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Real-time Avionics Optimization
Mathematische Optimierung von Echtzeitsystemen im Flugzeugdesign
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Summary We report on the solution of a difficult opti-
mization problem which arises in avionics industry. When
constructing the on-board controlling-network of an airplane,
the engineers need to solve a computationally highly com-
plex problem. The goal is to assign periodic tasks to the
processors on the plane and define a schedule for each
processor. Current state-of-the-art approaches to tackle the
problem are by far not powerful enough to solve instances
of real-world size. With the help of the powerful algorithm
engineering paradigm we analyzed the mathematical prop-
erties of the scheduling problem and designed sophisticated
software based on the structural insights. We were able to
design a model that outperformed current state-of-the-art ap-
proaches by several orders of magnitude. In particular, we could
solve industrial size real-world instances to optimality. Our
methods lead, for the first time, to an industrial strength tool
to schedule aircraft sized instances. ��� Zusammenfas-
sung In modernen Flugzeugen übernimmt der Bordcomputer
einen wichtigen Teil der Flugkontrolle. Dementsprechend ist
es wichtig, dass der Computer zu jeder Zeit exakt laut Spezi-
fikation arbeitet. Einen Bordcomputer zu entwickeln ist eine
hochgradig komplexe Aufgabe. Unter anderem muss folgenes

Problem gelöst werden. Periodisch wiederkehrende Tasks (Pro-
grammabläufe und Berechnungen) müssen auf sinnvolle Weise
den im Flugzeug vorhandenen Recheneinheiten zugeteilt wer-
den. Für jede Recheneinheit muss dann ein gültiger Schedule
berechnet werden, d. h. es muss sichergestellt werden, dass
jede Task die ihr laut Spezifikation zustehende Recheninter-
valle nutzen kann, ohne in Konflikt mit anderen Tasks derselben
Recheneinheit zu treten. Allein dieses Problem, eine gültige
Zuteilung mit Schedules zu berechnen, ist selbst mit Hilfe von
modernen Rechnern sehr schwierig zu lösen. Alle bekannten
algorithmischen Ansätze sind zu ineffizient, um Systeme in-
dustrieller Komplexität zu berechnen. Wir beschreiben, wie
sich ein tieferes Verständnis der mathematischen Struktur
des Problems nutzen lässt, um ein vollkommen neuartiges
mathematisches Modell des Problems abzuleiten. Im Rahmen
des „Algorithm-Engineering“-Paradigmas haben wir das neue
Modell implementiert. Das daraus resultierende Programm
ist um Größenordnungen schneller als alle bisher bekann-
ten Ansätze. Insbesondere können wir erstmals Instanzen
lösen, die ein gesamtes Flugzeug beschreiben, wodurch
unser Programm zu einem industrietauglichen Werkzeug
wird.
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1 Introduction
Modern airplanes use sophisticated computer systems for
steering and controlling the plane, communicating with
the air-traffic controller, and many other tasks. For ex-
ample, fly-by-wire control systems or autopilots would
not be possible without the help of sophisticated on-
board computing networks. In order to guarantee flight
safety, the network must operate according to its specifi-
cations at all times. While for a home computer a small

discrepancy between expected and actual behavior is per-
fectly acceptable, for a network that controls an aircraft it
is not. Even a slight delay in the execution of a program
might result in serious and even fatal problems.

On a home computer, several tasks share computing
resources like the processors, hard-disk, memory or I/O-
devices. Managing the tasks and assigning resources to
them is the primary objective of the operating system. One
important challenge for the operating system is the fact
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that tasks with a variety of resource requests arrive and
that these resources should be distributed in a fair way
among the tasks. In such a setting dynamic effects are un-
avoidable. The following is an example of such a dynamic
effect. Everyone watching movies on a PC from time to
time has experienced short stalls of the movie. These are
usually due to other tasks that require a resource that is
also used by the software playing the movie.

Such effects are now responsible for the following
problem: The worst case execution time of a task depends
on other tasks on the system in a dynamic way. Esti-
mating worst-case execution times under circumstances
as described above is very difficult. And even worse, if
a software gives an estimate, can you be sure that this
estimate is correct? Is there a certificate of correctness of
the estimate?

Such dynamic effects are unacceptable in safety-critical
applications such as fly-by-wire. This is why such safety-
critical systems need to pass a certification process that
proves its validity. To be compliant with the official safety
requirements, the scheduling of tasks on the on-board
network of an airplane has to adhere to a strict and static
protocol. The distribution of tasks under this protocol,
where resource and communication constraints have to
be satisfied is a computationally very challenging problem
that, however, needs to be frequently solved by avionics
companies. The design of an efficient solver for this task
is the focus of our project.

In the following, we describe the static protocol and
provide an illustrating example. First of all, control tasks
should ideally be run continuously over time. This how-
ever would result in blocking a resource, like a processor,
by one single task. Therefore, this continuous activity is
approximated by running tasks periodically. The formal
model is as follows. A task is a tuple (ci, pi), where ci

is the amount of time (milliseconds) that is required by
the task i and pi is its period. Every integer multiple of
the period the task has to be run without interruption.
Those values are fixed. However, the scheduler has the
freedom to assign the first time when the task has to be
run. This offset is between 0 and pi. Suppose we have only
one processor. We define a schedule by computing this
offset ai for each task. Once the offset has been specified,
the slots on which this task will be using the processor
are irrevocably fixed. No two tasks are allowed to use the
same processor simultaneously. The goal is to assign the
given tasks to the processors and to define a schedule for
each processor while obeying the above constraints.

Figure 1 shows an example with two schedules for
three tasks, two of them depicted with stripes and the
third one dotted. The upper part shows an infeasible
schedule for them. It is infeasible because at the pos-
ition denoted by the box the two striped tasks need the
processor simultaneously. This is not allowed. However,
the schedule shown in the lower part is feasible. Notice
that eventually the schedule repeats itself and hence only
a limited part (the part shown in the picture) is of interest.

Figure 1 An infeasible and a feasible schedule.

On an airplane one has dozens of such processors that
communicate with each other on a network. The complete
problem is then twofold.
• Assign each task to a processor, and
• Assign an offset to each task.
At the same time, memory and bandwidth constraints
have to be met. All-together this problem is highly
challenging from a computational complexity viewpoint.
This means that modeling the problem in a language
interpretable by state-of-the-art solvers is not a prob-
lem. However, the state-of-the-art solvers are not able
to solve the model. Our contribution to this field is
a new algorithm based on integer and linear programming
that tackles industrial-sized instances. More precisely, we
solved this problem being guided by the paradigm of
algorithm engineering.

First, we analyzed the problem from a mathemati-
cal perspective and deduced structural properties that
allowed us to rule out many sub-optimal assignments effi-
ciently. Based on this, we designed a suitable formulation
and implemented a prototype for solving large avionics
instances. Finally, we did experiments for evaluating the
current methods. In our iterations, the quality of the
developed software improved step by step. The first ap-
proach was a purely straightforward implementation and
was not even capable of solving instances of very modest
size. Deriving a mathematical lemma allowed us to design
a formulation which performed better. However, it was
still unable to solve instances of real-world size. Having
a closer look on real-world instances from our industrial
partner, we identified two important structural proper-
ties. These properties allowed us to prove that there are
always solutions which are well-structured (we elaborate
on this in Sect. 2). By focusing on such well-behaved
solutions, we designed a completely new formulation.
It is much more sophisticated than the previous two
approaches and performs better by several orders of mag-
nitude. In particular, it was able to solve industrial size
instances to optimality.

In this article we give an overview of the computational
results. More detailed and more formal explanations can
be found in [1; 2].

Integer Programming
All our problem formulations are expressed as integer
linear programs (IP). Linear programming is a math-
ematical model to optimize a linear objective function
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subject to a set of linear constraints. Given a set of vari-
ables, a linear constraint is an inequality where the right
hand side is simply a constant number, and the left hand
side consists of the sum of a subset of variables, each
of them having a constant number as coefficient. The
objective function is a sum similar to the left hand side
of the linear constraints. Restricting to linear constraints
is crucial for solving those models efficiently. In an inte-
ger linear program, some of the variables are additionally
constrained to take only integer values, maybe even only
zero or one.

Our methods are based on integer programming
models. To give an example, variables can model de-
cisions like whether a certain task is assigned to a certain
processor or not. Consider two binary variables xi,j, xi,j′
which model whether some task τi is assigned to two
available processors j and j′. Setting xi,j := 1 and xi,j′ := 0
models that τi is assigned to processor j whereas xi,j := 0
and xi,j′ := 1 models that τi is assigned to processor j′.
To model the logical constraint that τi is assigned to at
most one of the two processors we can add the linear
constraint

xi,j + xi,j′ ≤ 1 .

In fact, all logical constraints of our scheduling problem
can be modeled by linear constraints as we explain later.
The linear objective function will always be the number
of used processors which we seek to minimize. Then
computing a solution to the IP, i. e., an assignment of
values to our variables such that all linear constraints are
satisfied, immediately gives a solution to our scheduling
problem.

There are several good reasons to use integer program-
ming. First of all, there is very sophisticated software
available to solve integer programs. In particular, the
solvers compute solutions which are provably optimal.
Also it is very easy to incorporate additional constraints
like memory limitations which arise in addition to the
core problem by adding new linear constraints to the
formulation. Alternatively, one could design heuristics
which compute some solution but do not give any qual-
ity guarantee. However, in our case such methods turned
out not to cope well with real-world instances from the
industry [1; 2].

Although there are sophisticated integer program
solvers available like CPLEX or GUROBI, solving an IP
can be a difficult and computationally challenging task
even for state-of-the-art computers. Whether an IP can be
solved or not highly depends on a good problem formula-
tion. Obtaining strong formulations requires a thorough
mathematical understanding of the underlying structure
of the problem as we will see in the sequel.

2 Three Problem Formulations
As mentioned above, we undertook several iterations of
the algorithm engineering cycle. For all our formulations

here we discuss only the case that there is one single
processor for which a schedule has to be found. This can
easily be generalized to a setting with multiple proces-
sors [1].

Time-Indexed Formulation
Our first formulation was a straightforward approach
which resulted in the time-indexed formulation. For each
task, there are many possible choices for a suitable time-
offset. Each schedule chooses exactly one time-offset for
each task. In the time-indexed formulation, we introduce
one binary variable xi,t for each combination of a task i
and a time-offset t. This variable models whether task i
is assigned the offset t. Then we add inequalities which
exclude forbidden pairs of choices. Like above, this means
that for any two choices which contradict each other, our
inequalities ensure that at most one of them is taken. For
instance, if two tasks i and i′ collide if they are assigned
offsets t and t′, respectively, then we add the constraint

xi,t + xi′ ,t′ ≤ 1 .

Finally, we add inequalities which ensure that every task
is assigned to some time-offset.

The time-indexed formulation is a valid IP-
formulation for our problem but it suffers from the great
number of variables. It performed fairly well on very
small instances with only 10 tasks. However, already on
most instances with 20 to 30 tasks it did not finish within
a reasonable time bound.

Congruence Formulation
Since the time-indexed formulation was not even able
to handle instances of medium size, further structural
insights were needed. In fact, one reason of the poor
performance of the above formulation was that for each
possible offset for a task we introduced new binary
variables. Instead, it seems much more reasonable to in-
troduce one single variable for each task which represents
its start offset. In order to be able to formulate with such
variables that no two tasks on the same processor execute
a job at the same time, we used a structural lemma [3].
The lemma proves an exact mathematical characteriza-
tion on when two tasks on the same processor collide,
depending on their offsets, their periods, and processing
times. Using this lemma, we were able to formulate linear
inequalities which ensure that no two tasks on the same
processor collide.

This approach results in the congruence-formulation. It
contains a much smaller number of variables than the
time-indexed formulation. As we will see below, it per-
forms strictly better than the time-indexed formulation.
However, it is still not capable to solve instances of real-
world size. We believe that the reason for this is that it
contains a (linearized) modulo-operator. Such construc-
tions are usually difficult to handle for IP-solvers, even if
the instance contains only a modest number of variables.
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Bin-Formulation
As the performance of the congruence formulation is
not sufficient to solve industrial size problems, we had
a closer look at typical problem instances that arise in
real world. Our goal was to reveal additional properties
that can be exploited to improve efficiency. We found
two notable properties. The most important one is that
the periods in real world instances are harmonic, i. e.,
for every pair of periods pi and pj, one is an integer
multiple of the other. Another property is that the ratio
of the largest period to the smallest period is rather small
compared to the number of tasks (20 vs. 200). The first
property allows for a new interpretation of the problem
with a better tractable structure. The second property
ensures that this structure can be handled efficiently, as
its complexity depends largely on that ratio.

A crucial observation that leads to the new interpre-
tation is the following. If a feasible schedule exists for
a given task set, then there exists a schedule with a very
special structure as we will explain now. Let us assume
that the two properties from above hold and consider
a feasible single processor schedule. This means that every
task j has an offset aj so that the tasks executed with these
offsets do not collide. Figure 2 illustrates an example of
a schedule with 7 tasks of three different periods. Tasks
one and two are of period 8, tasks three and four of
period 16 and the remaining three tasks of period 32.

We can transform the schedule such that a task of
smallest period, say task 1, has offset a1 = 0 by shifting
all offsets by the same amount. Here we shift the whole
schedule “right” and obtain a new feasible schedule which
is shown in Fig. 3.

Task 1 now plays a special role. It divides the timeline
into intervals whose length is given by the tasks period p1.
We call these intervals bins. In Fig. 4 we highlight the bins.

Why are these bins important? Note that every execu-
tion of every task has to start and end within the same
bin. Otherwise it would collide with task 1. Due to the
periodic nature of the problem and the fact that every
task period is an integer multiple of the interval length,

Figure 2 A schedule for an instance with 7 tasks.

Figure 3 Another schedule obtained by “shifting” the previous one.

Figure 4 Bin representation of the previous schedule.

each task appears in bins following a very regular pattern:
A task of smallest period will be executed in every bin.
A task whose period is twice the smallest period will be
executed in every second bin. Similarly, a task j whose
period pj is an � multiple of p1, i. e., pj = � ·p1 will be ex-
ecuted in every �-th bin. However this appearance pattern
can be shifted. For example for the two tasks of period
16 in Fig. 4, task 3 appears in every odd bin while task
4 appears in every even bin. This shift is determined by
the task offset aj. As the pattern for each task is given by
their period, the only freedom in designing the schedule
is to determine the shift of the pattern. The number of
choices (regarding the bins in which a task is executed)
depends only on the period of a task: For a task j with
period pj we have pj/p1 many choices.

This observation already reveals a lot of structure, but
one can do even more. Observe that every bin looks
exactly the same as far as tasks of smallest period are
concerned. For an input of tasks of period up to � · p1,
every �-th bin looks exactly the same. Moreover, for any
two tasks the one with the larger period either appears in
a subset of bins the other task appears in, or they never
share a bin at all. This motivates to represent the schedule
in form of a tree, which we call a bin tree. The tree has
as many levels as we have different periods, say k many.
Each node of the tree consists of a bin. The root node on
level 1 corresponds to the smallest period and contains
all tasks of period p1. A bin on level � contains only tasks
of period less than or equal to the �-th smallest period.
The bins on level � represent the possible choices (pattern
shifts) for a task with the �-th period. Each of these tasks
must choose one bin. Every node except for the root also
has one parent bin, which corresponds to those tasks of
smaller periods that appear in a superset of bins in the
schedule. The nodes inherit all tasks from its parent bins.
This ensures that tasks of different periods that appear
in a common bin in the schedule always share a bin in
the bin-tree as well. The bins on the last level correspond
to the actual bins from the schedule as illustrated in the
picture above. (However, the order is different.) See Fig. 5
for an illustration of the bin tree that corresponds to the
schedule from above.

How does this abstraction help us? A powerful struc-
tural insight which we will not prove here, is that one can
ignore the actual execution slots of the tasks within the
bins completely, only the fact whether a task appears in
a bin or not is important. Observe that in every feasible
schedule, the bins in the bin tree are not “overloaded”,
i. e., the sum of execution times of tasks appearing in
the same bin never exceeds the bin size. The strength of
the bin-tree abstraction is that this criterion is not only
necessary but also sufficient for constructing a feasible
schedule: Given an assignment of tasks to bins in the
bin-tree on their respective levels, such that (following
the inheritance rules) no bin on the last level is over-
loaded, then one can compute feasible offsets efficiently
with a simple algorithm.
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Figure 5 Bin tree representation of the schedule from Fig. 3.

This allows us to interpret our scheduling problem as
an assignment problem: Assign tasks to bins in the bin
tree such that no bin is overloaded. These assignment
problems can be handled more efficiently in practice.
The complexity of the representation is dominated by the
number of bins in the bin-tree, i. e., the choices of the
shift of the assignment pattern. As mentioned previously,
the number of choices for a task is given by the ratio of
its period and the smallest period q1. At this point, our
second observation about the characteristics of real-world
instances comes into play: The ratio of largest period to
smallest period is low. For that reason, the complexity of
the model is well bounded for real-world instances.

We now show how the described theoretical structure
can be turned into a compact model which is appropriate
to solve real-world instances. As mentioned before, we
need to determine which bin in the tree a task i is assigned
to. For this it is enough to see which bin of level r contains
task i, where qr is the period of task i. Hence, we introduce
a variable zi,b that represents if task i is assigned to bin
b (which belongs to level r in the tree). The variable zi,b

equals to one if task i is assigned to bin b, and equals to
zero otherwise. For example, if we consider the solution
given by Fig. 5, where b corresponds to the third bin
(from left to right) of the last level, then z5,b = 1. Also
z5,b′ = 0 for any other bin b′. The model has to ensure
that each task is assigned to exactly one bin. This can be
captured with the following linear constraint

∑

bin b

zi,b = 1 for each task i . (1)

This constraint ensures that our solution will assign each
task to some bin, however this is not enough to imply that
our solutions will be feasible: it may happen that two jobs
use the processor at the same time, or equivalently by the
criterion explained before, some bin could be overloaded.
Hence, we need to add another constraint to restrict to
solutions that do not overload any of the bins. For this
recall that if task i is assigned to bin b, then this task
will appear in all of the descendants of this bin. Thus, to
guarantee that a bin b of the last level of the tree is not
overloaded we can impose the following constraint.

∑

b′

∑

task i

ci · zi,b′ ≤ q1 , (2)

where the first sum is taken over all of bins b′ that are an
ancestor of b.

Summarizing, we have that an assignment of tasks
to bins given by the variables zi,b represents a feasible
schedule on a single processor if and only if all variables
are either 1 or 0 and they satisfy constraints (1) and (2).

3 Computational Results
Out of the three formulations mentioned above, only the
last one is powerful enough to solve the industrial size
problems in our tests. We illustrate this in the following,
where we compare computationally the running times
for solving each of the three models on the same test
instances. This comparison is done over extensions of the
models described in the previous section to the multiple
processor case. For the tests, we set the objective function
to minimize the number of processors needed to process
all the tasks.

We generated random instances by perturbing real-
world instances. The instances are generated by drawing
a random subset of 10, 20, 30, 40, 50 or 60 tasks from
the largest industrial instance we had at our disposition,
and perturb some of their parameters randomly.

In these real world instances additional side constraints
like memory and bandwidth restrictions are also incor-
porated into the model. All these extra conditions can be
addressed in a straightforward manner by adding extra
linear inequalities to each of the models.

All computations are performed on a two-processor
computer with Intel Xeon 2.66 GHz CPUs with 8 GB
of RAM, running Linux. We used CPLEX release ver-
sion 12.1.0.

In Figs. 6 and 7 we compare how the different methods
perform. Figure 6 shows the percentage of the random
instances which are able to finish within 30 minutes and
where the system does not run out of memory. Figure 7
compares the average running times for solving the model
for the different number of tasks. As the differences in
running time are so drastic, to improve readability the
plot is shown in semi-logarithmic scale.

In Fig. 6 we can see that the congruence formulation
and time-indexed formulation are not able to solve most
of the instances within the time horizon of 30 minutes,
even when the number of tasks is relatively small. Con-
sidering that real-world instances usually have at least
90 tasks, we conclude that these approaches are inappro-
priate. Figure 7 confirms this statement by showing how

Figure 6 Performance of the models: Percentage of instances solved
within 30 minutes on instances of various sizes.
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Figure 7 Performance of the models: Average time needed to solve
instances of different sizes. BF: bin-formulation, CF: congruence-
formulation, TIF: time-indexed formulation.

the running time of these formulations grows with the
number of tasks in the instance.

4 Conclusion
Complex optimization problems arising in industry often
need sophisticated optimization tools to be solved. In par-
ticular, heuristics and other straightforward approaches
are often inappropriate to handle such problems since
they can be unreliable: They can return suboptimal solu-
tions or they could even not find a feasible solution.

In this article we studied such an optimization problem
arising in avionics, for which heuristics are particularly
inappropriate. We resorted to integer programming tools
to model and solve the problem. Guided by the algorithm
engineering paradigm, we proposed several such models.
These models used insights about the real world instances
as well as several mathematical tools developed to under-
stand the problem thoroughly. These insights were crucial
to formulate the problem appropriately, and finally find
a compact formulation that is capable of handling the
real-world instances.
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