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It is shown that the Caratheodory-Fejer extension of a finite geometric series can be
given explicitly up to a simple polynomial equation in an auxiliary variable. This
result allows us to analyse the Caratheodory-Fejer approximation method in the
case where the quotients of successive Maclaurin coefficients of the given function
tend to a limit.

0. Introduction

THE THEOREM of Caratheodory & Fejer (1911) (or, briefly, CF theorem) states: Given
complex numbers c0,..., cK, there is among all functions g that are analytic in the unit
disc D and satisfy

g{w) = co + clw + c1w
1 + ... + cKwK + 0(wK+1) (0.1)

as w -• 0 a uniquely determined one for which the supremum norm

attains a minimum. The optimal function g = g*, which is called the CF extension of
co+ ... +c^wx, is a scalar multiple of a finite Blaschke product with at most degree
K. It is the only function of this type which satisfies (0.1).

(Note that one may assume c0 =A 0; otherwise the problem can be reduced to one
with smaller K.) As is well known (Takagi, 1924/25)

is obtained by solving the singular-value problem Cu = cru, where

c r c x _! . . . c o \

\ / °\

2ind o- must be chosen to be the greatest singular value of C.
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This singular-value problem is of course equivalent to a characteristic equation
plus a linear system. However, in this paper we show that in the case c} = c* (c # 0
fixed), it can be reduced to a particularly simple polynomial equation in an auxiliary
variable; the singular value a and the corresponding singular vector u are simple
functions of the solution of this equation.

This result allows us to analyse a particular case of the Caratheodory-Fejer
approximation method (briefly called CF method), which was proposed by
Trefethen (1981a) and has since been generalized in various directions, (For more
details and references see Ellacott & Gutknecht, 1983; Gutknecht, 1983; Trefethen,
1981b.)

The smaller singular values of C yield examples for Takagi's generalization of the
CF theorem (Takagi, 1924/25; Gutknecht, 1983). There one tries to determine a
function g satisfying (0.1) that is meromorphic in D, has at most a fixed number v
(< K) of poles in D, is bounded near the unit circle, and has minimal norm on D. In
general, there exist irregular cases where the singular-value problem leads to a
function g that does not match all the given derivatives at zero, but this can be
excluded in our example.

1. The CF Extension of a Finite Geometric Series

The basic result of this paper is:
THEOREM 1.1 (i) The finite geometric series 1 + cw + c2w2 + ... c*w* (c>0,K^0)
has the CF extension

V0(x0)

where Ut denotes the Ith Chebyshev polynomial of the second kind (which is of degree
/), x0 is the (algebraically) largest zero of UK+1(x) —cU^x\ and

CTO:= U^x0) S* max {1, c*}.

(ii) If c > 1, then as K -*oo

9*M c2 c-w

uniformly on D.
Note that the general case of a finite geometric series with complex ratio c ¥= 0

can be reduced to the case c> 0 treated here by replacing wbywe*"".
The proof of Theorem 1 is deferred to Section 3. It will be seen there that the

algebraically smaller roots Xj< x0 of UK+l(x) = cUg(x) belong to singular values
<jj = Ug(xj) < a0 of C (in the same order), that all these singular values are simple
(for every K > 0), and that the singular vectors too are obtained by formally
replacing x0 by xr Hence, it is clear that Takagi's irregular case, which requires
multiple singular values of the matrix obtained by deleting the first row and the last
column of C, cannot occur here (cf. Takagi, 1924/25; Gutknecht, 1983). Therefore,
Takagi's "regular" generalization of the CF theorem holds here and yields an
extension of part (i) of Theorem 1.1:
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THEOREM 1.2 The unique function g* that
(i) is meromorphic in D,

(ii) satisfies (0.1),
(iii) has at most v poles in D (0 < v < K),
(iv) is bounded in some annulus {w e C; 1 < \w\ < pig)},

and minimizes \\g\\ among all Junctions g satisfying (i)-(iv) is

)

}, (1-3)

where x0 > xx > ... > xK denote the K + l distinct zeros of Ut+1(x) — cUg{x), and

Likewise the function g* is the solution of the maximum problem related to a
theorem of Landau cited by Takagi (1924/25, p. 90) and Gutknecht (1983,
Th. 1.1 (v)).

Notable formulae following from our proof in Section 3 are

v = 0,.. , K, (1.4)

cf. Equation (3.2bX and the inequalities

xy < {« , v = l , . . . ,X, (1.5b)

where ij'i' > & > ... > $° denote the zeros of U,. By solving (1.4) for a* and using
(1.5) one obtains simple lower and (except for v = 0) upper bounds for ar

A useful observation for testing programs is that if c is chosen to be
c = {K + 2)/{K +1), then x0 = 1 and the coefficients U£l) in (1.1) equal /+1.

2. Application to the CF Method

Let 9m denote the space of complex polynomials p of degree m. 9m is a subspace
of the space &m of functions p that are analytic i n f l :={weC; 1 < |w| <oo}, are
bounded in every bounded subset of fl, and have a pole of order at most mat oo.
Let/be a given function that is analytic in the unit disc D, and let

/ A » : = E <J*W* (weD) (11)
t-o

denote the Mth partial sum of its Maclaurin series. The polynomial CF method of
Trefethen (1981a) for approximating/by a polynomial of degree m < M is based on
extending

backwards to a function q e &u according to the CF theorem, Le. wh-ty^qil/w) is
the CF extension of 0^+ ... +am+lw

M~m~l. It is easy to see that p:=fM-q e &m

is the best approximation of/m out of ^_. By deleting the terms with negative index
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in the series for p, one ends up with the CF approximation p*1 e &m that is normally
very close to the best approximation oifu, and hence of/if M was big enough.

Our results of Section 1 allow us to analyse the model problem with at = a1, Le.

The best approximation p* e 9m to / i s known explicitiy (Al'per, 1959; Rivlin, 1967),

p*(w) = l+aw+...+(aw)m~1 + }r-fr- (2.3)
l - | a |

The error curve
o"+ 1 w—d

/(w)-p*(w) = — — j w- 1 (2.4)
1 — \a\ 1 —aw

is exactly circular. (This is just an example where the generalization of the CF
theorem due to Adamjan, Arov & Krein (1971) yields p e 9m Le. p = p*.) For finite
M, p $ &m and the error function q =fu~P looks far less simple. But since q is
obtained by extending am+1wm+l +... + aMwM backwards according to the CF
theorem, we can just apply Theorem 1.1 after having divided by {aw)" and made
two simple substitutions (w -• 1/w, c: = I/a). Assuming 0 < a < 1 for simplicity
again, we obtain:

THEOREM 2.1 Letfu be given by (22) with 0 < a < 1. Let K:= M-m-1 2* 0, and
let x0 be the (algebraically) largest root of aUK+1(x)— Ug(x) = 0. Then the best
approximation p tofM out of&m is given by •'

* * - ' - < • > - • " - t t f r ^
where ao:= Ug{x0) > 0. As m, M -> 00 with M — m fixed, p converges uniformly on the
unit circle 9D to p* given by (23).

As mentioned, a0 is a simple singular value of a real symmetric matrix and
u: = (U0(x0\..., Ux(x0))

T is a corresponding singular vector. Hence aQ and u are
stable under perturbations of the matrix, and even for non-hennitian perturbations,
cf. Stewart (1973). In particular, <r0 and u are the limits of the corresponding
quantities in the singular value problem belonging to any more general / whose
coefficients a} satisfy

lim 2*±± = a (26)
;~» aj

with 0 < a < 1, an assumption under which the CF method is known to work well
in practice. In view of aM-j ~ aMa~J we obtain:

THEOREM 2.2 Let {ay}JL0 satisfy (2.6) with 0 < a < 1, letfM be defined by (2IX and
let p denote the best approximation to fM out of'&„. Ifm, M ->oo in such a way that
M — m is fixed, then

K ]

uniformly on 3D, where x0 and a0 are the same as in Theorem 21 .
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In particular, this theorem implies that as m, M -»oo, M—m = K + l fixed, the poles
of all Blaschke products q/\\q\\ = (Ju—p)/ll/M—p\\ he in a disc \w\ < £ with fixed
i < 1. (In the error analyses of Hollenhorst (1976) and Trefethen (1981a), who
require weaker assumptions than (2.6), this is only guaranteed if \a\ < 0-43426 . . . or
-&, respectively.) By applying Lemma 1.2 of Ellacott & Gutknecht (1983), which is
based on Cauchy's coefficient estimate, it follows that the relative truncation error
\\{ff—PW/Wfit—P\\ tends t0 0 geometrically as m,M->oo {M—m fixed): for any
R £ «, 1)

where ||/M—p\\ ~ aoau according to (2.7). (Note that X = M - m - 1 , <j~ = p "̂—p,
and a = ||./^—pll in the lemma we refer to.) For further comments on this and
related error estimates see Section 1 of Ellacott & Gutknecht (1983).

3. Proof of Tbeorem 1.1

The matrix C defined in (0.3) is real and symmetric since c} = c1 with c > 0. Hence,
the singular-value problem Cu = au can be reduced to an eigenvalue problem
Cv = Xv, where a = |I| and u = v if 1 > 0, u = iv if 1 < 0. The formulae simplify if we
substitute a: = 1/c, X: = I/c*. Then Cv = Xv is equivalent to

a'Y^^M, 1 = 0,..^K.

Defining p x + x : = 0, p_ x: = co/a we obtain

^ , - r , + 1 ) = ax + 1^_ / , / = 0,._A:, (3.1)
whence

or, after reordering,

»l+1-2x(a,A)i;, + o ,_ l =0, l = 0,..^K, (3.2a)
where

1 / 1 a2K+l\( ^ J (3.2b)

It is well known that the Chebyshev polynomials

^ ((/+!) arccos x)
T,(x) = cos(/arccosx) and

sin(arccosx)

(/ = 0 ,1 , . . -) form together a fundamental set of solutions of (32a). Since (3.2a) is
symmetric in r,+1 and p,-!, this is also true for the reverse recursion starting at vt,
i.e. (32a) has the general solution vK.} = a7}(x) + /?l/,(x). Moreover, since U0(x) = 1,
U^x) = 2x, the recursion for U, holds for / = 0 if we set l/_ x(x): = 0. Hence, in view
of vK+1 = 0,

. (3.3)

is the solution sought [Note that a constant factor would cancel in (0.2).] Since
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D_ 1 = vja, x and a are directly related by

wrk=a=\- (3-4)
The rational function UK/UZi.l has exactly K + l simple poles and K interlacing
zeros in (— 1,1) and is strictly decreasing on the whole real line except at these K + l
poles. For x > l ( x < — 1) it is positive (negative). Hence it is easy to see from the
graph of this function that (3.4) (with a > 0) has exactly K + l solutions
x0 > x t > . . . > xK > — 1, which satisfy (1.5). Obviously, at most x0 > 1; in fact
x0 > 1 iff a < (K + l)/K + 2) and x0 = 1 iff a = (K + l)/{K + 2). If we denote the
eigenvalue corresponding to x, by X» then by (3.2b), \X0\ > \Xt\ > ... > \XZ\.
Moreover, from (3.1) with / = K we conclude that XvK = O^PQ, hence by (3.3)

A, = a* UK(xyl X\ = U,,(xJ, y = 0,..^K. (3.5)

Since the zeros of Ur interlace with the points x« the eigenvalues JL, alternate in sign,
XQ being positive. Hence a, = (—iyX\ and u, = p, if v is even, u, = ivt if v is odd.
Finally, applying Cauchy's coefficient estimate to g*{w) yields

a0 = \\g*\\ > max \c,\ > max (1, c*}.

This establishes the first part of Theorem 1.1 and the ingredients mentioned in
Section 1 for the proof of Theorem 1.2.

Of course, Vj can also be written in terms of the powers of the reciprocal roots r\
and l/tj of the auxiliary equation z2 — 2x(a, X)z+l = 0 of recursion (32a) since these
powers form another fundamental set of solutions. If x > 1, r\ and l/rj are easily seen
to be real and positive: say, ^ e (0,1). Moreover, it is well known [and in view of the
relation x = # j +1/17) easy to check] that U,(x) = {rjl + 1 -»7"'~1)/(>7-^"1) if |x| * 1.
Thus,

»j = - n— 0" = - ! . • • • , K+l). (3.6)
1 — 1

In the case c > 1,

on 8D as K-*co. Since X2, = c~KcrQ > 1, it follows from (3.2b) that
x0 -> i [a+( l / a ) ] > 1. Consequently,

and UJ/P0 -> â  (for _/ fixed). In fact,

hence, there exist y > 0 and Xo > 0 such that for all K > Ko

\rj-a\^ya2K+1 and 0 < rj < b:=
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Thus,

t
(3-8)

2

J-o
and this tends to 0 as K -»co. In view of (3.6),

i_ -j+ir+i

•-a*
1 - i f

So, by using (3.8) we get for all w e

l-b2K+

r
(vj/vo)w>- £ M J

j -o J»TH

It follows that ]£(D/I>O)W '
 tCQds uniformly to 1/(1 —aw) as JC->oo. Likewise,

E ( V o ) w " ; -> w/(w-a). Hence by (0.2) and (3.7)

a*(w) 1 1 — aw c2 c — w

~*l-a2 w-a = c 2 - l c w - l

unifonnly on D. This concludes the proof .of Theorem 1.1. •
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