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ABSTRACT

Model quality estimation is an essential component
of protein structure prediction, since ultimately the
accuracy of a model determines its usefulness
for specific applications. Usually, in the course of
protein structure prediction a set of alternative
models is produced, from which subsequently the
most accurate model has to be selected. The
QMEAN server provides access to two scoring func-
tions successfully tested at the eighth round of
the community-wide blind test experiment CASP.
The user can choose between the composite scor-
ing function QMEAN, which derives a quality esti-
mate on the basis of the geometrical analysis of
single models, and the clustering-based scoring
function QMEANclust which calculates a global
and local quality estimate based on a weighted all-
against-all comparison of the models from the
ensemble provided by the user. The web server per-
forms a ranking of the input models and highlights
potentially problematic regions for each model. The
QMEAN server is available at http://swissmodel.
expasy.org/qmean.

INTRODUCTION

In the course of protein structure prediction usually a set
of alternative models is produced from which subse-
quently the final model has to be selected. For this pur-
pose, scoring functions have been developed which aim at
estimating the expected accuracy of models. These meth-
ods fall into two categories: The first category of scoring
functions relies on the analysis of single models based on
evolutionary (1,2) or physiochemical criteria, e.g. by com-
paring models with statistical properties of known struc-
tures (3–10). The second category derives a quality score
from the information contained in an ensemble of models
for a given sequence using an all-against-all structural
comparison of the models. These so called clustering or
consensus methods are based on the idea that conforma-
tions predicted more frequently are more likely to be
correct than structural patterns occurring in only a few
models (11–13). Both approaches have their advantages

and the choice of the method depends on the situation
and the availability of information.

The QMEAN server provides access to both kind of
methods, giving the user the opportunity to choose
between the composite scoring function QMEAN (6)
(which stands for Qualitative Model Energy ANalysis)
and the clustering method QMEANclust (32) building
on it. As highlighted recently during the CASP blind-test
experiment (14,15), correctly ranking different models for
the same target protein is not a trivial task and structure
prediction groups have considerable problems in ranking
their own models. The QMEAN scoring function, which
calculates both global and local (per-residue) quality esti-
mates on the basis of single models, can be used to assist
model selection and to identify problematic regions for
subsequent refinement. The QMEANclust scoring func-
tion on the other hand needs a certain number of
models and structural diversity within the model ensemble
in order to work properly and may be used to estimate the
quality and the local conformational diversity of multiple
models. Such sets of models are for example obtained
from meta-servers (16,17) (i.e. servers collecting and
integrating results from multiple modelling servers) or as
a result of extensive conformational sampling runs typi-
cally performed in fragment-based approaches (18,19).
QMEANclust differs from other consensus methods
such as Pcons (12) or the consensus method included
in the ModFOLD server (20) in that it takes advantage
of an initial ranking of the individual models obtained
by QMEAN in order to weight the contribution of the
models in the clustering process. This allows
QMEANclust to circumvent inherent limitations of clus-
tering methods and in some cases to identify good candi-
date models from the ensemble even if they are not part of
most dominant structural cluster. The QMEAN scoring
function differs from other publicly available model qual-
ity assessment servers operating on single models in its
constituting terms: e.g. in comparison to the ModFOLD
server (20) and the ProQ method (21), QMEAN addition-
ally includes a more detailed distance-dependent all-atom
interaction potential as well as a torsion angle potential
over three consecutive residues. The individual terms of
QMEAN are available in the output and their analysis
may reveal possible explanations for the low score of a
model, in contrast to the two above mentioned machine
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learning approaches which return a single score.
QMEAN has been compared with a variety of state-of-
the-art scoring functions (6) and both QMEAN and
QMEANclust have been tested recently at CASP8 (32),
where QMEAN was among the top performing non-
consensus scoring functions, and QMEANclust showed
good results for both global and local quality estimation
(http://predictioncenter.org/casp8/).

THE QMEAN SERVER

Required input

The user has the possibility to either submit a single model
(in PDB-format), or multiple models (as zip- or tar.gz-
archive) and the full-length sequence of the target protein
(which is needed for secondary structure and solvent
accessibility prediction). In the case of multiple models,
the models are mapped on the target sequence and auto-
matically renumbered if necessary. A flag can be set in
order to penalize incomplete models. The penalization of
short models aims at obtaining a balance between quality
of the models and coverage. By setting the flag the model
score is additionally multiplied by the fraction of modelled
residues with respect to the input sequence. The user can
choose between one of the two scoring functions QMEAN
and QMEANclust. By default, the QMEAN composite
scoring function is selected since QMEAN is able to esti-
mate the quality of single models and small sets of models
whereas QMEANclust requires a certain number and
diversity of models to work properly (see below).

QMEAN and QMEANclust scoring functions

The QMEAN scoring function estimates the global qual-
ity of the models on the basis of a linear combination of
six structural descriptors, four of them are statistical
potentials of mean force: The local geometry is analysed
by a torsion angle potential over three consecutive amino
acids. Two distance-dependent interaction potentials
based on Cb atoms and all atoms, respectively, are used
to assess long-range interactions. A solvation potential
describes the burial status of the residues. Two terms
reflecting the agreement between predicted and calculated
secondary structure (22) and solvent accessibility (23) are
included. A table containing for each model its QMEAN
score and the values of the six contributing terms is
included in the summary section of the results page
(Figure 1a). These data allow the user to inspect differ-
ences between the models, which help understanding
which terms contributed most to the low quality estimate
of a certain model. The ranking of the models on the
results page is based on the QMEAN or QMEANclust
score which reflects the predicted global model reliability
ranging from 0 to 1.

The per-residue error estimates of QMEANlocal are
based on a linear combination of eight terms smoothed
over a sliding window of nine residues around the given
amino acid. Local versions of the six terms used in
QMEAN are combined with two additional terms which
take into account the fact that the conformation of solvent
exposed residues and residues outside regular secondary

structure elements are potentially predicted less reliably.
For each model, a table containing the QMEANlocal
score together with all contributing terms is provided
in the last column of the details section on the results
page. A closer inspection of the terms per position may
help to explain high energy peaks (e.g. as a consequence of
unfavourable torsion angles or clashes).
The performance of clustering methods such as

QMEANclust typically depends on the composition of
the set of models to be assessed. Clustering methods
have been shown to outperform physics-based energy
functions in situation when the ensemble contains a vari-
ety of models from different sources covering a wide qual-
ity range such as given at CASP or at meta-servers. On the
other hand, if the set of models does not include any good
models or the best models are outliers, clustering methods
are prone to fail (24). In order to counteract the limita-
tions of pure clustering methods, QMEANclust combines
clustering information with knowledge of the quality of
the single models as estimated by QMEAN. Unlike for
other clustering methods, in which all models contribute
equally to the consensus score, QMEANclust incorporates
knowledge of the quality of single models to weight each
model in the consensus calculation. This combination
allows the inherent limitations of pure consensus methods,
which are designed to select models from the most highly
populated structural cluster, to be circumvented.
The local error estimates by QMEANclust are derived

in analogy to the global scores by analysing the local vari-
ability among the models based on pairwise superposi-
tions. In a hierarchical approach, QMEAN is used to
prioritize the models in the calculation of the
QMEANclust score. The QMEANclust score is subse-
quently used to weight each model in the derivation of
the local clustering scores. This means that models pre-
dicted to be more reliable contribute more in the calcula-
tion of the local score. This approach to local quality
estimation has been shown to perform statistically signifi-
cantly better than pure consensus methods as indicated
by preliminary results from the CASP8 assessment
(see assessment results by Anna Tramontano on the
CASP8 website: http://predictioncenter.org/casp8/doc/
presentations/CASP8_QA_Tramontano.pdf).
However, the absolute estimated per-residue error in

Ångstrom as predicted by the two scoring functions has
to be treated with caution. Statistical potentials in general
are well-suited for identifying regions of small to medium
deviations from ideal geometries whereas they are unable
to discriminate between serious and very serious devia-
tions (e.g. between 5 Å and 15 Å) both being geometrically
incorrect. As a consequence, the residue error predicted by
QMEANlocal rarely exceeds 5 Å. Nevertheless, the main
purpose of the local quality estimation is to help identify
potentially incorrect regions. For this purpose, the estima-
tion of the relative local quality as provided by QMEAN is
a good starting point.
The prediction of the absolute residue error with

QMEANclust highly depends on the quality of the set of
models in the ensemble (diversity, fraction and distribu-
tion of near native models in the set). For model ensem-
bles containing useful structural density information, the
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predicted local error can be quite accurate as shown in
the example, Figure 1b and c.
For each submitted model the predicted local (per-

residue) error is displayed as line plot or as colour-coded
PDB file with the local error in the B-factor column. The
molecular graphics viewer Jmol (http://www.jmol.org/)
can be directly used on the website to interactively inspect
the problematic regions in the colour-coded structure. In
the case of QMEANclust, the summary section addition-
ally contains a visualization of the local conformational
diversity within the ensemble of models. The plots (pro-
vided in two different formats) show the median
QMEANclust score per position as a measure of diversity.
Calculation time of the method is typically on the order

of a few minutes for small sets and is mainly limited by the

time needed for predicting secondary structure and solvent
accessibility from the sequence. For larger test sets, the
clustering process in the QMEANclust mode is the time
and memory determining step. The user can optionally
specify an e-mail address; in this case a notification
Email with a link to the results page as well as a download
link to a tar.gz-archive containing all results is sent after
completion.

EXAMPLE

The start page of the QMEAN server provides a link to an
example results page which allows the user to inspect a
typical output of the server. A snapshot of the example
results page is given in Figure 1a. The example test set

Figure 1. Example results page for the 61 CASP7 server models of target T0308 together with local details for model HHpred3_TS1: (a) screenshot
of the example results page with the summary section at the top and the first model from the details section. (b) Superposition of the best predicted
model HHpred3_TS1 according to QMEANclust (colour-coded according to predicted local error based on QMEANclust local; from blue to red)
and the experimental structure (in grey, PDB identifier 2h57). (c) Comparison of predicted error (in blue based on QMEANclust local) versus
measured Ca distance between model and native structure (in grey).
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contains 61 models of the CASP7 experiment submitted
by automated servers for the target sequence T0308, a 165
residue long target provided by the Structural Genomics
Consortium (SGC). The first model of each server has
been used here as indicated by the suffix TS1. The
models of all previous CASP rounds are publicly available
at http://predictioncenter.org/download_area/. In the
example, the QMEANclust scoring function has been
chosen to rank the models. From the 61 models contained
in the set, 60 have been processed. One structure has been
excluded by the server: it is a reduced model consisting
only of Ca atoms which can not be handled by QMEAN
since the torsion angle potential and the all-atom potential
at least need the backbone atoms to be present.

Table 1 shows a comparison of the rankings based
on the two scoring functions for the example model set.
The best ten models are shown sorted according to their
QMEANclust score in comparison to GDT_TS score (25),
a well-established measure for the similarity between a
model and the corresponding experimental structure.
Some of the top models in the test set have a quite similar
score, but the quality of the remaining models rapidly
decreases with the majority of models having a GDT_TS
between 70 and 80 (data not shown). The original perfor-
mance data can be found on the website of the Prediction
Center (http://www.predictioncenter.org/casp7/). The
model HHpred3_TS1 ranked first by QMEANclust was
the fifth best in the corresponding CASP7 ranking
which corresponds to a marginal GDT_TS loss of 0.8
units compared to the best available model. The model
on the second rank according to QMEANclust
(PROTINFO_TS1) was the best model in the set. The
QMEAN scoring function is able to recognize the best
model in the given test set, but does not recognize all
the top models. The two models SAM_T02 and
UNI_EID_expm which are ranked poorly by QMEAN
are both models without side chains and the latter
additionally has several unfavourable torsion angles.

Both structural features are not captured by the
GDT_TS score which is based on Ca atoms only.
Figure 1b and c show a comparison of the predicted

local error and the calculated local deviation of the
model from the experimental structure (Ca distance) for
the model ranked first by QMEANclust (HHpred3_TS1).
The PDB identifier of the experimental structure, which
was published after CASP7, is 2h57. Figure 1b shows a
superposition of the model coloured according to the pre-
dicted residue error (from blue to red) and the experimen-
tal structure in grey. Regions in the model labelled
by colours from the red part of the spectrum indeed cor-
respond to residues deviating from the native conforma-
tion. The error plot given in Figure 1c shows that both
regions with errors above 5 Å with respect to the native
structure (grey line) were identified by QMEANclust.
A scatter plot showing predicted versus calculated per-
residue error for this example can be found in
Supplementary Data (correlation coefficient r=0.67).

CONCLUSIONS

Identifying the most accurate model among a set of
alternatives is a crucial step in protein structure predic-
tion. Here we present the QMEAN server which makes
two methods for model quality estimation publicly avail-
able: QMEAN and QMEANclust. The QMEAN server
addresses both users of protein structure models as well
as method developers. The user of the web server has
the possibility to either assess a single model or multiple
models. Each model is assigned a quality score which
is used to rank the structures. Additionally, a per-residue
error estimate is provided and visualized in several ways
allowing the user to inspect the protein models in more
detail.
QMEAN can also be used for assessing individual

models within SWISS-MODEL Workspace (26,27)
together with other tools such as ProQres (28),
ANOLEA (29) and WhatCheck (30). This allows the com-
parison of the quality estimation of the different
approaches which potentially improves the reliability of
the prediction. Models from the SWISS-MODEL
Repository (31) can be directly sent to the quality estima-
tion section of the Workspace.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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