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Directed evolution is a powerful approach for isolating
high-affinity binders from complex libraries. In affinity
maturation experiments, binders with the highest affi-
nities in the library are typically isolated through selec-
tions for decreased off rate using a suitable selection
platform (e.g. phage display or ribosome display). In such
experiments, the library is initially exposed to biotiny-
lated antigen and the binding reaction is allowed to
proceed. A large excess of unbiotinylated antigen is then
added as a competitor to capture the vast majority of
rapidly dissociating molecules; the slowly dissociating
library members can subsequently be rescued by captur-
ing the biotin-carrying complexes. To optimize the par-
ameters for such affinity maturation experiments, we
performed both deterministic and stochastic simulations
of off-rate selection experiments using different input
libraries. Our results suggest that the most critical par-
ameters for achieving the lowest off rates after selection
are the ratio of competitor antigen to selectable antigen
and the selection time. Furthermore, the selection time
has an optimum that depends on the experimental setup
and the nature of the library. Notably, if selections are
carried out for times much longer than the optimum,
equilibrium is reached and the selection pressure is wea-
kened or lost. Comparison of different selection strategies
revealed that sequential selection rounds with lower strin-
gency are favored over high-stringency selection exper-
iments due to enhanced diversity in the selected pools.
Such simulations may be helpful in optimizing affinity
maturation strategies and off-rate selection experiments.
Keywords: affinity maturation/kinetic simulation/off rate/off-
rate selection/selection strategy

Introduction

High-throughput selection technologies have attracted signifi-
cant interest over the past decade. Progress in the synthesis
of large synthetic libraries of high quality (Binz et al., 2005;

Mondon et al., 2008) as well as in tailoring random mutagen-
esis rates and strategies (Wong et al., 2006) has set the stage
for selecting high-affinity binding molecules. Powerful selec-
tion technologies, such as phage display (Smith, 1985;
Parmley and Smith, 1988), ribosome display (Hanes and
Plückthun, 1997) and cell-surface display using Escherichia
coli (Georgiou et al., 1997) or yeast (Boder and Wittrup,
1997), have allowed the efficient use of such large libraries.
Nonetheless, experimental strategies must be carefully
defined to enrich for clones with a significant improvement
in the desired property, such as increased affinity. The strin-
gency of such a selection pressure is crucial for the outcome
of any selection approach. The selection for binders with
low-to-mid nanomolar affinity can usually be accomplished
by ‘panning’ experiments in which binders are enriched from
a library by exposing it to surface-immobilized antigen
(Hanes et al., 1998; Jermutus et al., 2001; Zahnd et al.,
2004). Unbound or weakly binding library members are then
readily eliminated by washing.

The selection of sub-nanomolar affinity binders, however,
is usually not additionally favored under such conditions.
Therefore, often time-consuming single-clone screening must
be carried out. In some cell-based platforms for directed
evolution, the screening can be accelerated by the use of cell
sorters and fluorescently labeled antigens (Boder et al.,
2000). However, in iterative affinity maturation of binders
with already low nanomolar affinity, more efficient strategies
are needed. Because of the size of the molecular repertoire,
it is important to apply a selection pressure that is stringent
enough to remove undesired library members but not so
harsh as to eliminate good clones.

Off-rate selections (Hawkins et al., 1992; Jermutus et al.,
2001; Zahnd et al., 2004) have proven to be a powerful tool
to select binders with high affinity. Various experimental
studies summarized by Northrup and Erickson (1992) (and
further analyzed computationally by these authors) suggest
that the intrinsic association rate constant for protein–protein
interactions in normal salt conditions does not normally
exceed 5 � 106 M21 s21, making the off rate the key par-
ameter for increasing affinity. The actual panning step is
usually performed in solution with biotinylated (or otherwise
tagged) antigen. After panning, however, the complexes are
not directly isolated, but a large excess of unbiotinylated
antigen is added to the panning reaction. The unbiotinylated
antigen acts as a competitor and captures the vast majority of
the binding molecules that dissociate from the biotinylated
antigen after a sufficiently long incubation time. The prob-
ability that a binder dissociates from its antigen is mainly
defined by its dissociation rate constant. The longer the
complexes are incubated with excess competitor, the greater
the likelihood that a given complex will dissociate from its
biotinylated antigen. The excess amount of competitor pre-
vents rebinding of library members with fast off rates to
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biotinylated antigen; thus, capture via biotin enriches for the
binders with the slowest off rates in the original pool. The
efficiency of this selection principle has been demonstrated
several times (e.g. Hawkins et al., 1992; Jermutus et al.,
2001; Zahnd et al., 2004). In ribosome display experiments,
incubation times of 10 days for peptide-binding single-chain
Fv antibody fragments (Zahnd et al., 2004) and 25 days for
protein-binding DARPins (C.Z. and A.P., unpublished
results) have been applied.

While affinity maturation experiments have usually
resulted in higher affinity binders, arbitrarily increasing the
time of selection for higher stringency is not productive, as
we have made the following observations during such exper-
iments: (i) after selection, a surprisingly large fraction of the
selected binders did not bind to the cognate antigen at all
and (ii) only a minor fraction of the clones that had retained
their ability to bind the antigen showed improved binding
properties. In addition, it seemed that after a certain duration
of incubation, the selection only became worse (E. Wyler
and A.P., unpublished results).

The first issue can be corrected with a single panning round
without strong selection pressure; this ‘binder-collection’
round rescues the library. For example, after 10 days of
off-rate selection against the peptide GCN4(7P14P), only 7%
of the clones still bound to the peptide; after a non-selective
panning round, more than 80% bound to the peptide again
(Zahnd et al., 2004). The very low percentage of library
members that still bind the biotinylated antigen after long
times may simply be a consequence of the very low numbers
of remaining molecules: a nonspecific background signal
results from non-binding or non-functional molecules, which
are produced during random mutagenesis and are carried
through every selection round at a constant rate. Therefore, a
non-selective round enriches binding molecules again over
this background signal. However, the second issue—the lack
of significant affinity maturation during stringent off-rate
selection—could not be readily explained or solved.

The behavior of pools of binders under selection con-
ditions is non-trivial to predict. Boder and Wittrup (1998)
used deterministic models to estimate optimal equilibrium
and kinetic screening conditions for combinatorial cell-
surface libraries sorted by fluorescence-activated cell sorting.
Here, we build upon their analysis of off-rate selections by
examining how ligand rebinding, library complexity and
multiple selection rounds can impact enrichment in directed
evolution approaches. We first derive an analytical result
which identifies the parameters that control enrichment in
off-rate selection experiments performed on simple binary
libraries when rebinding events are explicitly considered. We
then use a Monte Carlo-based approach to elucidate how
these parameters impact off-rate selections using more
complex libraries. Our results may help to further optimize
off-rate selection experiments that are used to enhance mol-
ecular affinities.

Methods

Derivation of analytical model result
We refer to the molecule to be recognized as target or
antigen, and to the members of the library as binders or
ligands. The analytical model assumes that biotinylated
antigen (B) is immobilized and in significant excess over the

total concentration of library members. After washing to
remove all free ligand, unbiotinylated antigen (U) is added in
solution (in even greater excess) at the start of the off-rate
selection experiment. Holding B and U constant and assum-
ing mass-action kinetics for binding (with the same par-
ameters for biotinylated and unbiotinylated antigen), we can
first solve explicitly for L1(t) (free ligand 1) by integrating
the following equation with initial condition L1(0) ¼ 0:

dL1

dt
¼ �kon1L1ðBþ UÞ þ koff1ðL1T � L1Þ; ð1Þ

where L1T is the total ligand 1 (free, bound to B, and bound
to U). L1(t) can then be plugged into the following equation
to analytically solve for C1(t) (complex of ligand 1 bound to
B):

dC1

dt
¼ kon1L1B� koff1C1: ð2Þ

Non-dimensionalization of this result leads directly to Eq.
(5) in the main text.

Generation of large library distributions in silico
While the analytical model provides insights into the par-
ameters that most critically impact off-rate selection, a
binary library is not representative of a complex initial
library nor of those typically generated by random mutagen-
esis in affinity maturation experiments. Therefore, more
appropriate starting libraries were generated in silico. Each
library consisted of an array: each element in the array rep-
resented a library member and was assigned a unique identi-
fier and dissociation rate constant. The dissociation rate
constants of the library members were generated randomly,
but could be biased by any predefined frequency-distribution.
In the simplest type of library, the dissociation rate constant
was log-normally distributed, in which case the distribution
is defined by two parameters: the average of the negative
logarithm of the individual dissociation rate constants
,2log(koff ).0 and the variance (s). ,2log(koff ).0

defines how tightly the starting pool already binds to the
target on average; the higher ,2log(koff ).0 is, the higher
the stringency that is needed to enrich for improved binders.
The variance is a measure of the diversity of off rates in the
pool, and thus quantifies the frequency with which higher
affinity binders are present.

It is likely that in many scenarios of experimental affinity
maturation, the great majority of binders would have faster
off rates upon randomization and generation of the library
than the starting clone(s). Therefore, libraries with
non-Gaussian off-rate distributions were also generated,
specifically bimodal and asymmetric input libraries.

Finally, the size of a given library was adjusted to the
length of the simulated selection experiment. After long
off-rate selection experiments, only a minor fraction of the
initial library was bound to the selectable antigen. To ensure
that all selection simulations ended with a statistically signifi-
cant number of binders, the libraries had to be larger for
longer simulations. Our libraries typically contained between
1 � 104 and 2 � 107 binders.
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Stochastic simulation algorithm
The dissociation of an antigen-binder complex was assumed
to follow first-order kinetics. Consequently, the probability
pdiss that a complex would dissociate from its antigen in the
time interval Dt was defined by the dissociation rate constant
koff and could be described by the following equation:

pdiss ¼ 1� e�koffDt ð3Þ

Due to the excess of competitor antigen (and assuming no
mass-transport limitations), immediate rebinding of a disso-
ciated ligand molecule to the same antigen can be neglected
in determining this probability. However, the probabilistic
nature of the rebinding event to either biotinylated or unbio-
tinylated antigen was indeed simulated (see what follows).
Since the concentration of antigen was chosen to be much
greater than the KD range of the library and also at least as
high as the concentration of complexes, it was assumed that
all library members were bound to either biotinylated antigen
or unbiotinylated antigen after each time increment.
Reducing the concentration of antigen could introduce
additional selection pressure on the on-rate of the complexes;
however, this effect was not considered here.

Before each simulation, several parameters were defined,
including the library distribution (see above), the total dur-
ation of the selection experiment (ttot), the ratio of unbiotiny-
lated antigen to biotinylated antigen (U/B) and an integration
interval (Dt), which defined the resolution of the simulation.

We used a simple Monte Carlo algorithm, which ran as
follows. A dissociation rate constant was assigned to each
binder in the library. Every binder was initially set to be
bound to biotinylated antigen and its status (bound either to
biotinylated or unbiotinylated antigen) was monitored
throughout the simulation. For each binder, a random number
was generated between 0 and 1, and the probability that this
binder would dissociate (pdiss) during the integration interval
Dt was calculated according to Eq. (3). If the random number
was greater than pdiss, the ligand would remain in complex to
its bound antigen. However, if the random number was
smaller, (i) the number of biotinylated antigen molecules
increased by one and (ii) the dissociated ligand had to bind to
a new antigen. Whether this rebinding event involved a bioti-
nylated or unbiotinylated antigen depended on the relative
concentrations of these two species. In our model, the prob-
ability of binding to a biotinylated antigen (pB) is:

pB ¼
NB

NB þ NU

; ð4Þ

where NB is the number of free biotinylated antigen molecules
and NU is the number of free unbiotinylated antigen mol-
ecules. By comparing pB to a second random number (also
between 0 and 1), it could be determined whether the rebind-
ing step would involve biotinylated or unbiotinylated antigen.

The dissociation and binding events within a given inte-
gration step were determined for each member in the library.
The remaining free biotinylated and unbiotinylated antigen
molecules were then enumerated and used in calculating the
probabilities in the next integration step. This process was
iterated until the simulation time reached ttot.

The algorithm was implemented using the Visual Basic
module of Microsoft Excel to enable tracking of each indi-
vidual library member and to allow direct output of simu-
lation results into spreadsheet format. Off-rate selection
simulations were then performed with a predefined library,
and the status of the library could be assessed both numeri-
cally and graphically at any time during the selection process.

Results

Analytical solution of enrichment ratio of a binary library
during off-rate selection
To first gain mechanistic insight into the parameters that
most critically impact off-rate selection, we derived an
analytical solution for the concentration of a single library
member over time. In dimensionless form, the expression is:

u1 ¼ e�t1 þ b1

b1 þ m1 þ 1
�

½1� e�t1 þ ðb1 þ m1Þ
�1ðe�ðb1þm1þ1Þt1 � e�t1Þ�

ð5Þ

where u1 is the fraction of a given library member (ligand 1)
that is still bound to biotinylated antigen, t1 is dimensional
time (t) multiplied by the dissociation rate constant (koff1),
b1 is the concentration of biotinylated antigen (B) divided by
the equilibrium dissociation constant of this complex (KD1)
and m1 is the concentration of unbiotinylated competitor (U)
divided by KD1. The non-dimensional independent variable
t1 can be viewed as a time that is rescaled by the dis-
sociation rate constant for ligand 1. Similarly, the dimension-
less parameters b1 and m1 can be thought of as
concentrations rescaled to the equilibrium dissociation con-
stant for ligand 1. While the dimensional concentrations B
and U are by necessity the same for all binders, the scaled
values b and m describe how strongly B and U actually inter-
act with a given binder because their dimensional concen-
trations are normalized by the strength of the interaction
(KD). Therefore, the enrichment ratio of a binary ‘library’,
comprised of just two unique members, is simply u2/u1. An
important insight from this non-dimensional analysis is that
the enrichment ratio only depends on the values of t, b and
m associated with each library member. Nevertheless, it is
more physically meaningful to discuss how the correspond-
ing dimensional quantities (t, B and U) impact the enrich-
ment ratio for simple binary libraries, so we will describe the
consequences of varying these dimensional quantities.

Our base model assumes that the two proteins under selec-
tion have equal association rate constants (kon ¼
105 M21 s21) but unequal dissociation rate constants (koff1 ¼
1022 s21 and koff2 ¼ 1023 s21); therefore, their KD values
are different (KD1 ¼ 100 nM and KD2 ¼ 10 nM). Of note, the
different koff and KD values result in distinct scales for t, b
and m for the two ligand species.

To understand the effect of competitor concentration on
optimal selection conditions, we held the biotinylated
antigen concentration constant (B ¼ 5 nM) and varied the
competitor concentration (U ¼ 0–1000 nM) (Fig. 1A). In the
absence of competitor (U ¼ 0), the enrichment ratio initially
increases with time, goes through a maximum (u2/u1 � 12.4),
and then reaches a new equilibrium (u2/u1 ¼ 7). The concen-
tration of U has several different effects on the change in
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enrichment ratio over time. At very short times (t , 200 s),
the change in enrichment ratio is essentially independent of
U. This is due to the fact that re-binding of any dissociated
molecules to either biotinylated or unbiotinylated antigen is
negligible on this time scale. At intermediate times, a higher
U not only leads to an increase in the maximum enrichment
ratio achievable, but also broadens the time window during
which an enrichment ratio greater than 7 (equilibrium u2/u1

value for U ¼ 0) can be achieved. Importantly, if the exper-
iment is carried out for too long and this time window is
missed, the enrichment ratio can actually decrease with
increasing U (e.g. compare u2/u1 values at t ¼ 6000 s in
Fig. 1A). This is evident from the equilibrium value of u2/u1,
which can be readily derived using Eq. (5) (taking the limit
as t!1):

u2

u1

¼ b2ðb1 þ m1 þ 1Þ
b1ðb2 þ m2 þ 1Þ ¼

Bþ U þ KD1

Bþ U þ KD2

ð6Þ

As U (or B) increases significantly above both equilibrium
dissociation constants, the enrichment ratio becomes inde-
pendent of the KD values and tends towards one. Thus, a
very high U is beneficial at intermediate times because it
reduces the likelihood of rapidly dissociating ligands rebind-
ing to biotinylated antigen; however, as the reaction
approaches equilibrium, this same high U binds all free
ligands indiscriminately, thus effectively eliminating the
selection pressure.

A second simulation was performed to compare the influ-
ence of the dissociation rate constant (koff2) of the higher
affinity binder in the binary library (Fig. 1B). As koff2 is
decreased, the enrichment ratio becomes less sensitive to
wait time. Thus, while it is preferable to carry out selections
for a time as close to topt as possible, the margin for error
increases as the koff of the desired ligand decreases.
However, it should also be noted that all of the curves shown
in Fig. 1B do eventually asymptote to a u2/u1 value of less
than 2 as predicted by Eq. (6), so an equilibrium selection
would not be fruitful.

Finally, we wanted to simulate whether off-rate selections
could be used to discriminate between two ligands with the
same KD value, but with different kinetics of binding
(Fig. 1C). In every case, the ligand with slower kinetics (i.e.
the smaller koff value) is preferentially enriched, even though
the optimal wait time is strongly dependent on the kinetic
constants of the ligands. As expected for two ligands with
the same KD, the equilibrium value of u2/u1 is 1, so discrimi-
nation can only be achieved with a kinetic selection.

Sensitivity and specificity of off-rate selections
We further used our analytical model to elucidate how the
sensitivity and specificity of off-rate selections change with
selection time, ratio of U to B, and background signal (non-
specific capture of non-binding or non-functional molecules).
In a binary library, in which ligand 1 is unwanted (low affi-
nity) and ligand 2 is desired (high affinity), the following
equations describe the true positive probability (TPP) and
false positive probability (FPP) during selection:

TPP ¼ sensitivity ¼ ð1� BGÞ � u2 þ BG ð7Þ

FPP ¼ 1� specificity ¼ ð1� BGÞ � u1 þ BG ð8Þ

Fig. 1. Analytical simulations of off-rate-based enrichment in binary
libraries. Unless otherwise noted, the model parameters are: koff1 ¼
1022 s21, koff2 ¼ 1023 s21, kon ¼ 105 M21 s21, B ¼ 5 nM, U ¼ 100 nM.
(A) Effect of U (0–1000 nM) on enrichment ratio. (B) Effect of koff2 on
enrichment ratio. (C) Effect of binding kinetics on enrichment ratio when
kon and koff are varied such that equilibrium affinity is constant.
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where u1 is defined as in Eq. (5), u2 is analogously defined,
and BG is the fraction of the signal arising from non-specific
background. For simplicity, BG is assumed to be constant
(and the same value) for both ligands.

Using the same parameters as in Fig. 1A, we plotted the
receiver operating characteristic (ROC) curves for different
values of U/B and BG (Fig. 2). The point in the top right
corner of each plot represents t ¼ 0, the start of the incu-
bation with the competing soluble ligand, where TPP and
FPP are both 1 prior to any selection pressure. Following the
trajectory of points (each of which represents a 50 s incre-
ment of incubation time), we note that each ROC curve is
biphasic: there is a brief initial phase during which FPP
rapidly decreases (with only a modest decrease in TPP) and

thereafter TPP rapidly decreases. The duration of this first
phase is relatively independent of U/B and BG.

Based on the maximum ratio of TPP to FPP in each ROC
curve, topt is shown as a solid point. However, the value of
(TPP/FPP)max is substantially different in the various plots:
for BG ¼ 0.25 and U/B ¼ 2, (TPP/FPP)max is 2.6 but for
BG ¼ 0 and U/B ¼ 200, (TPP/FPP)max is 93.6. For compari-
son, the ROC curves in the top row of Fig. 2 (BG ¼ 0) corre-
spond exactly to three of the curves in Fig. 1A (U ¼ 10, 100,
and 1000 nM). Examining all of the ROC curves, TPP actu-
ally decreases as (TPP/FPP)max increases, indicating that
maximum enrichment is achieved by minimizing FPP.
Notably, increasing U/B always decreases the lowest attain-
able FPP for a given BG, thus improving the specificity of

Fig. 2. Receiver operating characteristic (ROC) curves for binary libraries, with parameters as in Fig. 1A. The true positive probability (TPP) (the probability
of capturing the desired high-affinity ligand) and false positive probability (FPP) (the probability of capturing the undesired low-affinity ligand) are shown as a
function of selection time, i.e. incubation with the competitor. ROC curves were generated for various U/B ratios (2, 20, and 200) and background signals
(0, 5, and 25%). Each off-rate selection starts at the top right corner of the plot (TPP ¼ FPP ¼ 1) and each dot along the trajectory represents a 50 s increment
in selection time. In each plot, the selection time corresponding to the maximum enrichment ratio (TPP/FPP)max (whose value is given in the bottom right
corner) is shown as a solid dot.
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the selection and the enrichment ratio (see also Fig. 1A). In
summary, analysis of the ROC curves suggests that, for
maximal enrichment of the high-affinity ligand, the highest
practical concentration of soluble competitor should be used
(highest possible U/B ratio), but the incubation time should
not greatly exceed topt, since the sensitivity of the selection
(amount of high-affinity ligand bound) will then decrease
significantly without any noticeable gain in specificity
(amount of low-affinity ligand bound remains almost
constant).

Stochastic simulation of off-rate selection experiments
As highlighted in the analytical model, the kinetic profile of
a given library member depends only on its scaled time, t,
and non-dimensional parameters b and m. In the limit of
b � 1 and m�1 (as was assumed in the stochastic model
to safely neglect any free ligand species), this further reduces
the dependency to only two entities, t and the ratio of unbio-
tinylated antigen to biotinylated antigen (¼ m/b ¼ U/B),
which we examined in greater detail.

Impact of waiting time on selection efficiency
Simulations were first performed with an input library having
a log-normal distribution with respect to koff (Fig. 3A).
Additional selections were performed using bimodal
(Fig. 3B) and asymmetric (Fig. 3C) libraries. As output, the
average of the negative logarithm of the individual dis-
sociation rate constants of an enriched pool ,2log(koff ).
was monitored as a function of time. In addition, the number
of library members bound to biotinylated antigen was also
monitored since this was expected to be an important metric
in assessing selection stringency.

The results suggested that the dissociation behavior of the
entire library (Fig. 4A) did not follow a single-order exponen-
tial, but more complex decay kinetics. Furthermore, the average
of the negative logarithm of the individual dissociation rate
constants of the library ,2log(koff ). also showed a biphasic
response as a function of time (Fig. 4B). Starting from the
initial value ,2log(koff ).0, this metric increased with time
until a maximum value, ,2log(koff).max, was reached at time
topt. This value corresponds to the minimal (¼optimal) average
koff. This result mirrors those from the analytical model and
suggests that arbitrarily long waiting times are in fact detrimen-
tal to the selection. To understand how the distribution actually
changes over time, we followed the library’s off-rate distri-
bution over time by halting the simulation at several intermedi-
ate time points (Fig. 4C and D).

At relatively short selection times, less than topt, not only
did the average off rate of the enriched library members
decrease (and thus ,2log(koff ). increase), but the variance
decreased (Fig. 4C); both of these effects were expected,
since the selection pressure improved the average off rate by
reducing the diversity of the pool. Additionally, the distri-
butions were still log-normal. As the waiting times increased
beyond topt, the distributions became bimodal (Fig. 4D). One
peak had a ,2log(koff ). value that was even higher than
before, but a new second peak appeared with a ,2log(koff).
that was the same as the input library. As waiting time
increased, this second peak became a larger fraction of the
total enriched population until it eventually dominated the
entire ‘selected’ population, which was virtually indistin-
guishable from the input library.

Fig. 3. Frequency distributions of off rates in different libraries.
(A) Libraries with Gaussian distribution in the logarithm of their off rates
with different variances and an ,2log(koff ).0 of 3. (B) Bimodal library
consisting of two superimposed libraries with Gaussian distributed off rates,
each having a s ¼ 0.6 and peaks at ,2log(koff ). of 2 and 4, respectively.
(C) Library with asymmetric distribution of off rates. All libraries shown
contained 65 000 independent binders.
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By comparing these results with the analytical model, it
became clear that the selection pressure, which is inherently
kinetic in nature, was effectively eliminated by reaching equi-
librium at long selection times. This could also be demon-
strated by monitoring the dissociation of complexes during
the selection experiment. The pool did not continue to dis-
sociate until there were no ligand molecules bound to biotiny-
lated antigen; rather, the fraction of biotinylated
antigen-bound library members asymptotically reached a
value set by the ratio of biotinylated to unbiotinylated antigen
(Eq. (4)). This was further corroborated by the simulation of
asymmetric and bimodal libraries (Fig. 3B and C). For these
libraries, the distribution of the input library was also restored
after very long selection times (data not shown).

Impact of antigen ratio on selection efficiency
and waiting time
The effect of the ratio of unbiotinylated antigen to biotiny-
lated antigen (U/B) was assessed by performing several

simulations in which all other parameters were held constant.
As U/B was increased, a larger ,2log(koff ).max was rea-
lized (Fig. 5A and B). In Fig. 5A, ,2log(koff ).0 was held
constant and library diversity, characterized by the variance
s, was varied. As expected, a more diverse starting library
results in a higher ,2log(koff ).max and, furthermore, a plot
of ,2log(koff ).max versus log(U/B) appears linear with a
constant y-intercept and a slope that is proportional to s. In
Fig. 5B, ,2log(koff ).0 was varied and s was held constant;
a plot of ,2log(koff ).max versus log(U/B) is also linear,
but in this case, the slope is roughly constant while the
y-intercept shifts with ,2log(koff ).0. Combining these
observations into a single empirical result, we obtain:

,� logðkoffÞ.max ¼
,� logðkoffÞ.0 þ g1s logðU=BÞ þ l1 ð9Þ

where g1 and l1 are constants fitted to experimental data.

Fig. 4. Simulation of off-rate selection experiments. (A) During a selection experiment the binders dissociate from the biotinylated antigen. Only a minor
fraction of the pool remains bound to the biotinylated antigen. The dissociation does not follow single-exponential decay and does not converge to zero but to
(1 þ U/B)21. In panel (A), the fraction of a library, which is still bound to biotinylated antigen, is shown (solid line). The simulation was performed with a
library having an ,2log(koff ).0 ¼ 3, s ¼ 0.6 and U/B ¼ 10. For comparison, the single-exponential decay of a binder with an off rate of 1023 s21 is shown
as a dashed line. (B) Monitoring the average off rate of a library during selection reveals an early decrease of the average off rate (increase in ,2log(koff ).).
After a certain time, however, ,2log(koff ). peaks and again reaches the initial average off rate, because the system is reaching equilibrium. (C) Off-rate
frequency distributions were monitored in selected pools after different durations of off-rate selection. The peak of the distribution shifted with increasing
selection time towards higher average off rates. Closed diamond, input library; closed square, 5000 s; closed circle, 10 000 s. (D) Off-rate selections, which are
continued for longer times, start to equilibrate. A second peak in the off-rate distribution of the selected libraries appears which perfectly matches the
distribution of the input library. This peak increases in magnitude with increasing selection time, whereas the peak of the affinity-matured binders at higher off
rates decreases. Closed diamond, input library; closed square, 30 000 sec; open triangle, 100 000 s; open circle, 1 000 000 s (11.2 days).
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We also observed that log(topt) increased linearly with s
(Fig. 5C), log(U/B) (Fig. 5C) and ,2log(koff ).0 (data not
shown). As in Eq. (9), these relationships are best captured
by the following empirical equation:

logðtoptÞ ¼,� logðkoffÞ.0 þ g2s logðU=BÞ þ l2 ð10Þ

where g2 and l2 are constants fitted to experimental data.
Thus, for a given input library (characterized by

,2log(koff ).0 and s) and an upper bound on U/B in the
experimental setup (typically set by solubility limits or cost
constraints), one can use Eqs. (9) and (10) to determine the
largest achievable ,2log(koff ).max as well as an estimate
of the waiting time required. It should be noted that
,2log(koff ).max scales linearly with log(U/B), but topt

scales exponentially with this same quantity.

Rescuing tight binders from overly stringent off-rate
selections
The presence of a bimodal distribution of off rates after long
simulations (e.g. Fig. 4D) helped to explain some unexpected
experimental findings. In very stringent off-rate selection
experiments (Zahnd et al., 2004; Zahnd et al., 2007), only a
minor fraction of the analyzed selected clones showed a
decreased off rate; most of the clones exhibited off rates that
would not have been expected to survive the applied selec-
tion pressure. From the ratio of binders with decreased off
rates to those with unimproved off rates, further information
could potentially be gained. However, this would require an
analysis of a very large number of clones and their off rates.
In practice, a non-stringent panning round—one in which
there is only modest selection pressure, in that the conditions
are not stringently optimized (i.e. U/B is not maximized and
the selection time is less than topt)—can be subsequently per-
formed to quickly eliminate the subset of the stringently
selected library whose off-rate distribution is very similar to
that of the starting library. This additional round therefore
highly enriches for the affinity-improved species, as revealed
by the analysis of single clones.

To see whether the known effect of such a non-stringent
panning round could also be captured in our simulations, we
mimicked this experimental procedure in silico. We first
began a simulation of an off-rate selection and then stopped
the selection when two major peaks were present in the
selected library, one corresponding to the equilibrated input
library and one to the affinity-matured library (Fig. 6A). The
total number of clones is dramatically decreased at this time
point, and this sparser sampling resulted in the coarser distri-
bution profile seen in this figure. This bimodal distribution
was ‘amplified’ (i.e. rescaled) without diversification for use
as the input library for a selection round that would be
considered non-stringent for the high-affinity distribution
but stringent for the low-affinity distribution [since the
,2log(koff ). values for these two peaks are substantially
different]. This simulation demonstrated that undesired
library members from the low-affinity distribution could be
effectively eliminated in this step, leading to a significant
enrichment of the peak with the desired ,2log(koff ).max

(Fig. 6A). This result is in good agreement with the exper-
imentally enhanced ratio of affinity-matured clones after a
non-stringent selection round (Luginbühl et al., 2006; Zahnd
et al., 2007).

Fig. 5. In-depth analysis of Gaussian-distributed libraries. The effect of
different parameters on the outcome of different selection experiments was
simulated. All simulations were performed in triplicate and from the
simulated curves, topt and ,2log(koff ).max were obtained using a
5-parameter Weibull fit. (A) Analysis of the dependency of
,2log(koff ).max on U/B with s as a parameter. Semi-logarithmic plots
reveal linear graphs, where the slope is proportional to s. (B) Similarly, the
dependency of ,2log(koff ).max on U/B with the initial average off rate
,2log(koff ).0 as a parameter is shown, influencing the offset of the curves.
(C) Dependency of topt on U/B with s as a parameter. Double-logarithmic
plots revealed linear graphs, where again the slopes were dependent on s and
the offsets were dependent on ,2log(koff ).0 (data not shown).
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Comparison of selection strategies: tradeoff between
stringency and diversity
There has been an ongoing debate about which selection
strategy is best for affinity maturation of a given library
(Martinez et al., 1996; Zaccolo and Gherardi, 1999; Hackel
et al., 2008). Some have posited that many independent
selection rounds with relatively low selection pressure would
result in faster enrichment of binders and would allow the
sampling of the real diversity of the library. Others have
suggested that applying a very rigorous selection pressure on
a highly mutated library would not only increase the chance
of finding cooperative mutations but also accelerate the
selection process.

For a direct comparison of these strategies, the same input
library, ,2log(koff ).0 ¼ 3 and s ¼ 0.35, was used in two

independent selection simulations. The first approach was
identical to the overly stringent selection strategy described
in the previous section: off-rate selection was performed for
13 h with U/B ¼ 5000 and then a non-stringent selection
round was performed to remove equilibrated binders
(Fig. 6A). In parallel, the original library was used to
perform a short off-rate selection of 2 h with U/B ¼ 5000,
and this mild selection procedure was repeated two
additional times (Fig. 6B). In both cases, the output library
was simply rescaled (without diversification) to generate
the input library for the subsequent round. The final
,2log(koff ).max was approximately 4 in both simulations,
so no significant difference in ,2log(koff ).max was
observed between the two selection strategies.

We continued the analysis by comparing the diversities of
the selected pools. In simulating a very stringent selection
round followed by a non-stringent round, an initial library of
5 � 105 binders was used and only 126 (�0.03%) survived
the stringent selection round. In contrast, in the simulation of
three successive mild selection rounds, most library members
were eliminated in the first round (consistent with the biggest
shift towards lower average off rates). Starting with a library
of 5 � 104 different binders, 1463 (�3%) survived the selec-
tion in our simulation.

Since a decreased dissociation rate constant is only one of
several important parameters in assessing the utility of a
clone, the maintenance of greater diversity after selection
may enable the selection of sequences that also have other
desirable properties, including the epitope targeted, improved
association rate constant, thermodynamic stability, expression
level or folding efficiency. Thus, iterated but mild selection
pressures may provide greater diversity in enriched pools
without sacrificing affinity in off-rate selection experiments.

Discussion

The selection of binding molecules with slow dissociation
rate constants from complex libraries has become a con-
venient strategy for both primary selections and affinity
maturation of existing binding molecules. In off-rate selec-
tion experiments, a pool is incubated with low amounts of
biotinylated antigen, before high excess of non-biotinylated
antigen is added as competitor. The competitor is generally
assumed to prevent rebinding to biotinylated antigen, making
the incubation time of the pools in presence of the competi-
tor an important factor determining the selection pressure.

To investigate the parameters that influence efficiency of
off-rate selection experiments, we developed both analytical
and stochastic models of this process. The analytical model
shows that the kinetic profile of a given library member
depends solely on three dimensionless quantities—t, b and
m—each of which can be independently manipulated exper-
imentally by varying the selection time, the concentration of
biotinylated antigen, and the concentration of unbiotinylated
antigen, respectively. In the limit of saturating antigen (both
biotinylated and unbiotinylated), this dependency reduces to
two dimensionless quantities, t and the ratio of unbiotiny-
lated antigen to biotinylated antigen (¼m/b ¼ U/B).

We then developed a stochastic framework for understand-
ing the effects of selection time and antigen ratio on the effi-
ciency of mock libraries. These simulations confirmed that
overly stringent incubation times actually eliminate the

Fig. 6. Comparison of different selection strategies. Two selection strategies
were compared side by side starting with the same library,
,2log(koff ).0 ¼ 3 and s ¼ 0.35. (A) A single stringent off-rate selection
(13 h) followed by a non-stringent panning round (0.5 h). An equilibration
peak appears after the stringent selection, but is effectively eliminated after
the non-stringent selection. (B) Three consecutive rounds of moderate
off-rate selection (2 h per selection). Both strategies result in comparable
,2log(koff ).max values for the selected pools. The diversity, however, was
.100 times greater using the multi-round selection strategy shown in (B)
(see main text).
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kinetic selection pressure because the system is at or near
equilibrium. The optimal selection time is mainly dependent
on U/B and the diversity of the input library. For pools with
log-normally distributed koff values, empirical relationships
among the selection parameters have been proposed that may
be useful in experimental design.

We also addressed, through simulation, whether it would
be preferable to perform a single selection round with very
high stringency or to perform multiple rounds with a moder-
ate selection pressure. Direct comparison of the two selection
strategies revealed no significant difference in the average off
rate of the selected pools. However, analysis of the diversity
of the selected pools compared with the input libraries
revealed that with the stringent selection procedure only a
minor fraction of the binders could be recovered than were
found after multiple selection rounds with the a less-stringent
strategy. Thus, the latter method retains a dramatically
greater percentage of the binders with the desired affinity
that are actually present in the library and thus allows more
choices for subsequent applications.

Due to the artificial character of the simulated libraries
and various simplifications, a direct translation of the
numerical results to real experiments may be problematic.
However, some general insights have been gained, which
may be helpful in designing new experiments. First, the
largest possible U/B should be used to maximize selection
outcome. It should be noted that this can significantly
increase the optimal wait time; however, even if the selection
is stopped before topt, the improvement in ,2log(koff ).max

would be superior to any selection experiment with lower
U/B. Second, if the amount of available antigen is not limiting,
several subsequent selection rounds with modest selection
pressure should be preferable to high-stringency selection
rounds because this will lead to higher diversity in the
selected pools without sacrificing affinity. Third, if the
amount of available antigen is limited and a decreased off
rate is the most important property to engineer, a single
selection round with the highest possible U/B and longer
selection times should be favored to quickly jump to the
desired ,2log(koff ).max. At high U/B, there is a greater
margin for error in selection time, which is an important con-
sideration since topt is generally unknown for complex
libraries; however, a single stringent selection will reduce the
diversity in the recovered pool, which may adversely affect
subsequent protein engineering efforts. Finally, if most of the
analyzed clones after random mutagenesis and off-rate selec-
tion do not show decreased off rates, the desired ones may
be hidden in a large background of unselected or non-
functional members. A non-stringent selection round should
eliminate the background and enrich these desired clones. In
other words, since very few specific clones remain after a
stringent selection round, a non-stringent round is frequently
necessary simply to amplify these sequences for further
manipulations (e.g. subsequent cloning for single-clone
analysis).

We conclude with a practical, albeit greatly simplified,
summary of our findings. It is not useful to carry out off-rate
selections for excessively long times. It would be suitable to
start with a selection time that is the reciprocal of the off-rate
constant that one is hoping to find in the library (Fig. 1);
when in doubt, it is preferable to initially err on the side of
shorter selection times (to avoid approaching equilibrium)

and then incrementally increase the selection time in later
rounds. One should maximize the concentration of competi-
tor relative to immobilized antigen (although the amount of
immobilized antigen must remain large enough to allow
practical recovery of binders). If the amount of competitor is
limiting, a single, stringent selection round, using the highest
achievable competitor concentration, should be performed to
quickly enrich for binders with the slowest off rate; however,
only a handful of different clones may survive this strong
selection pressure. If competitor is available in abundance,
several selection rounds with a lower selection pressure
should be performed to keep the diversity of the enriched
library high; this should increase the probability of finding
clones with a wider range of biological properties.
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