arbitrary values of u(0) and u′(0).

As a basic tool for our analysis we use a simple comparison principle between
upper and lower solutions for first-order differential equations. Such comparison
principles can be found in detail in Walter [21].

Lemma 8 (comparison principle). Assume that g(r, s) is defined on (a, b)×R. If
the functions φ, ψ are C1-functions on (a, b), continuous in [a, b] with φ(a)� ψ(a),
and

φ′ � g(r, φ) and ψ′ � g(r, ψ) in (a, b),

then φ is called a lower solution and ψ is called an upper solution. If g(r, s) is
uniformly Lipschitz-continuous with respect to s on compact subsets of [a, b] × R,
then the conclusion φ(r)� ψ(r) in [a, b] holds.

Proof. On a finite interval [a, b], the functions φ, ψ attain their values in
the interval [−M,M ]. Let L be the Lipschitz constant of g with respect to the
second variable on the compact set [a, b] × [−M,M ]. The difference ξ =ψ − φ
satisfies ξ′ � g(r, ψ) − g(r, φ)�−L|ξ| on intervals [a, b]. This shows that ξe−L(r−a)

is increasing on intervals where ξ is negative. Since ξ(a)� 0, we get ξ � 0 on [a, b].
A more refined version of this result can be found in [19].

3. The limit point type situation

For the proof of Theorem 1 we choose Q≡ 1 in the generalized Prüfer trans-
formation. Thus the Prüfer equations (9) and (10) simplify to

φ′ =
rn−1

p − 1
(−q(r) + λ)|Sp(φ)|p + r(1−n)/(p−1)|S′

p(φ)|p, (11)

ρ′ = ρ
(
rn−1(q(r) − λ) + r(1−n)/(p−1)

)
Sp(φ)(p−1)S′

p(φ). (12)
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Lemma 9. Suppose that φ(r;λ1) and φ(r;λ2) are tamed solutions of (11) with
λ1 < λ2. Then φ(r;λ1)< φ(r;λ2) for all r > 0.

The proof is essentially a consequence of the comparison principle of Lemma 8.
Details can be found in Reichel and Walter [19].

Lemma 10. Suppose that φ(r;λ) is a tamed solution of (11). Then there exists
k∈N depending on λ such that

lim sup
r→∞

φ(r;λ), lim inf
r→∞

φ(r;λ)∈ [(k − 1)πp, kπp].

Proof. Every solution φ(r;λ) of (11) passes through multiples of πp only from
below. In particular, every solution of (11) is bounded below by 0. Let R be so large
that −q(r) + λ � 0 for r �R. At R, we have φ(R;λ)∈ [(2l − 1)πp/2, (2l + 1)πp/2]
for some l∈N0. Since ψ≡ (2l + 1)πp/2 serves as an upper solution on [R,∞), we
find that φ is bounded. Since φ passes through multiples of πp only from below, the
possible accumulation points of φ(r;λ) at infinity must lie between two consecutive
multiples of πp.

Given any tamed solution φ(r;λ), we will denote its limiting interval at ∞ as in
Lemma 10 by [(k − 1)πp, kπp] without explicitly mentioning the λ-dependence of
the value k.

Lemma 11. Let J ⊂ R be a bounded interval and suppose that λ∈ J . For every
r0 > 0 sufficiently large, there exists ε= ε(r0) with the following properties.

(i) For a tamed solution φ(r;λ) of (11) with λ∈ J and (k−1)πp �φ(r0)� kπp−ε,
φ(r)→ (k − 1)πp as r→∞.

(ii) ε(r0)= O(r−γ
0 ) uniformly for λ∈J with

γ =
β

p
+ min

{
n

p
,
n − 1
p − 1

}
.

Proof. By the hypothesis on q(r), we can assume that r0 is so large that
q(r)−λ � (α/2)rβ for r � r0. We construct an upper solution ψ which converges to
(k − 1)πp. As an ansatz, we take

ψ(r) = (k − 1)πp + A(αrn−1+β)−1/p,

with A= (αrn−1+β
0 )1/p(πp − ε) and ε to be chosen later. Property (i) then follows

from the comparison principle of Lemma 8. It remains to verify that ψ is indeed an
upper solution, and to determine ε as a function of r0. The condition for an upper
solution is

ψ′ � rn−1

p − 1
(−q(r) + λ)|Sp(ψ)|p + r(1−n)/(p−1)|S′

p(ψ)|p, r � r0. (13)

Since ψ only attains values in [(k− 1)πp, kπp − ε], there exists a value cp depending
only on p such that |Sp(ψ)|� cpε|ψ − (k − 1)πp|. Therefore the upper solution
condition (13) is fulfilled provided that

ψ′ �− cp
p

α

2(p − 1)︸ ︷︷ ︸
=:c(p,α)

rn−1+βεp|ψ − (k − 1)πp|p + r(1−n)/(p−1), r � r0. (14)
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After insertion of the particular form of ψ, this is equivalent to
n − 1 + β

p
α−1/pAr((1−n−β)/p)−1 � c(p, α)εpα−1Ap − r(1−n)/(p−1), r � r0. (15)

Due to the monotonicity of the two sides of (15) with respect to r, it is sufficient
that (15) holds with equality at r0. After insertion of the choice of A, this amounts
to

n − 1 + β

p
(πp − ε)r−1

0 + r
(1−n)/(p−1)
0 = c(p, α)εprn−1+β

0 (πp − ε)p. (16)

Equation (16) defines the value ε= ε(r0). The asymptotic behaviour of ε as r0 →∞
is obtained from (16) by replacing (πp − ε) by a constant.

Lemma 12. Suppose that φ(r;λ) is a tamed solution of (11) with φ(r;λ)�
(k − 1)πp at ∞ and limr→∞ φ(r;λ) = (k − 1)πp. Then there exists a constant δ > 0,
which may depend on φ, such that, for large r,

φ(r;λ) − (k − 1)πp � δr(1−n)/(p−1)q(r)−1/p.

Proof. We show that ψ(r) = (k−1)πp +δr(1−n)/(p−1)q(r)−1/p is a lower solution
for δ > 0 small. The condition for a lower solution is

ψ′ � rn−1

p − 1
(−q(r) + λ)|Sp(ψ)|p + r(1−n)/(p−1)|S′

p(ψ)|p. (17)

Let us assume that R is so large that −q(r) + λ �−2q(r) for all r � R. Moreover,
assume that δ is so small that |S′

p(ψ(r))|p � 1/2 for r � R. Since |Sp(s)|�
Cp(s − (k − 1)πp) for s∈ [(k − 1)πp, (k − 1/2)πp] it is sufficient for (17) to have

ψ′ � rn−1

p − 1
2Cp

p (−q(r))(ψ − (k − 1)πp)p +
1
2
r(1−n)/(p−1). (18)

If we insert the special form of ψ, then this amounts to

δ

(
1 − n

p − 1
r(1−n)/(p−1)−1q(r)−1/p − 1

p
r(1−n)/(p−1)q(r)−1−1/pq′(r)

)
� −

2Cp
p

p − 1
δpr(1−n)/(p−1) +

1
2
r(1−n)/(p−1) (19)

for 0< δ < δ0 and r �R. Notice that by the decay assumption (ii) on q′/q1+1/p from
Theorem 1, the decay rate of the left-hand side of (19) is faster than r(1−n)/(p−1).
The positive part of the right-hand side decays exactly like r(1−n)/(p−1). If we choose
δ0 to be sufficiently small, inequality (19) holds for r � R sufficiently large uniformly
for all δ ∈ (0, δ0). This shows that ψ is indeed a lower solution. By choosing δ0 to
be even smaller, we can achieve ψ(R)< φ(R;λ) for all δ ∈ (0, δ0). The comparison
principle of Lemma 8 implies the claimed lower bound for φ(r;λ).

Lemma 13. Suppose that φ(r;λ) is a tamed solution of (11) such that
lim infr→∞ φ(r;λ), lim supr→∞ φ(r;λ)∈ [(k − 1)πp, kπp]. Suppose further that
φ(r;λ) �→ (k − 1)πp as r→∞. Then φ(r)→ kπp as r→∞ and

0� kπp − φ(r;λ)� O(r−γ),

with γ as in Lemma 11.
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Proof. If φ(r;λ) �→ (k − 1)πp, then the convergence condition of Lemma 11(i)
must be violated, that is, kπp − φ(r0;λ)� ε(r0) for all sufficiently large r0.

We know from Lemma 10 that any tamed solution φ(r;λ) has its accumulation
points at ∞ inside an interval [(k−1)πp, kπp]. Due to Lemma 11 and Lemma 13, we
know more: φ(r;λ) converges either to (k − 1)πp from above or to kπp from below.

Proposition 14. For k∈N, define the set

Sk =
{

λ∈R : lim
r→∞

φ(r;λ)< kπp

}
.

Then Sk is an open right-bounded interval, that is, Sk = (−∞, λk). Moreover,
λk is the unique value of λ such that φ(r;λ)� kπp for all r∈ [0,∞) and
limr→∞ φ(r;λ)= kπp.

Proof. First we show that Sk is non-empty. On compact intervals [0, R], it
was shown by Reichel and Walter [19] that ‖φ(·;λ)‖∞,[0,R] → 0 as λ→−∞. By
Lemma 11, this implies that ‖φ(·;λ)‖∞,[0,∞) → 0 also as λ→−∞. Moreover, the
λ-monotonicity of φ(·;λ) from Lemma 9 shows that Sk is an interval extending to
−∞. Since for any fixed R > 0 we also have φ(R;λ)→ +∞ as λ→ +∞, and since
once φ(r;λ) has crossed a multiple of πp its stays above that multiple of πp, we
see that Sk is a right-bounded interval, that is, Sk = (−∞, λk}. At this stage, it
is not clear whether λk ∈Sk or not. We now show that Sk is open. Suppose that
λ̃∈Sk, that is, limr→∞ φ(r; λ̃)= lπp with l < k. In particular, there exists a large
value r0 > 0 such that φ(r0; λ̃)< kπp−ε(r0). By continuous dependence on λ, we find
that φ(r0;λ)< kπp−ε(r0) also for λ∈ (λ̃−τ, λ̃+τ). By Lemma 11, this implies that
(λ̃−τ, λ̃+τ) ⊂ Sk, that is, Sk is an open interval (−∞, λk), and φ(r;λk)� kπp and
limr→∞ φ(r;λk)= kπp. It remains to prove the uniqueness property of λk. Suppose
that there exists a second value λ̃k > λk such that φ(r; λ̃k) also approaches kπp

from below. We will show that for small δ > 0, the function ψ(r) := φ(r;λk) + δ is
a lower solution to φ(r; λ̃k) on the interval [R0,∞) with sufficiently large R0. The
comparison principle of Lemma 8 then implies that φ(r;λ)+δ �φ(r; λ̃k), and hence
φ(r; λ̃k) must cross the level kπp, which is a contradiction. To show that ψ(r) is a
lower solution to φ(r; λ̃k), we need to verify that

ψ′ = φ′ =
rn−1

p − 1
(−q + λk)|Sp(φ)|p + r(1−n)/(p−1)|S′

p(φ)|p, (20)

� rn−1

p − 1
(−q + λ̃k)|Sp(φ + δ)|p + r(1−n)/(p−1)|S′

p(φ + δ)|p. (21)

To verify the inequality between (20) and (21), notice first that λk < λ̃k. Next we
suppose r �R0 to be so large that −q+λ̃k � 0 on [R0,∞). Finally, as long as φ, φ+δ
attain values in [(k − 1/2)πp, kπp], we have the inequalities

|Sp(φ)|� |Sp(φ + δ)| and |S′
p(φ)|� |S′

p(φ + δ)|.

This establishes (20) and (21) for r �R0 and as long as φ, φ + δ attain values in
[(k − 1/2)πp, kπp]. The comparison principle of Lemma 8 implies that for small δ
the lower solution φ(r;λk)+δ pushes φ(r; λ̃k) up to the level kπp on a finite interval
[R0, R1]. This contradiction proves the uniqueness of λk, and completes the proof
of the proposition.
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Proposition 14 already exhibits the special property of the eigenvalue λk. The
following proposition adds the Lp-integrability property and finishes the proof of
Theorem 1.

Proposition 15. Let φ(r;λ) be a tamed solution of (11) and let ρ(r;λ) be
the corresponding solution of (12). The function u(r;λ) obtained from φ(r;λ) and
ρ(r;λ) by the Prüfer transformation (8) belongs to Lp(0,∞; rn−1) if and only if
λ = λk.

Proof. We begin by integrating the ρ-equation (12):

ρ(r;λ)= ρ0 exp
∫ r

0

(
tn−1(q − λ) + t(1−n)/(p−1)

)
Sp(φ)(p−1)S′

p(φ) dt. (22)

The Lp-integrability condition on u is expressed as
∫∞

0

ρp/(p−1)|Sp(φ)|prn−1 dr <∞. (23)

Part 1: Suppose that λ =λk. Since φ(r;λk) approaches kπp from below, we have
Sp(φ)(p−1)S′

p(φ)< 0 at r =∞. Thus for large r the integrand in (22) is negative, and
hence the exponential in (22) is bounded, that is, ρ(r;λk) is bounded. By Lemma
13, we have 0� kπp − φ(r;λ)� O(r−γ), with γ as in Lemma 11. Hence

|Sp(φ(r;λ))|p � cp|φ(r;λ) − kπp|p �O(r−γp).

Thus the integrability condition (23) amounts to the verification of n−1−γp < −1,
that is, γ > n/p, which holds true due to the values of γ from Lemma 11 and the
condition on the exponent β in Theorem 1.

Part 2: Suppose that λk−1 < λ < λk. Since φ(r;λ) approaches (k − 1)πp from
above, we have Sp(φ)(p−1)S′

p(φ)> 0 at r =∞. The integrand in (22) is positive for
large r. By Lemma 12, we have φ(r;λ)− (k− 1)πp � δr(1−n)/(p−1)q(r)−1/p for large
r, and hence

Sp(φ(r;λ))(p−1)S′
p(φ(r;λ))� cpr

1−nq(r)(1−p)/p.

This implies the following lower bound for ρ.

ρ(r;λ)� cp exp
∫ r

0

q(t)1/p dt.

Lemma 12 also implies that |Sp(φ)|p � Cpr
(1−n)p/(p−1)q(r)−1 for large r. Altogether

this results in the lower bound∫∞

0

|u(r;λ)|prn−1 dr =
∫∞

0

rn−1ρ(r;λ)(p−1)/p|Sp(φ(r;λ)|p dr

� Cp

∫∞

0

r(1−n)/(p−1)q(r)−1 exp
( ∫ r

0

q(t)1/p dt

)
dr. (24)

The decay assumption (ii) of Theorem 1 shows that q′(r)� o(1)q(r)1+1/p, where
o(1)→ 0 as r→∞. Hence, given any value M > 0, there exists r0 > 0 such that
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Figure 2. φ(x; λ) for λ near λ1.

q(r)1/p � M(log q(r))′ for r � r0. Inserting this estimate in (24), we get∫∞

0

|u(r;λ)|prn−1 dr

�Cp,r0

∫∞

0

r(1−n)/(p−1)q(r)−1 exp
( ∫ r

0

M(log q(t))′ dt

)
dr

�Cp,r0,M

∫∞

0

r(1−n)/(p−1)q(r)−1 exp(M log q(r)) dr.

The remaining integrand is divergent, since q(t)� αrβ and M > 0 can be chosen
suitably large. Hence u does not belong to Lp(0,∞; rn−1).

This completes the proof of the proposition.

To illustrate the way in which Proposition 14 characterizes eigenvalues, we give
the following example.

Example 16. The previous theory was devised to suit the radially symmetric
situation. In one space dimension, we can choose the boundary condition at the
regular endpoint 0 to be arbitrary, that is, we do not have to require that u′(0)= 0.
No part of the above theory changes. Consider the one-dimensional example

−u′′ + x3/2u = λu in (0,∞), u(0)= 0.

As a first step, we compute the eigenvalues λ1 and λ2 using the Sleign2 package (cf.
Bailey, Everitt and Zettl [3]). On the basis of these guesses, we compute solutions
φ(x;λ) of the initial value problem (11) for various values of λ by using an enclosure-
based initial value solver Awa (cf. Lohner [18]). The computed solutions consist of
small number intervals (typically of size 10E-14) enclosing the true solutions. In
Figure 2 and Figure 3, we have plotted φ(x;λ) on the x-interval [0, 10], for values
of λ near λ1 and λ2. It can be seen that λ1, λ2 is precisely the largest value of λ
such that φ(x;λ) stays below π, 2π, respectively.

The values computed using Sleign2 are

λ1 ≈ 2.708 092 21, λ2 ≈ 5.585 662 36.



668 b. m. brown and w. reichel

Figure 3. φ(x; λ) for λ near λ2.

The enclosure method improves the Sleign2 values by 10−7, and gives the precise
estimates

λ1 ∈ 2.708 092 432 562
1, λ2 ∈ 5.585 662 560 463

2.

4. The limit circle type situation

For the proof of Theorem 3, we choose in the generalized Prüfer transform
Q(r)=−q(r)r(n−1)p/(p−1) for large r � R0 and Q an arbitrary smooth positive C1-
function on [0, R]. Thus the Prüfer equations (9) and (10) simplify for large r � R0

to

φ′ = (−q)1/p +
λ

p − 1
(−q)(1−p)/p|Sp(φ)|p +

Q′

pQ
Sp(φ)S′

p(φ)(p−1),

ρ′ = ρ

(
−λ(−q)(1−p)/pSp(φ)(p−1)S′

p(φ) +
Q′

pQ
|Sp(φ)|p

)
.

In view of the form of the potential q(r)=−rα for large r �R0, the equations
simplify further to

φ′ = rα/p +
λ

p − 1
rα(1−p)/p|Sp(φ)|p +

β

r
Sp(φ)S′

p(φ)(p−1), (25)

ρ′ = ρ

(
−λrα(1−p)/pSp(φ)(p−1)S′

p(φ) +
β

r
|Sp(φ)|p

)
, (26)

for r � R0, where

β =
α

p
+

n − 1
p − 1

.

Lemma 17. Suppose that φ(r;λ) is a tamed solution of (25). Then the following
holds.

(i) For r � R0, we have

φ(r;λ)= φ(R0;λ) +
p

α + p

(
r(α+p)/p − R

(α+p)/p
0

)
+ λK1(r;λ,R0) + K2(r;λ,R0),

where Ki(λ,R0) := limr→∞ Ki(r;λ,R0), i= 1, 2 exists and is continuous in λ.
Moreover, K1(λ,R0)� 0 and Ki(λ,R0)→ 0, i= 1, 2 as R0 →∞ uniformly in λ∈R.
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(ii) φ′(r;λ)= rα/p + O(1/r), |φ′′(r;λ)|= O(r(α−p)/p) as r→∞ uniformly for λ
in bounded intervals.

Proof. (i) Integration of (25) yields

φ(r;λ) − φ(R0;λ)

=
(
r(α+p)/p − R

(α+p)/p
0

) p

α + p
+ λ

1
p − 1

∫ r

R0

sα(1−p)/p|Sp(φ(s;λ))|p ds︸ ︷︷ ︸
:=K1(r;λ,R0)

+ β

∫ r

R0

1
s
Sp(φ(s;λ))S′

p(φ(s;λ))(p−1) ds︸ ︷︷ ︸
:=K2(r;λ,R0)

.

The integrand of K1(r;λ,R0) is bounded above by (p − 1)sα(1−p)/p. The latter
is integrable over (R0,∞) since α > p/(p − 1) by hypothesis. Therefore K1(λ,R0)=
limr→∞ K1(r;λ,R0) exists, and continuity with respect to λ follows from Lebesgue’s
theorem of dominated convergence. It also follows that limR0 →∞ K1(λ,R0) = 0.
Next we show the same for K2(r;λ,R0). By using the φ-equation (25) one more
time, we find that

1
β

K2(r;λ,R0) =
∫ r

R0

1
s(α+p)/p

(
φ′ − λ

p − 1
sα(1−p)/p|Sp(φ)|p

− β

s
Sp(φ)S′

p(φ)(p−1)

)
Sp(φ)S′

p(φ)(p−1) ds.

If we denote by Σp(x) a primitive of Sp(x)S′
p(x)(p−1), then integration by parts

results in

1
β

K2(r;λ,R0) =
Σp(φ(s;λ))
s(α+p)/p

∣∣∣r
R0

+
α + p

p

∫ r

R0

Σp(φ(s;λ))
s(α+2p)/p

ds

− λ

p − 1

∫ r

R0

Sp(φ)(p+1)S′
p(φ)(p−1)

s1+α
ds

−β

∫ r

R0

Sp(φ)2|S′
p(φ)|2(p−1)

s(α+2p)/p
ds.

The first term vanishes at r =∞ since Σp(x) grows at most linearly in x. The
remaining integrals have integrands which are bounded in modulus by integrable
functions, uniformly with respect to λ. As before, Lebesgue’s theorem of dominated
convergence shows that K2(λ,R0)= limr→∞ K2(r;λ,R0) is continuous in λ, and
tends to 0 as R0 →∞.

(ii) The behaviour of φ′(r;λ) can be read off directly from (25) and the fact that
α > p/(p − 1). The behaviour of φ′′(r;λ) can be read off from the differentiated
version of (25) and the previous information on φ′.

The next two results are needed to show that every solution of (2) belongs to
Lp(0,∞; rn−1).
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Lemma 18. Suppose that φ(r;λ) is a tamed solution of (25). Then∫ r

0

|Sp(φ(s;λ)|p
s

ds =
p − 1

p
log r + O(1) as r→∞

uniformly for λ in bounded intervals. Here O(1) denotes a quantity which is bounded
for r∈ (0,∞).

Proof. We calculate first the following integral, which is clearly related to the
one in question.∫ r

0

|S′
p(φ)|p
s

ds =
∫ r

0

φ′S′
p(φ)

S′
p(φ)(p−1)

sφ′ ds

= Sp(φ)
S′

p(φ)(p−1)

sφ′

∣∣∣r
0
−

∫ r

0

Sp(φ)

(
S′

p
(p−1))′(φ)

s
ds

+
∫ r

0

S′
p(φ)(p−1)

s2φ′ +
S′

p(φ)(p−1)φ′′

s(φ′)2
ds.

As r→ 0, we have by Lemma 6(i) that φ(r)= πp/2+Crn +HOT, φ′(r)= nCrn−1 +
HOT and S′

p(φ)(p−1) =C ′rn +HOT (where HOT means higher order terms). Hence
the first term on the right-hand side above is continuous at r = 0. Moreover, it tends
to 0 at r =∞, that is, it is bounded in r. Similarly, by using the growth rate for φ′, φ′′

from Lemma 17, we can see that the last two integrals are bounded in r. If we use the
differential equation satisfied by Sp (cf. Section 2.1), we have (S′

p
(p−1))′ =−S

(p−1)
p .

This yields ∫ r

0

|S′
p(φ)|p
s

ds = O(1) +
∫ r

0

|Sp(φ)|p
s

ds. (27)

If one observes that |Sp(φ)|p/(p − 1)= 1 − |S′
p(φ)|p, then (27) gives the claimed

result.

Lemma 19. Suppose that φ(r;λ) is a tamed solution of (25). Then the
corresponding solution ρ(r;λ) of (26) satisfies

c(λ)rβ(p−1)/p � ρ(r;λ)� C(λ)rβ(p−1)/p for large r � R0,

where c(λ), C(λ) are positive constants.

Proof. Integration of (26) leads to

ρ(r;λ)= ρ(R0;λ) exp
( ∫ r

R0

−λsα(1−p)/pSp(φ)(p−1)S′
p(φ) +

β

s
|Sp(φ)|p ds

)
.

The first integral is of order r1+(α(1−p)/p), which is a negative power by hypotheses.
Hence the dominating term is the second integral, which by Lemma 18 yields

ρ(r;λ) ≈ exp
∫ r

R0

β

s
|Sp(φ)|p ds ≈ rβ(p−1)/p for large r,

which is the claimed relation.

Proposition 20. Let φ(r;λ) be a tamed solution of (25) and let ρ(r;λ) be
the corresponding solution of (26). The function u(r;λ) obtained from φ(r;λ) and
ρ(r;λ) by the Prüfer transformation (8) belongs to Lp(0,∞; rn−1) for every λ∈R.



the radially symmetric p-laplacian in R
n 671

Proof. Consider
∫∞
0

rn−1|u|p dr. The integrand is rn−1ρp/(p−1)Q−1|Sp|p. The
choice of Q and Lemma 19 show that, for large r,

rn−1|u|p �C(λ)rα(1−p)/p.

By the assumption that α > p/(p − 1), the last quantity is integrable at ∞.

Proposition 21. Let λ0, λ∈R be two given values, and let φ = φ(r;λ),
φ0 =φ(r;λ0). Moreover let u = u(r;λ) and u0 =u(r;λ0) be obtained by the Prüfer
transformation as in Proposition 20. The following are equivalent.

(i) limr→∞ φ(r;λ) − φ(r;λ0) = 0 mod πp.

(ii) limr→∞(r(n−1)p/(p−1)(−q(r)))(p−2)/p2
r(n−1)/(p−1)(u′(r)u0(r)−u(r)u′

0(r))=0.

Proof. By the Prüfer transform, we have, for large r,

u′(r)u0(r) − u(r)u′
0(r)

= Q−1/pr(1−n)/(p−1)ρ1/(p−1)ρ
1/(p−1)
0︸ ︷︷ ︸

=:h(r)

(S′
p(φ)Sp(φ0) − Sp(φ)S′

p(φ0)).

The choice of Q and the asymptotics of ρ, ρ0 from Lemma 19 show that for large
r, the function h(r) is bounded above and below by positive constants times
(r(n−1)p/(p−1)+α)(2−p)/p2

r(1−n)/(p−1). Hence (ii) is equivalent to S′
p(φ)Sp(φ0) −

Sp(φ)S′
p(φ0)→ 0 as r→∞. Since S′

p/Sp is a πp-periodic functions, this is equivalent
to φ(r) − φ0(r) = 0 mod πp at r =∞.

Proof of Theorem 3. By Proposition 21, eigenvalues are characterized by

D(λ;λ0) := lim
r→∞

φ(r;λ) − φ(r;λ0)= lπp, l∈Z. (28)

By Lemma 17, we know that D(λ;λ0) is a continuous function of λ. The comparison
principle from Lemma 8 shows, moreover, that D(λ;λ0) is strictly increasing in λ.
More precisely, we have

D(λ;λ0) = φ(R0;λ) − φ(R0;λ0) + λK1(λ,R0) − λ0K1(λ0, R0)
+K2(λ,R0) − K2(λ0, R0).

Recall that K1 � 0. We choose R0 to be so large that |K2(λ,R0)|� 1 uniformly in
λ∈R. For such a fixed R0, one knows that φ(R0;λ)→∞ as λ→∞ (cf. Reichel and
Walter [19]). Thus D(λ;λ0)→∞ as λ→∞.

It remains to investigate the limit as λ→−∞. We need to show that D(λ;λ0) can
be made smaller than any constant −M < 0. Therefore we choose R0 to be so large
that φ(R0;λ0)� 2M and K1(λ;R0), |K2(λ;R0)| are smaller than ε> 0, uniformly in
λ. Finally, since we know from [19] that φ(R0;λ)→ 0 as λ→−∞, we can choose λ to
be so negative that φ(R0;λ)< ε. Altogether, we obtain D(λ;λ0)� ε−2M +λε+2ε,
which is smaller than −M for small ε> 0. Thus we have shown that D(λ, λ0) is a
continuous, strictly increasing function of λ with limλ→±∞ D(λ;λ0)= ±∞. Hence
(28) is fulfilled for a doubly infinite sequence of eigenvalues λk tending to ±∞ as
k→ ±∞. This completes the proof of Theorem 3.
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Table 1. Limit circle eigenvalues of (29).

Index Eigenvalue Error estimate

−1 −0.992 475 700E+01 0.128 11E-03

0 −0.537 591 815E+00 0.378 03E-05

1 0.847 746 563E+01 0.215 20E-04

2 0.200 756 512E+02 0.713 20E-04

4.1. A numerical example for p = 2

Theorem 3 and Proposition 21 characterize eigenvalues by the behaviour of the
Prüfer angle φ(r;λ) with respect to the angle φ(r;λ0) of a reference solution. To see
the viability of this approach, we finish our discussion with a numerical example.

Finding limit circle oscillatory eigenvalues for potentials q(r)=−rα, α > 2 is
numerically very hard, since solutions oscillate more and more rapidly as r increases.
Indeed, Sleign2 cannot compute limit circle eigenvalues for q(r)=−r3 and p = 2.
To find a good numerical example, we choose the problem

−∆u − u = λw(r)u in R
2 \ B1(0), u = 0 on ∂B1(0),

with w(r) = 1/r2. Here B1(0) is the unit ball in R
2. Radially symmetric solutions

satisfy
−(ru′)′ − ru = λrw(r)u in (1,∞), u(1)= 0. (29)

Problem (29) is known as the Sears–Titchmarch equation. Due to the factor w(r)
on the right-hand side, it is not covered by Theorem 3. Nevertheless, we will show
that the same arguments as those in the proof of Theorem 3 can be used to
characterize the eigenvalues in terms of phase-plane coordinates.

4.2. Eigenvalues via standard limit circle theory

Eigenvalues are characterized (cf. Zettl [23]) by the two boundary conditions

u(1)= 0 and [u, u0]∞ = lim
r→∞

r(u′(r)u0(r) − u(r)u′
0(r))= 0,

where u0 is a maximal domain function, that is,

u0 ∈L2(0,∞, rw(r)), (w(r)r)−1(−(ru′
0)

′ − ru0)∈L2(0,∞;w(r)r).

For (29), such functions are given by linear combinations of cos(t)/
√

t and sin(t)/
√

t,
which arise as solutions of the differential equation (29) for λ =−1/4. We choose
the particular function

u0 = sin(1) cos(t)/
√

t − cos(1) sin(t)/
√

t

since it also satisfies the Dirichlet condition at t = 1. Given this information, Sleign2
computes the eigenvalues shown in Table 1 (we have shifted the numbering in order
to match our notation).

4.3. Eigenvalues via phase-plane coordinates

With Q(r)= r2, the Prüfer transformation is given by

ru′ = ρ cos(φ), ru = ρ sin(φ) (30)
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and the pair of equations

φ′ = 1 +
λ

r2
sin(φ)2 +

1
r

sin(φ) cos(φ), (31)

ρ′ = ρ

(
− λ

r2
sin(φ) cos(φ) +

1
r

sin(φ)2
)

. (32)

We restate the results from Lemma 17–19, Proposition 20 and 21. The proof is the
same as before.

Lemma 17
′. Suppose that φ(r;λ) is a tamed solution of (31).

(i) For r � R0, we have

φ(r;λ)= φ(R0;λ) + (r − R0) + λK1(r;λ,R0) + K2(r;λ,R0),

where K1,K2 have the same properties as in Lemma 17.
(ii) φ′(r;λ)= r +O(1/r), |φ′′(r;λ)|= O(1/r) as r→∞ uniformly for λ in boun-

ded intervals.

Lemma 18
′. Suppose that φ(r;λ) is a tamed solution of (31). Then∫ r

0

| sin(φ(s;λ))|2
s

ds =
1
2

log r + O(1) as r→∞

uniformly for λ in bounded intervals.

Lemma 19
′. Suppose that φ(r;λ) is a tamed solution of (31) and ρ(r;λ) is the

corresponding solution of (32). Then c(λ)
√

r � ρ(r;λ)� C(λ)
√

r for large r � R0.

Proposition 20
′. For every λ∈R, the function u(r;λ) obtained from φ(r;λ)

and ρ(r;λ) by the Prüfer transformation (30) belongs to the space L2(0,∞;w(r)r).

Proposition 21
′. Let λ0, λ∈R be two given values, and let φ = φ(r;λ),

φ0 =φ(r;λ0). Moreover let u = u(r;λ) and u0 =u(r;λ0) be obtained by the Prüfer
transformation as in Proposition 20′. The following are equivalent.

(i) limr→∞ φ(r;λ) − φ(r;λ0) = 0 mod π.
(ii) [u, u0]∞ = limr→∞ r(u′(r)u0(r) − u(r)u′

0(r))= 0.

On the basis of part (ii) of Proposition 21′, we started the following calculations:
guaranteed enclosures of solutions φ(x;λ) of the initial value problem (31) are
computed for various values of λ by the Awa code (cf. Lohner [18]), as described
in Example 16. In Figure 4, we have plotted φ(r;λ) on the interval [1, 100] for the
given values of λ. The labelled line represents φ(r;λ0) for λ0 =−1/4. Since solutions
depend in a very weak way on the parameter λ, the figure does not contain much
information. It is more illustrative to plot the difference φ(r;λ)−φ(r;λ0), as shown
in Figure 5. However, since the λ-dependence is so subtle, we can only give bounds
on λi. The given values for λ1, λ2, λ−1 are such that

φ(R0;λ1) − φ(R0;λ0) > π at R0 = 4.35E + 003,
φ(R0;λ2) − φ(R0;λ0) > 2π at R0 = 2.90E + 003,

φ(R0;λ−1) − φ(R0;λ0) < − π at R0 = 1.93E + 003.

Together with the monotonicity of φ(r;λ) with respect to λ, this provides the
guaranteed bounds as shown in Figure 5. By comparison with the Sleign2 results,
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Figure 4. φ(r; λ) for λ−1 up to λ2.

Figure 5. Difference of φ(r; λ) from the reference solution φ(r; λ0).

we see that the phase-plane approach reasonably confirms λ−1, λ1, λ2. However, λ0

is clearly computed with considerable error by Sleign2, since its known exact value
is −0.25.

5. Open questions

We finish with a selection of questions which remain open.
(1) Can one generalize Theorem 1 to potentials q(r) satisfying only q(r)→∞ as

r→∞?
(2) Can one find in Theorem 3 a class of potential that is more general than pure

powers?
(3) What is the asymptotic distribution of eigenvalues in Theorems 1 and 3?
(4) Can one approximate the eigenvalues obtained in Theorem 1 by sequences of

eigenvalues of regular problems over [0, R] with u′(0)= u(R)= 0 by letting R→∞?
This is the case for p = 2 (cf. Bailey et al. [2]).
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