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Lack of a vaccine for infants and immunosuppression after infection are problems associated with measles
virus (MV). Because interleukin (IL)–12 has been used successfully as a vaccine adjuvant and because inhibition
of IL-12 expression has been associated with immunosuppression during measles, the addition of IL-12 may
enhance the immune response to MV. To determine the effect of IL-12 supplementation, rhesus macaques
were vaccinated with a recombinant MV expressing IL-12; these macaques had increased interferon-g pro-
duction by CD4+ T cells, decreased production of IL-4, and lower levels of MV-specific immunoglobulin G4
and neutralizing antibody. Lymphoproliferative responses to mitogen were not improved. IL-12 supplemen-
tation altered the T helper type 2 bias of the immune response after MV vaccination, had a detrimental effect
on the protective neutralizing antibody response, and did not improve other manifestations of immunosup-
pression. Reduced IL-12 levels are not the sole factor in MV-induced immunosuppression.

Two serious and interrelated problems define the ad-

verse effects of measles virus (MV) infection in devel-

oping countries. First, measles is an immunosuppres-

sive disease that leads to increased susceptibility to

infections with other pathogens, causing deaths world-

wide every year; there were 800,000 deaths attributed

to measles in 2000 [1]. Second, efforts to eliminate MV

are hampered by the fact that the current live attenuated

MV vaccine is poorly immunogenic in infants as a result

of interference of transplacentally acquired maternal

antibody with vaccine viral replication and immaturity

of the infants’ immune system [2, 3]. These problems
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may be linked, as suggested by the increased mortality

observed after administration of high-titer, live atten-

uated MV vaccines to infants in the 1990s. High-titer

vaccines overcame interference by transplacental anti-

body and immune immaturity, eliciting stronger anti-

body responses than regular vaccine, but may have led

to immunosuppression similar to that of wild-type in-

fection and increased mortality in female vaccine re-

cipients [4].

MV-induced immunosuppression is characterized by

transient lymphopenia during the viremic period [5],

prolonged inhibition of delayed-type hypersensitivity

responses in vivo [6, 7], decreased lymphocyte prolif-

eration to mitogens in vitro [8, 9], and polarization of

cytokine production toward type 2 (Th2) cytokines

(e.g., interleukin [IL]–4 [10]), which is associated with

a decrease in the type 1 (Th1)–inducing cytokine IL-

12 [11, 12]. In fact, reduced IL-12 production by MV-

infected antigen-presenting cells has been proposed as

a factor that leads to Th2 cytokine skewing and im-

munosuppression [13]. IL-12 is important in stimu-

lating Th1 CD4+ T cell responses [14], and its deficiency
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Figure 1. Measles virus (MV) expressing human interleukin (IL)–12
(MVIL-12). The MV genome and IL-12 genes comprising the MVIL-12 virus
are as follows: F, fusion; H, hemagglutinin; L, large polymerase protein
of MV; M, matrix; N, nucleocapsid; P, phosphoprotein; and the p40 and
p35 subunits of IL-12 separated by the internal ribosome entry site (IRES)
sequences of encephalomyocarditis virus [26].

leads to increased susceptibility to infections known to affect

patients with measles during convalescence [15, 16].

IL-12 has also been shown to affect antibody production

either directly, by interaction with B cells, or indirectly, by the

stimulation of T helper cells [17–19], and to promote interferon

(IFN)–g production by CD8+ T cells [20]. Consequently, IL-

12 has been proposed for use as an adjuvant for a variety of

experimental vaccines [21–24] and is particularly attractive for

use with live MV vaccines, because the addition of IL-12 during

administration of the live attenuated vaccine may overcome

the problems posed by maternal antibody interference and im-

maturity of the immune system in infants while preventing the

immunosuppression associated with high-titer vaccines.

Therefore, we engineered a recombinant MV vaccine strain

that stably expressed human IL-12 (functional in macaques

[25]) as the biologically active heterodimer p70 [26]. Rhesus

macaques were vaccinated with this virus and studied to de-

termine whether IL-12 supplementation could serve as an ad-

juvant for MV vaccination and/or abolish measles-associated

immunosuppression. Immune responses were compared with

those of monkeys vaccinated with the parent MV not expressing

IL-12 (MVtag).

MATERIALS AND METHODS

Virus. Recombinant MV expressing human IL-12 (MVIL-12)

was constructed from cloned Edmonton B DNA (MVtag), as

described elsewhere [26]. MVIL-12 contains an extra transcrip-

tion element, located between the H and large polymerase (L)

genes of MV, that consists of the genes for the p40 and p35

subunits of human IL-12 divided by an internal ribosome entry

site element from encephalomyocarditis virus (figure 1). MVIL-

12 was grown and assayed by plaque formation in Vero cells.

Animals and vaccination. Seven MV-seronegative rhesus

macaques, 1–2 years old, were obtained from the Johns Hopkins

University primate facility. A total of pfu of MVIL-12 (443 � 10

monkeys) or MVtag (3 monkeys) were injected intramuscularly.

At 14 months after vaccination, each of the monkeys was chal-

lenged with 104 TCID50 of the wild-type Bilthoven MV strain (a

gift from A. Osterhaus, Erasmus University, Rotterdam). Mon-

keys were chemically restrained with ketamine (1 mg/kg) during

all procedures.

All animal studies had the approval of and followed the

guidelines of the Johns Hopkins University Animal Care and

Use Committee.

Reverse-transcriptase polymerase chain reaction (RT-PCR)

and Southern-blot analyses. Total cellular RNA was extracted

from peripheral blood mononuclear cells (PBMCs) that61 � 10

had been stimulated for 48 h with phytohemagglutinin (4 mg/

mL PHA-P) using RNAStat 60 (Teltest) and was resuspended

in 20 mL of RNase-free water. A total of 15 mL of RNA was

converted into cDNA and amplified during a 1-step RT-PCR

(Invitrogen) by use of N-specific primers (5′-CATTACATCAG-

GATCCGG-3′ and 3′-CTACTCCGCCTGGTTATG-5′). After 40

cycles, 15 mL of the PCR product was separated by 1% agarose

gel electrophoresis. The PCR product was transferred overnight

onto a nylon membrane (Hybond-N; Amersham Pharmacia)

and was visualized by Southern-blot analysis by use of an in-

ternal N-specific digoxigenin-labeled probe (/5 Dig N/5′-GAG-

CCATCAGAGGAATCA-3′). Water was used as a negative con-

trol. The positive control was RNA obtained from MVtag virus

grown in Vero cells. Relative amounts of N product were as-

sessed by densitometry with the LAS-1000 Plus CCD camera

system and Image Gauge software (both from Fujifilm). The

lower limit of detection was 10 pg of MV N-gene RNA.

Antibody assays. EIAs to measure levels of MV-specific

IgG, IgG1, IgG2, and IgG4 were performed by use of lysates

of MV-infected Vero cells as antigen. H- and F-specific EIAs

were performed by use of lysates of L cells expressing either

the H or F glycoproteins (provided by T. F. Wild, INSERM,

Lyon, France), as described elsewhere [27, 28]. IgG subclasses

were measured by using monoclonal antibodies (MAbs) against

human IgG1, IgG2, and IgG4 (Binding Site). Neutralizing an-

tibody was measured by the ability of serially diluted plasma

to reduce plaque formation of MV on Vero cells by 50%, as

described elsewhere [29]. All assays were run in triplicate, and

the results were averaged. EIA values are expressed as the dif-

ference in absorbance between MV-specific immune serum and

nonimmune control serum.

Isolation of PBMCs and flow cytometry. PBMCs were

separated from heparinized blood by density centrifugation on

a Ficoll-Hypaque gradient (density, 1.077; Amersham). For in-

tracellular cytokine staining, 106 PBMCs were incubated with

60 ng/mL PMA (Sigma), 500 ng/mL ionomycin (Sigma), and

5 mL of GolgiStop (BD PharMingen) for 5 h, blocked with 100

mL of 20% monkey serum in RPMI 1640 medium, and incu-

bated for 15 min with 25 mg/mL fluorescein isothiocyanate–

conjugated mouse anti–human CD3 (clone SP34; BD Phar-

Mingen) and Cy-Chrome–conjugated mouse anti–human CD8

(clone RPA-T8; BD PharMingen) MAb or control mouse im-

munoglobulin (clone MOPC-21; BD PharMingen). A phyco-

erythrin-conjugated mouse anti–human IFN-g MAb (clone
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Figure 2. Reverse-transcriptase polymerase chain reaction and South-
ern-blot detection of measles virus (MV) in monkeys vaccinated with MV
expressing human interleukin (IL)–12 (MVIL-12) or parent MV not ex-
pressing IL-12 (MVtag). Lanes 1–4, N-gene RNA present in peripheral
blood mononuclear cells (PBMCs) derived from MVIL-12–infected mon-
keys; lanes 5–7, N-gene RNA present in PBMCs derived from MVtag-
infected monkeys. +, Positive control; �, negative control; B, blank (lane
skipped).

Figure 3. Measles virus (MV)–specific antibodies produced by monkeys vaccinated with MV expressing human interleukin (IL)–12 (MVIL-12) or
parent MV not expressing IL-12 (MVtag). MV-specific IgG against total MV protein (A), H glycoprotein (E), and F glycoprotein (F), as measured by EIA.
B, MV-specific IgG1. C, MV-specific IgG4. D, MV-neutralizing antibody, as measured by plaque reduction. Symbols indicate geometric mean titers.
Error bars indicate SE. * . PRNT, plaque reduction neutralization titer.P ! .05

B27; BD PharMingen), control mouse immunoglobulin (clone

MOPC-21; BD PharMingen), or biotinylated anti–monkey

IL-4 (BioSource International), followed by phycoerythrin-

conjugated streptavidin (BioSource) was used to stain intra-

cellularly. All antibodies were used at saturating concentrations,

as defined by the manufacturer. Lymphocyte acquisition was

performed with a FACScalibur flow cytometer, and data were

analyzed by CellQuest software (both from Becton Dickinson

Immunocytometry Systems).

Lymphoproliferation and cytokine assays. PBMCs were

suspended at a concentration of 106 cells/mL in RPMI 1640

medium supplemented with 10% fetal bovine serum. Spon-

taneous and PHA-induced proliferation of PBMCs were mea-

sured after 72 h of culture, as described elsewhere [8, 9]. Data

are expressed in terms of the stimulation index (i.e., the ratio

of PHA-induced proliferation to spontaneous proliferation).

Supernatant fluids from PHA-stimulated PBMCs were collected

after 48 h, and levels of IFN-g and IL-4 were measured by EIA,

according to the manufacturer’s instructions (BioSource). In

addition, supernatant fluids from PBMCs stimulated with 1 mg/

mL Salmonella typhimurium lipopolysaccharide (LPS; Sigma)

and 300 IU/mL IFN-g (BD PharMingen) were collected after

24 h, and levels of IL-12 and IL-10 were measured by EIA

(BioSource). IL-12 levels in plasma were also measured by EIA

(BioSource).

Granzyme B assay. Cytotoxic T lymphocyte (CTL) activity

was assessed by measuring granzyme B activity in PBMCs, as

described elsewhere [30, 31].

Statistical analysis. Data between groups immunized with

either MVIL-12 or MVtag were compared by an unpaired Stu-

dent’s t test by Stat-View software (version 5.0.1; SAS Institute).

For plasma IL-12 levels, data from the MVIL-12 and MVtag

groups after vaccination were compared with baseline data from
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Figure 4. Cytotoxic T lymphocyte response and CD8+ T cell activity
in peripheral blood mononuclear cells from monkeys vaccinated with
measles virus (MV) expressing human interleukin (IL)–12 (MVIL-12) or
parent MV not expressing IL-12 (MVtag). A, Granzyme B activity reported
as absorbance (Abs) per milligram of total cellular protein. B, Change in
the percentages of PMA/ionomycin-stimulated CD3+/CD8+ T cells ex-
pressing intracellular interferon (IFN)–g after vaccination. Error bars in-
dicate SE.

Figure 5. Antibody and cytotoxic T lymphocyte responses to challenge
with wild-type virus in monkeys vaccinated with measles virus (MV)
expressing human interleukin (IL)–12 (MVIL-12) or parent MV not ex-
pressing IL-12 (MVtag). MV-specific IgG against H glycoprotein (A) and
F glycoprotein (B), as measured by EIA. C, MV-neutralizing antibody, as
measured by plaque reduction. D, Granzyme B activity reported as ab-
sorbance (Abs) per milligram of total cellular protein. Symbols indicate
geometric mean titers. Error bars indicate SE. PRNT, plaque reduction
neutralization titer.

the MVIL-12 and MVtag groups, respectively, by an unpaired

Student’s t test.

RESULTS

Use of IL-12 as an Adjuvant for MV Vaccination

Infectivity of MVIL-12 and MV-tag in macaques. Although

replication is delayed by 12 h, MVIL-12 grows to titers com-

parable to that of the parent MV in Vero cells [26]. To confirm

MVIL-12 replication in vivo, we assessed the relative amounts

of MV RNA in PBMCs by use of RT-PCR and Southern-blot

analysis. N-gene RNA in PBMCs was present in comparable

levels on day 7 in monkeys vaccinated with MVIL-12 and

MVtag virus (figure 2) but it was not detectable in PBMCs

obtained from any of the monkeys on day 0 or day 25 (data

not shown).

MV-specific antibody production after vaccination with

MVIL-12 and MVtag. All monkeys showed an increase in

MV-specific IgG that was first detected 14 days after vaccination

(figure 3A). Both MVIL-12 and MVtag recipients had detectable

MV-neutralizing antibody by day 14. However, neutralizing

antibody titers were significantly higher in MVtag-vaccinated

monkeys than MVIL-12–vaccinated monkeys (day 21, P p

; day 42, ; figure 3D). Neutralizing antibodies.035 P p .02

against MV are directed against both surface glycoproteins, H

and F. To determine whether the lower neutralization titers in

MVIL-12–vaccinated monkeys reflected an altered response to

one or both glycoproteins, H- and F-specific EIAs were per-

formed. Levels of IgG to H, the major neutralizing antigen,

were higher in the MVtag- than MVIL-12–vaccinated monkeys

(day 42, ; figure 3E). However, levels of IgG to the minorP p .01

neutralizing antigen F were higher and detected earlier in

MVIL-12–vaccinated monkeys (figure 3F).

To further characterize the nature of the antibody responses,

we examined the isotypes and IgG subclasses. IgG1 was the

primary IgG subclass produced in both groups but was present

at higher levels in MVIL-12–vaccinated monkeys than in

MVtag-vaccinated monkeys (figure 3B). MV-specific IgG4 (day

42, ) was detectable only in MVtag-vaccinated mon-P p .0001
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Figure 6. Cytokines secreted by peripheral blood mononuclear cells (PBMCs) from macaques and in plasma at various times after vaccination with
measles virus (MV) expressing human interleukin (IL)–12 (MVIL-12) or parent MV not expressing IL-12 (MVtag). Cytokine levels were measured by EIA
in supernatant fluids of lipopolysaccharide /interferon (IFN)–g– or PHA-stimulated PBMCs after infection with MVIL-12 or MVtag, A, IL-12; B, IL-10;
C, IFN-g; D, IL-4; and E, IL-12 levels in plasma. Error bars indicate SE. * , day 14 and day 28 IL-12 levels vs. baseline IL-12 level (day 0) inP ! .05
MVIL-12–infected monkeys.

keys (figure 3C). MV-specific IgG2 and IgE were undetectable

in both groups (data not shown).

CTL responses and CD8+ T cell activity after vaccination

with MVIL-12 and MVtag. Because IL-12 enhances the lytic

capacity of CTLs, effector cells that assist in the clearance of

MV-infected cells [32], we measured granzyme B activity, a

correlate of CTL activity [30, 31], in extracts from PBMCs at

various times after vaccination (figure 4A). Granzyme B activity

decreased slightly in both groups during the first week after

vaccination (correlating with the lymphopenia) and peaked by

the end of the second week. The addition of IL-12 did not

augment this response.

CD8+ T cells were stained with fluorochrome-labeled anti-

bodies against CD8 and CD3 surface markers for specificity.

Because IL-12 also increases production of IFN-g by T cells

[20], which might help mediate an effective Th1 response

against MV, intracellular IFN-g levels were assessed, by use of

flow cytometry, in stimulated PBMCs derived from MVIL-12–

and MVtag-vaccinated monkeys. Like granzyme B activity, the

percentage of CD8+ T cells producing IFN-g initially decreased

in both groups and then peaked on day 14 (figure 4B). A higher

percentage of CD8+ T cells from MVIL-12–vaccinated ma-

caques were IFN-g positive, than from MVtag-vaccinated mon-

keys, but the difference was not statistically significant.

Challenge of macaques vaccinated with MVIL-12 and

MVtag with wild-type MV. To determine whether vaccina-

tion with supplemental IL-12 affected protection from chal-

lenge with wild-type virus, monkeys were challenged 14 months

after vaccination with a strain and dose of wild-type MV known

to produce measles in macaques [27, 28]. All macaques in both

groups were protected against MV challenge. None of the mon-

keys developed a rash or had evidence of viremia (data not

shown). The neutralizing antibody response after challenge re-

mained stable, which confirms the protective effect of vacci-

nation (figure 5C). No significant changes or differences were

observed in anti-H or anti-F antibody responses between
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Figure 7. Flow cytometric analysis of cytokine production in monkeys after vaccination with measles virus (MV) expressing human interleukin (IL)–
12 (MVIL-12) or parent MV not expressing IL-12 (MVtag). A, Forward scatter (FSC) and side scatter (SSC) plot of peripheral blood mononuclear cells
obtained from an MVtag-vaccinated monkey, after stimulation with PMA and ionomycin. B, Percentage of gated lymphocytes staining positive for CD3
antibody alone, and CD3 and CD8 antibodies combined. C, Percentage of CD3+/CD8� (CD4) T cells expressing intracellular IL-2 on day 10. D, Percentage
of CD3+/CD8+ (CD8) T cells expressing intracellular IL-2 on day 10. Time course of PMA/ionomycin-stimulated CD3+/CD8� T cells expressing intracellular
interferon (IFN)–g (D) and IL-4 (E) in or MVtag- or MVIL-12–infected monkeys. Error bars indicate SE. * .P p .05

groups, and these responses correlated with the neutralizing

antibody response (figure 5A and 5B). CTL responses were

similar in both groups (figure 5D).

IL-12 Supplementation to Prevent MV-Associated
Immunosuppression

Cytokine secretion after vaccination with MVIL-12 and

MVtag. To examine the influence of supplemental IL-12 on

cytokine production, supernatant fluids of stimulated PBMCs

were assayed at various times after vaccination (figure 6). IL-

12 levels in supernatant fluids of PBMCs stimulated with IFN-

g and LPS were not affected by IL-12 supplementation and

were identical in both groups, whereas IL-10 increased in both

groups during convalescence (figure 6A and 6B). However,

plasma IL-12 levels in MVIL-12–vaccinated monkeys were sig-

nificantly higher (day 14, ; day 28, ), com-P p .036 P p .035

pared with baseline levels (MVIL-12, day 0), whereas plasma

IL-12 levels in MVtag-vaccinated monkeys did not change from

baseline (figure 6E).

IFN-g production in supernatant fluids of PHA-stimulated

PBMCs was maximal on day 7 in both groups (probably as-

sociated with NK cell activity) and increased again on day 14

only in MVIL-12–vaccinated monkeys (figure 6C). IL-4 was

detected more often in supernatant fluids of MVtag-vaccinated

macaques (figure 6D).

Flow cytometric analysis of CD4+ T cell cytokine production

after vaccination with MVIL-12 and MVtag. To assess in-

tracellular cytokine production in T cells after vaccination with

the 2 viruses, PBMCs from both groups of monkeys were stim-

ulated with PMA and ionomycin and stained for intracellular

IFN-g and IL-4. Because macrophages can express CD4 and

because NK cells can express CD8 in monkeys [33], CD4+ and

CD8+ T cells were identified during flow cytometric analysis

by staining for both CD3 and CD8 (figure 7). Cells in the gated

lymphocyte population (based on forward and side scatter

properties), which stained brightly with the CD8 antibody and

were positive for CD3 (CD3+/CD8+), were identified as CD8

T cells, and lymphocytes that were positive for CD3 and neg-

ative for CD8 (CD3+/CD8�) were identified as CD4 T cells

(figure 7A and 7B). This method for identifying individual T
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Figure 8. Changes in lymphoproliferation and lymphocyte counts after
vaccination with measles virus (MV) expressing human interleukin (IL)–
12 (MVIL-12) or parent MV not expressing IL-12 (MVtag). A, Proliferation
of peripheral blood mononuclear cells after 72 h of culture, reported as
the stimulation index (SI) (i.e., the ratio of phytohemagglutinin-induced
proliferation to spontaneous proliferation). B, Lymphocyte counts. Error
bars indicate SE.

cell subsets provided a CD4:CD8 T cell ratio of ∼1.5:2, which

is comparable to that in humans. The restricted populations

were subsequently gated to evaluate cytokine production (figure

7C and 7D).

CD4+ T cells from both groups of monkeys increased pro-

duction of IL-4 on day 9 (figure 7F) and decreased below

baseline levels by day 35. The percentage of CD4+ T cells pro-

ducing IFN-g was significantly greater in the MVIL-12–vacci-

nated monkeys than in MVtag-vaccinated monkeys during the

period of viremia and, thus, during the period of MVIL-12

expression leading to IL-12 production ( ; figure 7E).P p .05

Lymphocyte proliferation after vaccination with MVIL-12

and MVtag. To determine the effect of IL-12 on the functional

responsiveness of T lymphocytes after vaccination, we measured

the proliferation of PHA-stimulated and -unstimulated PBMCs

from MVIL-12– and MVtag-vaccinated monkeys (figure 8A).

Both groups exhibited a profound decrease in lymphoprolifer-

ative responses to mitogen on day 7, concurrent with lympho-

penia (figure 8B). Decreased proliferation persisted for at least

14 weeks and was not different between the 2 groups.

DISCUSSION

In the present study, we have examined the role of IL-12 as an

adjuvant in MV vaccination and as a supplement to prevent

MV-associated immunosuppression. Supplemental IL-12 led to

an increased percentage of CD4 T cells producing IFN-g but

had no effect on the CTL response or on the suppression of

lymphoproliferative responses after MV vaccination. Further-

more, supplemental IL-12 decreased the levels of neutralizing

and H-specific antibodies induced by MV vaccination. How-

ever, it did not abrogate vaccine-induced protection from chal-

lenge with wild-type MV.

IL-12 promoted a Th1 bias in the overall immune response,

because CD4 T cells were more likely to produce IFN-g in the

MVIL-12–vaccinated macaques than in the MVtag-vaccinated

macaques. In addition, fewer monkeys in the MVIL-12 group

than in the MVtag group had detectable IL-4 in supernatant

fluids of stimulated PBMCs. This was reflected in higher levels

of IgG1 and a lack of production of IgG4 in MVIL-12–vacci-

nated monkeys. Interestingly, the specificity of the antibody

response to MV glycoproteins was altered after vaccination so

that MVIL-12–vaccinated monkeys had an increased response

to the F protein and a decreased response to the H protein,

compared with that of MVtag-vaccinated monkeys. This prob-

ably accounted for the decreased production of neutralizing

antibodies after MVIL-12 vaccination, because antibodies

against H are more potent at neutralizing MV than those against

F [28]. A similar glycoprotein-specific effect was evident in

recipients of a DNA vaccine against respiratory syncytial virus

(RSV), where the addition of IL-12 decreased the RSV attach-

ment glycoprotein (G)–specific antibody response and im-

proved the RSV F-specific response [34]. This suggests that

production of antibody to MV H or RSV G is more dependent

on Th2 cytokines than is production of antibody to F.

Suppression of IL-12 production by macrophages and den-

dritic cells, as observed in previous studies [13, 35], has been

postulated to play a role in the Th2 skewing of the cytokine

profile during MV infection. Altered IL-12 synthesis by neu-

trophils, another source of immunomodulatory cytokines, may

also be involved in the switch to Th2 cytokine production

during measles [11]. The MVIL-12 virus was designed, in part,

with the intent of determining whether the restoration of IL-

12 production could ameliorate immunosuppression during

MV infection, which includes the inhibition of delayed-type

hypersensitivity responses in vivo and a decrease in lymphocyte

proliferation to mitogens in vitro.

The present study has shown that IL-12 may not be suf-

ficient to correct the deficit in T cell proliferative responses

to mitogens observed in vitro after MV infection, a finding

that confirms previous observations by Gans et al. [36] and

that may be explained by a new and interesting observation

potentially associated with MV immunosuppression—a sus-

tained increase in IL-10 levels during convalescence [37]. IL-

10 is an immunomodulatory cytokine known to have similar

effects as MV on autoimmune diseases and latent infections,

such as Crohn disease, nephrotic syndrome, and juvenile

rheumatoid arthritis [38–40].

The specific levels of IL-12 produced in MVIL-12– and MVtag-

vaccinated monkeys are unknown, although the amount of cir-

culating IL-12 was generally higher (compared with baseline) in

the MVIL-12–vaccinated monkeys than the MVtag-vaccinated
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monkeys. The p40 and p35 genes of IL-12 were inserted between

the H and L genes of MVtag to avoid excessive IL-12 production.

MV transcribes genes sequentially, resulting in a gradient of

mRNAs and thus virally expressed proteins. Consequently, gene

products, such as p40 and p35, in MVIL-12 are not produced

in as large quantities as are more upstream gene products.

Nonetheless, changes in the humoral and cellular responses

indicate that IL-12 levels in MVIL-12–vaccinated monkeys were

sufficient to have a biologic effect. Therefore, it is unlikely that

further increasing the production of IL-12 during MV repli-

cation would provide benefit.

In summary, use of an MVIL-12 recombinant virus affected

the specificity and biological activity of the antibody response to

MV by decreasing neutralizing antibody responses, anti-H an-

tibody production, and the MV-specific IgG4 response while

increasing MV-specific anti-F responses. These effects were as-

sociated with an alteration of the Th2 bias of the immune re-

sponse typically associated with MV infection. Manifestations of

MV-associated immunosuppression, such as decreased in vitro

lymphoproliferative responses and lymphopenia, remained un-

affected, suggesting that IL-12 suppression is not the sole factor

in MV-induced immunosuppression.
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