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1. Introduction

A. Rational space curves through a given set of points

It is a classical result of enumerative geometry that there is precisely one twisted cubic
through a set of six points in general position in P 3 . Several proofs are available in the
literature; see, for example [15, §11, Exercise 4; or 12, p. 186, Example 11].
The present paper is devoted to the generalization of this result to rational curves of
higher degrees.

Let m be a positive integer; we denote by <€m the Chow variety of all curves with
degree m in PQ. As is well-known (cf. Lemma 2.4), (€m has an irreducible component
0im, of dimension Am, whose general element is the Chow point of a smooth rational
curve. Moreover, the Chow point of any irreducible space curve with degree m and
geometric genus zero belongs to 0tm. Except for m = 1 or 2, very little is known on the
geometry of this variety. So we may also say that the object of this paper is to
undertake an enumerative study of the variety $%m.

We denote by PV^ the condition that a rational curve of degree m should pass
through a given points and meet j5 given lines of Pc, not in special position. This
notation goes back to Schubert [11] and Todd [14], who investigated the case where
m = 3 of twisted cubics subject to various such constraints. It is not hard to show
(§ 2A) that the curves which pass through a given point P e P 3 describe a subvariety of
codimension 2 in Mm. Similarly, the curves which meet a given line £ a P 3 are
represented in Mm by a subvariety of codimension 1. Therefore, if 2a + /? = Am and
general position is assumed, it is natural to expect that there is only a finite number of
distinct curves, represented by points on ^?m, that satisfy the condition PYP. This is
indeed the case (Corollary 2.4.1); we shall also denote this number by PVP.
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Furthermore, this number is not equal to zero (Lemma 2.7 and Corollary 3.2), unless
m = 2, a = 4, and /? = 0: there is no connected curve of degree 2 through four points
in general position in P3!

These assertions are proved by considering various degenerations of the condition
P*£p, in which the a points are no longer generically chosen in P 3 , but are supposed to
lie on some fixed smooth quadric Q a P 3 . Hence what we prove in fact is the stronger
assertion that the numbers PYP are finite even if the a points are not generic in P 3 , but
only generic on Q. In § 3A, we shall prove even more: not only do the numbers PY"
remain finite under this specialization, but the multiplicities of the solutions are
unchanged. So in particular (Corollary 3.7) the number of distinct rational curves of
degree m that pass through 2m points is the same whether the points are generic in P 3

or only generic on Q.

As was said at the beginning, we are primarily interested in the condition P2m. But
it is necessary to study all the other conditions in order to settle the problem of
multiplicities we have just been mentioning. Section 3B is devoted to the actual
determination of the numbers P2m. We can briefly describe how this is done: instead
of studying the condition P2m, we first study P2 m~Y2. Therefore we take 2m—1
points P 1 , . . . ,P 2 m _ 1 and two lines LX,L2 in general position in P 3 . If we specialize
these two lines in such a way that their specializations L\,L'2 meet in one point P2m,
we see that P2m~ V2 is the sum of P2m and the number Fof curves passing through
Px> •••> Pim-x a n d meeting L\ and L2 without passing through their intersection P2m.
It will therefore suffice to determine P2m~ V2 and this number V. As already noted
above, we can assume that the 2m points lie on a smooth quadric Q. So, in order to
determine P2m~ V2 and V, we shall specialize L^ and L2 into two lines L'[ and L2 lying
on the quadric. This will clearly introduce some multiplicities, but the number of
solutions remains finite! Besides, there are two ways of choosing the specializations:
either L'[ n L2 = 0 or L'[ n L2 = {P2m}. Each of these possibilities corresponds to
one of the two numbers to be determined. We shall see in § 2B that the specialized
curves remain irreducible; so, by the Bezout theorem, they must lie on Q. Thus the
numbers we are looking for can be determined by means of the geometry of quadrics!

The only difficulty with this approach is that we must determine multiplicities
correctly. At the very end of the argument (§ 3B), we have to introduce an assumption,
which, unfortunately, is inadequately justified. If it did not hold, all the results proved
before would of course still be valid, but the final formulae would look more
complicated. The following theorems are therefore conditional on the validity of that
assumption. (We shall designate by a * any result whose proof depends on Conjecture
(*), enunciated in §3B.)

THEOREM 1*. P2m = (m-2) 2 + £ (m-2^)2A/4>m_/1.
2^fi<im

m

THEOREM 2*. p^-i^i = £ ^2AM>m_M.

The numbers A^v are non-negative integers, which admit of a simple geometric
interpretation:

DEFINITION. AM V is the number of irreducible curves of type (n,v) and geometric
genus zero that lie on P1 x P1 and pass through a generic set of 2m— 1 points on this
surface (where m = ^ + v).



ENUMERATIVE GEOMETRY OF RATIONAL SPACE CURVES 2 6 5

See § IB for a more complete discussion. These numbers AM v are of a simpler nature
than the PY^, because they relate to divisors on a very simple surface, as opposed to
subvarieties of codimension 2. But, of course, their actual determination may raise
some problems. Thus the whole of § 4 is devoted to the determination of A2,3, which is
the number of irreducible quintics of type (2,3) that pass through nine fixed generic
points of Q and have two unassigned double points on this quadric. It will be found
that

l 2 , 3 = 96. (1)

Using Theorems 1 and 2, together with the elementary results of § IB, we can thus set
up a table for the first few values of the degree:

m

1
2
3
4
5

pin,

1
0
1
4

105

plm-^l

1
1
5

58
1265

Todd [14] gives several ways of showing that P 5 / 2 = 5, thus confirming Theorem 2
for twisted cubics. That P8 = 4 was shown by Cayley. His proof can be found in
Salmon's Treatise [9, #381], and apparently nowhere else. Our proof follows entirely
different lines, since Cayley proceeds by giving an explicit construction of the four
solutions. The other numbers in the table appear to be new.

Tt is interesting to remark that both theorems yield some lower bounds, like
P2m^(m-2)2, P2 m~V2 $s (m- l ) 2 , and some congruences, like P2m = 0 (mod4)
when m is even. By Corollary 3.4, the other numbers PaSp are even bigger, in
particular, / 4 m, which may be interpreted as the degree of the variety 0tm in the
standard embedding. (Moreover, it follows from the arguments used in § 3B that the
above inequalities would be valid even if Conjecture (*) turned out to be false!)
Various upper bounds can also be obtained from the theory of Chern classes, but are
not discussed in this paper.

B. Curves on quadrics

We recall briefly some properties of quadrics, which will help us to understand the
significance of the numbers AM v.

LEMMA 1.1. Every smooth quadric surface g c P 3 is isomorphic to P1 x P 1 ; its
Picard group is therefore isomorphic to Z © Z and is generated by the classes e and f of
the two families of straight lines (called 'rulings') ofQ. The multiplicative structure obeys
the following relations:

e
2 = f2 = 0 ; e . f = l .

Thus, if we fix two lines E e e and F e f, every curve V cz Q is linearly equivalent to a
(unique) divisor of the form fj.E + vF. The numbers n and v are characterized by the
conditions:

/* + v; (2)

^-l)(v-l) . (3)
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Moreover, every effective divisor of type (/i, v) is the divisor of zeros of a unique (up to
scalar multiplication) bihomogeneous form G(u0, ux; v0, y j , with bidegree {fi,v). The
dimension of the family of curves of type (fi, v) is consequently equal to (/i + l)(v + 1) — 1 :

d i m | F | = /iv + /i + v = 2degF + pf l (F)-l . (4)

Proof See, for example, [8, Chapter 1, §5.1, Theorem 1; §6.1, Theorem 3'; and
Chapter 4, §2.3].

In the definition of A^ v given above, we talk about a 'generic' set of points
Lf\>-••>^2m-i}- I*1 anY given context, this word has a very precise meaning. For
instance, no two points are on a line of Q, no four in a plane, no six on a twisted cubic
lying on Q, etc. However, this notion of genericity can be properly understood only by
induction on the curves of lower degree that lie on Q. Moreover, there will usually
be some further restrictions, which are more difficult to delineate. A very efficient way
to get around the difficulty is to adopt the language of Weil's Foundations: we select a
field of definition k for 0£m and Q, for instance the prime field k = Q, and assume that
(P1,. . . ,P2 m_1) is a generic point over k of the symmetric product Z = Q®2m~i

< Then
(Pl 5 . . . , P2m-i) does not belong to any proper subvariety of £ defined over k. Now all
the restrictions that will ever occur on the choice of the points, like 'no six on a twisted
cubic lying on Q, etc.', will correspond to some proper /c-subvarieties of Z. Therefore
the great advantage of understanding 'generic' in the sense of Weil is that one can
choose the points once and for all, and there is no need to specify the conditions each
time. For simplicity, in what follows, the field over which a point is generic, or a
specialization defined, will not be mentioned explicitly whenever the context is
sufficiently clear.

LEMMA 1.2. The numbers AM v defined in § 1A satisfy the following relations:

A^ v = AVM for all /x,v; (5)

A 1 , m _ 1 = l for all m; (6)

Am,o = 0 for all m> I. (7)

Proof. (5) and (7) are immediate from the definition. To prove (6), we use Lemma
1.1: the curves of type (1, m — 1) have arithmetic genus nought, by (3), and they vary in
a linear system of dimension 2m—1, by (4). Therefore 2m—1 generic points on
IP1 x P 1 belong to precisely one curve of type (l,m— 1), which is irreducible (as
follows, for example, from the Bertini theorem) and of geometric genus nought.

LEMMA 1.3. A2 2 = 12.

Proof. By Lemma 1.1, A2>2 is the number of singular elements in a linear pencil of
quartics F of the first species lying on Q. Hence A 2 2 is given by the theory of the
Zeuthen-Segre invariant [17, Chapter 3, §8]. If S is a smooth surface and F c S varies
in a linear pencil of curves with only simple base points,! then the number S of singular

f Since / increases by 1 when blowing up a point, formula (8) can also be used for pencils with multiple
base points, provided that we first resolve singularities by means of suitable blowings-up.
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elements in the pencil is given by the formula

). (8)
Here / denotes the Zeuthen-Segre invariant of S, and it is known that
/ = (n - 2)(n2 - In + 2) if S c P 3 is a smooth surface of degree n (cf. [12, Chapter 9, § 7,
Example 3]). Hence / = 0 in our case; moreover, pfl(F) = 1 and (F)2 = 2/iv = 8;
therefore <5 = 12.

If the seven assigned base points are chosen to be generic on Q, all these twelve
curves are irreducible, and hence A2i2 = <5. Indeed a reducible curve of type (2,2) is
either the union of two conies, or the union of a line and a curve of degree 3. But it
follows from (4) that there is no such reducible curve through seven generic points
offi.

2. The two modes of degeneration

A. Incidence correspondences

Let M be any irreducible component of the Chow variety %>m. We shall suppose (for
simplicity) that it contains the Chow point of at least one irreducible curve. Then the
curves passing through a given point P e P 3 are represented in 0t by a subvariety of
codimension 2. Indeed, consider the set

Sx = {(r, R) e 0t x P31 R G <r>},

where <F> denotes the support of the 1-cycle whose Chow point is F. This is an
algebraic correspondence [4, Chapter 11, §6]; moreover,

LEMMA 2.0. The incidence correspondence $ x is irreducible.

Proof. See [18, p. 295, §1.4], which depends on the following lemma, proved in [18,
p. 153, §21].

LEMMA 2.0.1. Let S and S' be points in some projective space. If (T,S) is a
specialization, over afield k, o/(F', S"), then for any point R e <F> there exists a point
R' e <F'> such that (F, R, S) is a specialization of(T', R', S') over k.

Now both projections q>x: ix -> 0t and \j/x: $x -> P 3 are surjective. This is trivial
for cpx; therefore it suffices to show that given a generic point P' of P 3 over k, there is a
curve <F'> through P' whose Chow point belongs to $2. Let F be a generic point of &
over k, and let P be a generic point of <F> over k(F). If P is not a generic point of P 3

over k, then P is a non-generic specialization of P' over k. Now we can obtain a curve
<F'> through P' by performing a suitable translation on <F>. It follows from the
definition of Chow forms that the Chow point F of <F> is a non-generic specialization
of the Chow point F' of <F'> over k. Therefore F' is a generic point, over k, of a variety
0%', which contains 0t as a proper subvariety. This contradicts the fact that ^2 is a
component of #m.

Let d be the dimension of £%; as the fibres of q>x have dimension 1, and (px is
surjective, $x has dimension d+ 1; and since also \px is surjective, a generic fibre of \j/x

is of dimension d — 2. This completes the proof that the curves passing through a
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genericf point of P 3 are represented in 01 by a subvariety of codimension 2, or, as we
shall sometimes say, that passing through a point is a condition of weight 2. A similar
argument, using the Grassmannian Gx 3 of lines in P 3 and the correspondence

shows that meeting a line is a condition of weight 1. In addition,

LEMMA 2.1. The incidence correspondence S2 is irreducible.

Proof The fibre of q>2: S2 ~* ̂  above F e & is what is classically called the
'complex of secants' of <F>; cf. [12, Chapter 10, §2.2, Example 10]. (A secant is any
line which meets the curve; this word is therefore not synonymous with 'bisecant', or
'chord'.) Now the complex of secants of an irreducible curve <F> is irreducible, for the
correspondence

is such that all the fibres of its first projection are irreducible, of dimension 2. Hence
Sr is irreducible [8, Chapter 1, §6.3, Theorem 8], and so is the complex of secants of
<F>, which is nothing but the image of Sr by the second projection.

Now let k be a field of definition for ^2. Let F be a generic point of ^ over k, and 11
a generic point of the complex of secants of <F> over /c(F'). Let (F, L) be any point of
S2; it is enough to show that (F,L) is a specialization of (F',L') over k. By the
transitivity of specializations, this is a consequence of the following (more general)
lemma.

LEMMA 2.1.1. Let T and T be points in some projective space. If (T,T) is a
specialization, over k, of (F', T) and if <F> n <L> ^ 0 , then there exists a line
L' e Gl i 3 such that <F'> n <L'> ^ 0 and (F, L, T) is a specialization of (F', L', T)
over k.

Proof Let R e <F> n <L> and let S be some other point of <L>. Let S' be a generic
point of P 3 over fe(F', T). Then (F, S, T) is a specialization of (F, S', T) over k [16,
Chapter 2, § 1, corollary to Theorem 5]. Moreover, by Lemma 2.0.1, we can find a
point R' e <F> such that (r, R, S, T) is a specialization of (F, R', S', T') over k. Let
<L'> be the line joining R' and S'. Clearly, under this specialization, L' specializes to
the line L; hence (F, L, T) is a specialization of (F', L', T') over /c.

Note that the points S and S' in Lemma 2.0.1 do not play any role in the proof of
Lemma 2.0. However, they are used in the proof of Lemma 2.1.1. Similarly, the points
7 and T in Lemma 2.1.1 have been introduced so as to prepare the following
generalization: we define

(exponents are used for denoting the direct product of a variety with itself)- Then the
same argument as above, using a combination of Lemmas 2.0.1 and 2.1.1, shows that
there is an irreducible correspondence & cz <%x&, whose general element consists of a

tThe case of an arbitrary point in P 3 follows again from the fact that PGL4 acts on the Chow variety.
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curve together with a points on it and /? lines meeting it. In the diagram

$

(paji is clearly surjective and all its fibres are of dimension a + 3/?. Hence, if we assume

d i m $ = 2a + /?, (9)

we have

dim S = 3a + 40 = dim ®. (10)

Moreover, since 88 is normal (in fact non-singular), the principle of conservation of
number applies. Hence,

LEMMA 2.2. Assuming that (9) holds, we see that ij/^p is surjective if and only if one at
least of its fibres is finite and non-empty. In that case the general fibre is also finite, with
deg<Aa,/( distinct points, and no finite fibre contains more than this number of points.

Proof. See [8, Chapter 2, § 5.3, Theorems 6 and 7]. The assumption made there, that
if/^p should be a finite morphism, is automatically satisfied above {y e 0&\ ij/~p(y) is
finite}, since proper, quasi-finite morphisms are finite, by Zariski's main theorem.

DEFINITION. Let F and F' be two effective 1-cycles of degree m in (P3. We say that F
is a specialization of F' (over a field k) if the Chow point of F on (€m is a specialization
of the Chow point of F' over k.

In view of this definition, we now abandon the distinction between a curve <F> and
its Chow point F. The same notation F will be used for both.

DEFINITION. Let F = £ F , be an effective 1-cycle without multiple components. We
define its effective genus n(T) to be the sum of the geometric genera of all its
components, 7i(F) =

LEMMA 2.3. Let F be an effective I-cycle without multiple components, and suppose F
is a specialization of an irreducible curve F'. Then F is connected and

0 ^ n(r) ^ n(F') ^ pJT) ^ pJLD.

Proof By the so-called 'principle of degeneration' [18, p. 76, §2], F is connected.
The inequalities are proved in [3, Theorems 4 and 5].

In this paper we shall deal exclusively with curves of genus zero. Hence, from now
on, M will be the variety 3#m which is described in the following lemma.

LEMMA 2.4. The Chow variety (f,m has an irreducible component 0tm, of dimension 4m,
whose general element is the Chow point of a smooth rational curve. Moreover, any
irreducible space curve with degree m and geometric genus zero belongs to &m.
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Proof. Any irreducible space curve with degree m and geometric genus zero is the
image of P 1 by a map

and in general such a map corresponds to an irreducible curve of degree m. (There are
some exceptions, for instance if the above four polynomials have a common factor.)
There are 4(m+l) coefficients, and hence oo4m + 3 maps. This defines an incidence
correspondence «/, with base the open subset U of p4 m + 3 which parametrizes those
maps / for which / (P 1 ) is irreducible of degree m.

This correspondence J is irreducible, by the argument of Lemma 2.1. Indeed a
point P in a special fibre is given by its first projection (a0,..., dm) e U and by a point
(t, u) E P1 . \{{a'o,...,d'Jis a generic point of U over k, and (t',u') is a generic point of P1

over k(a'o,...,d'm), then (by [16, Chapter 2, §1, corollary to Theorem 5]) P is a
specialization, over k, of the point P' defined by (a'o,..., d'm) and (t', u'). Therefore P' is a
generic point of J over k, and J is irreducible.

By [4, Chapter 11, §6, Theorem II, p. 115], there is a correspondence between U
and an irreducible subvariety 9lv of the Chow variety #m, which defines the same
curves as V. Let 0tm be the closure of 0tu. As the oo3 automorphisms of P1 do not
modify the image of a map /, the dimension of @lm is equal to (4m + 3) - 3 = 4m.

It remains for us to show that ffim is a component of #m. This follows from Lemma
2.3. Indeed, let F be a smooth irreducible curve of fflm, and suppose F is a
specialization of a curve F e f r Then F is irreducible; and pa(T') = 0 by Lemma 2.3.
Therefore F is already in 0tm.

COROLLARY 2.4.1. The numbers Pa<fp are finite (but possibly equal to zero) if
= 4m.

Proof. By Lemma 2.4, d im^ m = 4m. Hence (9) holds, and the assertion follows
from Lemma 2.2.

B. Preliminary study of the degenerations

In order to estimate the numbers P2m, we begin by studying the condition p2m~ V2.
We shall allow the constraints to degenerate in the following two ways.

DEFINITION, (a) Let Q c P 3 be some fixed smooth quadric surface. With the first
specialization, the 2m—1 points P 1 , . . . ,P 2 m _ 1 lie on Q and the two lines Li,L2 are
contained in Q, and both belong to the same ruling, that is, Ly n L2 = 0 . No further
constraints are imposed.

(b) With the second specialization, the 2m— 1 points lie on Q and the two lines Ll5 L2

are contained in Q, but belong to distinct rulings, that is, LlnL2 # 0 . No further
constraints are imposed.

The fact that no further constraint is imposed will be referred to as a genericity
assumption. (See the discussion in § IB.) Specializing the constraints in this way means
that we consider some special fibres of the map iA2m -1,2 introduced in § 2A. Our proof
of Theorem 1 depends on showing:

(i) that these fibres are finite with each of our two specializations;
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(ii) that the specialized curves are all irreducible, so that, in Case (a), they all lie on Q
(by the Bezout theorem); in Case (b), either they lie on Q, or they pass through
P2m = LlnL2;

(iii) that we know exactly how to reckon the multiplicities of the specialized solutions,
so that P2m will be the difference between the weighted number of curves
obtained with the first specialization (which is of course P2m~ V 2 , thus yielding
Theorem 2) and the weighted number of curves F c Q obtained with the
second specialization.

In the remainder of this section we shall restrict our attention to the first two points.
Multiplicities will be discussed in §3.

LEMMA 2.5. The family of all irreducible curves F c= Q with degree m and geometric
genus zero has dimension 2m — 1.

Proof. The family of irreducible curves of type (1, m— 1) has this property (Lemma
1.1). Hence it is required to show that the dimension of any other component of our
family does not exceed 2m— 1. Now a curve F in the family is the image of a map
/ : P1 -> P1 x P 1 , where

consists of two pairs of polynomials, respectively of degree fi and v, with /i + v = m,
varying independently. These maps are parametrized by points of P2" + 1 x P 2 v + 1 .
Taking into account the action of the oo3 automorphisms of P 1 , we see that the
dimension of any component of the family does not exceed

l) + ( 2 v + l ) - 3 = 2 m - l .

COROLLARY 2.5.1. The numbers A^ v introduced in § 1A are finite.

Proof. Let {$T,} be the irreducible components of the family of all irreducible curves
of type Ou, v) with geometric genus zero. Then dim^",- ^ 2m—1. For each i, pick
F, e 3Ch and let P be a point of Q lying off (J F,. Since passing through P is a linear
condition on curves of type (n, v) and P $ F,, the curves passing through P define a
proper hyperplane section < ,̂ of #",- <= P"v +" + v

5 whose dimension is therefore at most
2m —2. Repeating this argument with the irreducible components of (J^,-, we
complete the proof by induction on the dimension.

LEMMA 2.6. Any curve F e Mm satisfying the first specialization of the condition
P2m~ V2 is irreducible and lies on Q. These curves form a finite, non-empty set. Hence
•A2m-i,2 IS surjective. For m ^ 2, the same assertions hold for the curves F e 0lm which
satisfy the second specialization of the condition p 2 m ~V 2 without passing through
Lj n L2.

Proof. By Lemma 2.4, F is a specialization of an irreducible curve F' of genus zero.
If we suppose that F has no multiple component then, by Lemma 2.3,

0 < TI(F) ^ pg(T') = 0.

Hence every component Tj of F has geometric genus zero. This is also true if F has
multiple components, but another argument is needed; see [10, Lemma 5, p. 392].
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Put nij = deg Vj. Since F meets Q in at least 2m +1 points, it has a component Fo

contained in Q, by the Bezout theorem. By Lemma 2.5, this component can satisfy at
bestf P2mo~ V2 , because of the genericity assumptions made in the definition of the
specializations. Similarly, any other component F7 c Q can pass through at most
2mj— 1 of the points; and any component F, <£ Q can satisfy at best P2mj, by the
Bezout theorem. These conditions do not add up to P2m~ V2 , unless F o is the only
component contained in Q. Thus we see that F = Fo u Fx u . . . u Fr, with F o c Q
satisfying P2mo~ V2 and F7 <£ Q satisfying P2mj {j ^ 1).

Now, by Lemma 2.5, only finitely many rational curves Fo can be found which
satisfy p2mo~V2. Hence, by the genericity assumptions and the Bezout theorem
again, we have F o n(rx u . . . u Fr) = 0. But, by Lemma 2.3, F must be connected.
Therefore F = F o , that is, F is irreducible and lies on Q. We have also seen that these
curves form a finite set, which is non-empty, because there is always a curve of type
(l,m—1) among the solutions (unless m = 1 with the second specialization!). By
Lemma 2.2, the assertion for the first specialization implies that \\jlm-1,2 is surjective.

LEMMA 2.7. The set of curves F e $m passing through 2m points in general position on
Q is finite. Ifm^2, it is also non-empty.

Proof. We may clearly assume that m > 2. Let {Plt...,Plm-\) be a generic set of
2m— 1 points on Q, and let F o be the curve of type (1, m— 1) which passes through
them. Let P2m be a generic point of F o over k(Pi,...,P2m-l). By Lemma 2.5, we know
that only finitely many irreducible curves F G 0lm lying on Q pass through
Pu--->Pim-i- Let F be the union of these curves, other than F o . Then, by the
definition of P2m, we have

There is at least one curve F e 8%m that passes through Pl,...,P2m, namely F o . It
suffices to show that there are only finitely many others. This will also imply that the
morphism ij/2m,o is surjective, since we shall have found a finite, non-empty fibre
(Lemma 2.2).

Suppose there are infinitely many curves F e <%m passing through Pu...,P2m. Then
the variety 0lm contains a curve Sf of such solutions F. The incidence correspondence
J c Sf x P 3 projects onto a surface S <= P 3 (the 'carrier variety' of £f), which is the
union of all the curves F that belong to Sf. We know that S 3 Fo . However, the
intersection Q n S is not reduced to Fo. This is because m ^ 2 and (if S j> Q) the
divisor Q.S on Q is of type (A, k) with X = deg S: such a divisor cannot be a multiple of
F o , which is of type (1, m— 1).

As T= (Q n S) \F 0 has dimension at least 1, it is met by a generic line Lx, over
fc(Pl5 ...,P2m), of at least one of the two rulings. Pick

Re L^T. (12)

Since R e S, we can find a curve F e SP which passes through R. As F contains
^i> •••> Pim a n d R, it satisfies the first specialization of P2m~ V2 (on taking L2 to be the
line through P2m which belongs to the same ruling as Lx!). Thus, by Lemma 2.6, F is
irreducible and lies on Q. Therefore, by (11), F is equal to F o , since P2m e T\F. But
this is absurd, since it follows from (12) that R e F \ F 0 .

t Note the abuse of language: in this proof, P and C refer to points and lines lying on Q.



ENUMERATIVE GEOMETRY OF RATIONAL SPACE CURVES 273

COROLLARY 2.7.1. P2m # 0 provided that m # 2. Equivalently, the morphism ^2m,o JS

surjective for m # 2.

COROLLARY 2.7.2. /4ny curue F e ^?m passing through 2m points in general position on
Q is irreducible.

Proof. By Lemma 2.7, if we write m = £m,-, there are only finitely many irreducible
curves F, e 0tm. through 2m, generic points of Q. It can be shown that, for 2m generic
points on Q, the unions of curves one can build in this way are necessarily
disconnected. By Lemma 2.3, these reducible curves are not in 0tm.

Perhaps the easiest way to prove the assertion is by using the action of the
orthogonal group associated with the equation of Q c P3. Given two finite sets of
irreducible curves F, e ^?mi and F2 e 0tmi not lying on Q, one can move the second set
by an element of the orthogonal group so as to disconnect it from the first set of curves
(which one keeps fixed). This shows that, for 2(mj + m2) generic points, there is no
connected reducible curve among the solutions.

3. Multiplicities

A. Transversality of the fibres

NOTATION. For fixed p and a satisfying

p + a = 2m-l, (13)

we shall denote by C the condition Pp£2a that a curve F £ 0tm should pass through p
generic points and meet 2a generic lines of P 3 . We shall write Co for the same
condition, but with the p points lying in general position on Q; the 2a lines are still
supposed to be generic in P 3 . Similarly, we shall consider the conditions CP, C/s C£2

and their specializations C0P, C0P0, Q / , Q / 2 . For instance, C0P is a specialization
of Pp + V2<T, in which all but one of the points lie on Q, the remaining point and the
lines being generic in P 3 .

LEMMA 3.1. The set of curves F e 0tm satisfying the condition CP is finite. If it is non-
empty, then the set of curves F e <%m that satisfy either C/2 or C0S

2 is also finite and
non-empty.

Proof. The dimension of 0lm is 2(p + \) + 2<J = 2p + (2a + 2) = 4m (Lemma 2.4).
Hence, by Lemma 2.2, the set of curves F e 0tm that satisfy either CP or C£2 is finite,
since it can be identified with a generic fibre of the map \j/p + { 2a, respectively i/̂ p la + 2.
Therefore it is enough to show that, if CP ^ 0, then C/2 ¥" 0 and C0<f2 is finite.

Suppose C/2 = 0. Then the set of curves F e &m that satisfy C/ is finite. For if it
were infinite, then the union of these curves would fill at least a surface S c P 3 , A
generic line Lcz P3 would meet 5 in some points, i.e. on some curves F in the family,
so that Gf2 T* 0, a contradiction. Now the general fibre of the map iAp,2(T + i is either
infinite or empty (cf. Lemma 2.2: (10) is replaced by dim<f = 1 + d i m ^ ) . Since we
have just shown that it is finite, we must have C£ — 0. However, this contradicts our
assumption that CP ^ 0, which implies that given any point R of a generic line L,
there is a curve F satisfying C and passing through R, and hence meeting L.

This shows that Ctf2 ^ 0 and «AP,2<T+2 is surjective. Of course this implies that
C0if

2 ̂  0. We have to show that this number is also finite. This is done by a dimension
5388.3.46 R
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count, but we have no reason to expect that the relevant incidence correspondence is
irreducible. Therefore the argument needs some dressing up!

Let {Pl5.. . , Pp) be a set of p points on Q. We say that this set is special if, for some
p. ^ jp, it contains a subset of 2p points that belong to an irreducible curve of degree p
and geometric genus zero lying on Q. By Lemma 2.5, there is a Zariski-open subset
U c (Q)p such that if {Pi,...,Pp)EU then {Pl,...,Pp} is non-special.

Let $}Q = U x(G13)2<T+2 and consider the correspondence

*Q = Kle+i&d ^ #mx8Q.

Finally, let i/> = \j/p<2a+2 \sQ
 a n d <p = <Pp,2a+2UQ- I n order to show that the general

fibre of ijj is finite, it will suffice to prove that

d i m ^ Q ^ d i m ^ Q . (14)

(As usual, dim$Q denotes the maximum of the dimensions of the irreducible
components of SQ. As a matter of fact, equality holds in (14), since we know already
that C</2 # 0.)

Let F = r i + r 2 be any element of Mm, with F t n Q finite and F2 c @. Write
m, = deg F,- (i = 1,2). If m2 = 0, then F n Q is finite; therefore the fibre of <p above F
has dimension 3(2<r + 2). If, on the other hand, m2 > 0, then a set of p points in F n Q
consists of p1 ^ p points in Fx o Q , together with p2 = p — p± points on F 2 . By
definition this set is non-special only if p2 ^ 2m2 — 1. (Indeed, F2 is a union of
irreducible curves of genus zero, as we saw in the proof of Lemma 2.6.) Since the first
px points vary in a finite set and the other p2 points are chosen on a curve, we see that
the fibre of cp above F has dimension at most (2m2 — 1) + 3(2<T + 2). Moreover, by
Lemmas 2.4 and 2.5, the dimension of the family of such 1-cycles F = r t + F2 does
not exceed 4ml +(2m2— 1). Thus the dimension of SQ is bounded by the maximum of
4m+ 6ff-I-6 (which corresponds to the case where m2 = 0) and of the numbers

- l ) + (2m2-l+6ff + 6) = 4 m - 2 + 6(7 + 6. Hence, by (13), we have
dim^Q

COROLLARY 3.2. The set of curves F £ 0tm that satisfy either C72 or C0<?2 is finite
and non-empty. This assertion holds in particular for /4m.

Proof For C = P2m~i, this is Lemma 2.6. Then the general case is proved
inductively by means of Lemma 3.1: it suffices to show that CP is non zero; but, if
C = pt>tla, then CP = (Pp + V2cr"2K2-

COROLLARY 3.2.1. The set of curves F e £%m that satisfy either C0P or C0P0 is finite.
It is empty only if m = 2 and C = P 3 .

Proof. If C = P2m~1, this is Lemma 2.7. Otherwise, a ^ 1 and the result is
contained in Corollary 3.2.

COROLLARY 3.2.2. Any curve F e <%m satisfying C</2 or C0P0 is irreducible.

Proof. This follows from Corollaries 3.2 and 3.2.1 as in Corollary 2.7.2.

COROLLARY 3.3. The set of curves F e $%m that satisfy C (or Co) and meet two
prescribed lines Li,L2, which are generic apart from their intersecting in one generic
point R e P 3 , is finite and non-empty.
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Proof. Let S be the union of all the curves F e £%m that satisfy C (respectively Co)
and meet Li. By Corollary 3.2 and an argument already used in the proof of Lemma
3.1, we see that dim S = 2: indeed dim S > 1 because C/2 # 0; and dim S < 3 because
C</2 is finite. If L'2 is a generic line in P 3 (over the field K = /c(C, L J over which the
conditions are defined), then L2 meets each two-dimensional component S,- of S in a
generic point of St (over X). Therefore, by Corollary 3.2, there pass only finitely many
generating curves of S,- through such a generic point. For L2 generic through R (over
K{R)\ the intersections of L2 with S therefore correspond to finitely many curves
meeting L2. This includes the set of curves satisfying CP, respectively C0P, which is
finite by Corollary 3.2.1.

We can at last attack the more difficult question of multiplicities. First we note that
the condition CP is a specialization of C/2 , in the following sense: let
$P,2o + 2 c ^m x &P<2o+2 b e the irreducible correspondence associated (§2A) with the
condition C/2 . A generic point of $ lies above a generic point (C, L\, L'2) e 8&. If we
specialize the two lines in G1>3 x G 1 3 so that their specializations Lx, L2 meet in one
generic point i ? e P 3 (over k(C)), then the fibre of \J/ above (C, Ll5 L2) contains all the
curves T e 0lm that satisfy C and pass through R. Of course, it contains also some
other curves, which satisfy C and meet Lx and L2 without passing through R. By
Corollary 3.3, this fibre is finite. Moreover, since $ is irreducible and 8b is normal, the
principle of conservation of number applies. Hence we have

COROLLARY 3.4. The following inequalities hold:
p2m ^ p2m-lj2 ^ ^ p^m-2 ^ ^m

Another consequence of this remark is that the curves satisfying P2m, i.e. belonging
to a given generic fibre of \jj2m 0, occur together in some finite fibre of every morphism
ij/a<p, including i]j0Am, which is associated with the condition / 4 m. By Corollaries 3.2
and 3.2.1, we know that the general fibre of every map i//a/, (with /? > 0 if m = 2) is
finite and non-empty, even above the specializations C -* Co. Moreover, since the
correspondence S0Am is irreducible and the base ^ 0 4 m is normal, every finite fibre is a
specialization of the general fibre of \l/0Am (cf. [4, Chapter 11, §7]). We can therefore
view the correspondence S04.m as being the most general. A priori, a curve F 6 ^?m

passing through 2m generic points may have to be counted with different multiplicities
in the various correspondences SatP. Lemma 3.6 below asserts that this is not the case:
for every specialization of the fibres of \pQ 4m, the curve F is the specialization of just
one curve in the general fibre (i.e. satisfying the general condition <f4m). This
transversality statement is established by considering successively all correspondences
$P,2a + 2 f°r o" = 0, ...,2m—1. We begin by introducing some further notation.

We consider a fixed set of p generic points on Q and 2a generic lines in P 3 , which
define the condition Co. Let $0 cz <%m be the subvariety consisting of all the curves
which satisfy Co. Then dim stf ^ 2; indeed, suppose $4 has a component s/' with
dimension at least 3. Let §' c / x P 3 be the relevant incidence correspondence,
which is irreducible as in Lemma 2.0. As the first projection cp' is surjective with one-
dimensional fibres, $' has dimension at least 4. This contradicts Corollary 3.2.1,
according to which the general fibre of the second projection if/' is finite and non-
empty. It follows that

dim«^ = 2. (15)

For if dim ,9$ ^ 1, then the union of these curves would span at most a surface and
Co/2 would be zero, contrary to the assertion of Corollary 3.2.
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Let j&Q c ^ be the open subset consisting of the curves T e sf, no component of
which lies on Q. By Corollary 3.2.2, s# contains some irreducible curves. Moreover, it
is clear (Lemma 2.5) that only finitely many irreducible curves satisfying Co lie on Q.
Therefore s?0 ^ 0 and we can see as above that

dimja^0 = 2. (16)

We have not ruled out the possibility that s?0 may be reducible, with some
component of dimension smaller than 2.

Let &0 = {(Co, Ll5 L2) G <%p 2a+i\; since Co is fixed, ̂ 0 is obviously isomorphic to
Gi.3 x Gi.3- We define £Q c= s/0 x&0 to be the incidence correspondence

Let (p0 = q>p<2a + 2\t0 and \j/Q = \l/p<la + 2\s0- Now let

Q) = {(Co, Ll5 L2) G ^ 0 1 Lx (respectively L2) is a member of the

first (respectively second) ruling of Q].

FIG. 1.

Then we have the following lemma.

LEMMA 3.5. / / d is a generic point of 2), then
= 2andC = P3.

is finite. It is empty only if

Proof. For any V e srf0, the set <po~
 1{T) rwjt0~

l{<2)) is finite, since T meets Q in
finitely many points. Hence, by (16), every irreducible component of i /^" 1 ^) has
dimension at most 2. Since d i m ^ = 2, this implies that il/0~

l(d) is finite for d generic
in 3).

Now, by Corollary 3.2.1, the set of curves satisfying C0P0 is not empty, unless
m = 2 and C = P*. Moreover, as we saw in the discussion of (16), this set contains
some irreducible curves f e $#0. Hence ij/0~

l(d) is non-empty for d e Q) generic,
except when m = 2 and C = P3.

LEMMA 3.6. For every specialization of the fibres of 1/̂ ,2^+2 > every curve F e 3&m

that satisfies CP is the specialization of a unique curve satisfying Gf2. In other words,
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given R generic in P 3 and two generic lines Lu L2 intersecting at R, the fibre of ^Pt2a + 2
above (C, Ll, L2) is transversal to S'p,2o + 2 at (F, C, Ll5 L2). Thesame statement holds for
Q / 2 , C0P, and C0P0.

Proof. We give the argument for the condition C0P0, from which all the other cases
derive. If F e 0tm satisfies CoPOi we know (Corollary 3.2.2 and Lemma 2.5) that F is
irreducible and does not lie on Q, whence F e stf0. Moreover, F lies above a generic
point d G S. From Lemma 3.5, we know that t/'o" V ) is finite. Therefore all we have
to prove is that the fibre of \(/0 is transversal to <f>0 at (F,rf) e $0.

Let jtf' be any irreducible component of stf0. If dim j ^ ' ^ 1, then

has dimension less than 2. Hence ij/o($") contains no generic point of Si, and we can
forget about any such component. We shall therefore assume that dim s#' = 2 and
that i//0(< '̂) contains a generic point of Si. Then a generic curve F e / meets Q in 2m
distinct points, and thus meets Q on 2m distinct lines of the first ruling of Q, and 2m
distinct lines of the second ruling. Hence

1 1 4m2. (17)

The transversality assertion will follow from (17) by Schubert theory. To begin with,
let S)' be a generic subvariety of ^ 0 K G 1 3 X Gx 3 in the numerical equivalence class
of Si. Then we also have

card(<p0'
 ! (H n 4>o ~ K®1)) = 4m2. (18)

In fact, if we identify C1>3 with the Klein quadric (cf. [12, Chapter 10, §2])Q c P 5 , a
ruling of Q is represented by a conic on Q. The complex of secants of Fe^2m is
represented by a divisor Dm, which is the complete intersection of Q with a hyper-
surface Gm of degree m in P5. Now a general conic on Q cannot meet Gm in more than
2m distinct points, whence (18) holds, since equality holds for the specialization S of
S)\ by virtue of (17).

Now let S"o = cpo~
v(srf'). Since stf' contains the Chow point of some irreducible

curve (Lemma 3.2.2), one sees as in Lemma 2.1 that S"o is irreducible. Moreover,
•AoÔ 'o) contains a generic point of&0: indeed il/0(S"0) contains <A0(<̂ ')» which we assume
to contain a generic point d of S>; and ^0~

l(d) is finite, by Lemma 3.5; hence the
general fibre of ^ 0 is finite and non-empty, since dim<f'o = 8 = d i m ^ 0 .

Finally, since a generic point d' of S)' is also a generic point of 3&0, the fibre
tl/0~

l(d')n £"0 above d! is transversal to S"o (the characteristic is equal to zero).
Therefore, for generic F e s#', the intersection

is defined (in stf0 x@0) and consists of distinct points with multiplicity one:

deg{({F} x0 o ) . (* o . ( j /ox0 ' ) )} = c a r d ^ o - ^ n n i A o " 1 ^ ' ) ) - (19)

This can also be seen by applying [5, Theorem 2], with X = 3SQ, Y= S> (or S'), and Z
as the regular locus of cpo'^F).

On the other hand, S>' is numerically equivalent to S) (and 88Q is smooth, as well as
r e / ) ; hence, by (17), (18), and* (19), we have

deg{({F} x@o).(£o.(rfoxS))} = card((po-
l(r)nil,o-

l(S)). (20)
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It follows from (20) that the fibre of \j/0 is transversal to $'o at all points
(F, d) € (po~

l(s/')n il/0~
1(d). Otherwise, since d is generic in Si, the intersection

So.{stf0 x 3) would have a multiple component (by [16, Chapter 6, §2, Theorem 6]:
apply the converse to A = s0' x @>, B = $'o, U = si' x@0, P = (F,d)) and equality
could not hold in (20).

The lesson of this proof is that the transversality of the fibres of ip0 over a subvariety
of 380 can be ascertained by watching how the fibres of <p0 behave when we move that
subvariety.

COROLLARY 3.7. The number of distinct curves F e $2m passing through 2m points is
the same whether the points are generic in P 3 or only generic on Q. The corresponding
result holds also for P2m~ V2 and all other conditions Pa<f2p with a + P = 2m.

Proof This is proved inductively, by means of Lemma 3.6. Every curve satisfying
C0P is the specialization of just one curve satisfying C</2; and the same statement
holds for C0P0. Hence distinct curves satisfying C0P specialize to distinct curves
satisfying C0P0. Therefore C0P ^ C0P0.

Moreover, if a curve F satisfies Co and meets two lines LUL2 intersecting in one
generic point R e P 3 , then F cannot specialize to a curve satisfying C0P0 unless
R e F. Otherwise, the degree of the fibres of\J/p + l2a would grow as R e P 3 specializes
to Ro e Q, and this would contradict the principle of conservation of number.
Therefore C0P = C0F0. Applying this result inductively, we see that each curve
satisfying Plm (respectively P2 ) is the specialization of just one curve satisfying <f4m, so
that PQ" = P2m, and similarly for the other conditions.

Finally, we observe that the precise meaning of 'genericity' for the choice of 2m
points on Q in Corollary 3.7 is much less clear than in §2. It can be shown, with the
methods of §3B, that it is not enough to require that this set of points should be non-
special, as defined in the proof of Lemma 3.1. In particular, one must avoid certain
pinch-points of the surface spanned by the curves satisfying Plm~1£.

B. A conjecture

In the rest of this section we shall consider the two specializations of the condition
P2m~ V2 which were described in §2B. Let si be the subvariety of ^?m corresponding
to the condition Co = PQ"1'1, as defined in the discussion preceding Lemma 3.5.
Further, let

^ o = {(Co,L1 ,L2)6^2 m_1 , 2}«G1,3xG1,3;

and consider the induced correspondence ^ c , s / x f 0 , with the two projections
q>: & -* si and i//: $ -• &0. Let L: and L\ be two generic lines of the first ruling of Q;
let L2 be a generic line of the second ruling. By Lemma 2.6, we may define

U = te%xlj*{LuL\), K=degor(L1,L2), (21)

where the notation deg0 means that we count in only the curves F that do not pass
through Lt r\L2. It follows from Corollary 3.7 that

p2m-lf2 = U (22)
and

P2m = U-V. (23)
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To prove Theorems 1 and 2 (stated in § 1A), we are therefore reduced to determining
U and V, which are certain (weighted) numbers of curves lying on Q (because of the
Bezout theorem). It is a consequence of Lemma 2.6 that both U and Kare certain
combinations of the AMiV (defined in § 1A), with coefficients to be determined.

It is generally asserted in the classical literature that 'any degenerate cubic which
meets k times a line which it is only required to meet once will be a /c-ple solution of
the problem, and must be so reckoned in the enumeration' [14, p. 297]. If this is true
in general, the coefficients of the A,, v are quite easy to determine. Indeed, a curve of
type (fi, v) meets Llt and also L\, in v points (instead of one); hence it is counted with
multiplicity v2 in ^*(L1,L'1). Similarly, it occurs with multiplicity fiv in \j/*(Ll,L2).
Hence

m
u= Z v2Vv> (24)*

v = l

which is Theorem 2, and

V= Z ^vAMiV. (25)*

Therefore

p*» = U-V= Z (v2-/^v)A,

H + v = m

Taking Lemma 1.2 into account, we therefore obtain

2 2 X _,, (26)*

which is Theorem 1.
All we have to do is to justify this way of counting multiplicities. We shall make an

attempt by studying the surface S spanned by the curves T e <%m that satisfy Co and
meet some line L c P 3 . This method was used extensively by R. Sturm [13] for
obtaining many difficult numbers in the enumerative theory of twisted cubics. How-
ever, we shall not succeed without making a certain assumption, which relates to the
structure of the Chow variety. We begin this discussion with an easy lemma.

LEMMA 3.8. Lo being a generic line ofQ, let So be the union of all the curves T e 01 m

that satisfy Co and meet Lo. Then So is a surface. Suppose So is irreducible . Then there
is a positive integer Ao such that the (weighted) number of curves in the family that pass
through any normal point of So is equal to k0 (or, exceptionally, infinite). Suppose
XQ = 1. Then the line Lo is P2m-fold on So, and the degree ofS0 is equal to P2m~ V2.

Proof. By an argument resembling that used in Lemma 3.5, we see that the set of
curves F e 01 m satisfying Co and meeting Lo is an algebraic variety S/' of dimension 1.
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Hence 50 is a surface. Consider the incidence correspondence

If we knew that Sf was irreducible, the same property would hold for J* (cf. Lemma
2.0), and hence also for its image So = w(!F) c P 3 . As it stands, we are assuming that
So is irreducible. (At any rate, even without this assumption, it is clear from the Bezout
theorem that So :/> Q, since only finitely many curves of Q satisfy Co.)

Let R be any normal point of So. By the principle of conservation of number [8,
Chapter 2, § 5.3, Theorems 6 and 7], there is a definite number Ao of curves through R,
counted with the multiplicities appearing in the corresponding fibre of co, unless this
fibre is (exceptionally) infinite. We are assuming that Xo = 1. Now a generic line
L' a P 3 meets 50 transversally in deg(S0) simple points, corresponding to
/ 0 . deg(50) = deg(50) curves F e y. These are precisely the curves F e ^ r a that satisfy
the condition Co and meet Lo and L'. Hence, by Lemma 3.6, deg(S0) = P2'"~ V2.
(Note that in the proof of Lemma 3.6, we used the lines of Q; hence our assertion is
justified, even though Lo lies on Q instead of being generic in P 3 . The only thing that
matters is that the curves F which satisfy the condition do not lie on Q (i.e. their Chow
point is in stf0 a s£ with stfQ # stf).)

Similarly, if we choose L' c P>3 generic amongst the lines passing through a generic
point R of Lo, then L' meets S 0 \{JR} transversally in Kpoints. Hence L' meets So with
multiplicity deg(S0)- V = U- V = P2m at R. It follows that the line Lo is exactly
P2'"-fold on So.

It is probably true that So is irreducible, but this assumption is not important. If we
do not want to make it, then each component of So comes equipped with a number lh

and the lemma remains true if we suppose that all the A,- are equal to 1. In fact, even
this last assumption is relatively unimportant for what follows; without it, Lemma 3.8
is more difficult to enunciate, but it has the same consequences. For simplicity,
however, we shall assume from now on that So is irreducible; and also that Ao = 1, since
anyway this is the easiest corollary of the conjecture we shall introduce below.

LEMMA 3.9. Let F^ v be one of the A^v curves of type (n, v) lying on Q which satisfy
Co. Let Lbea line in P 3 that meets F^ v in one point R and is otherwise generic. Consider
the union S of all the curves F e 3ft,m that satisfy Co and meet L. Then S is a surface.
Suppose S is irreducible . Then, through any normal point of S, there passes precisely
one curve in the family (or infinitely many, in exceptional cases). Furthermore, if Lo

belongs (say) to the first ruling of Q (and Ao = 1), then the following relation holds
between the multiplicities ofV^v on S and on So:

multSoF^v = v.multsFMiV.

Proof. As in the preceding lemma, the number of curves F passing through a normal
point of S, when finite, is a well-defined integer A. But in the present case we can prove
that X = 1. Indeed, let T be a generic point of P 3 and consider the finitely many curves
through T that satisfy Co (Lemma 2.7). Clearly, we can choose R on FM v and a line L
through R in such a way that L meets one of these curves and not the others. Then,
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through T e S, there is a unique curve satisfying Co and meeting L, and it occurs with
multiplicity 1 (Corollary 3.7). Hence ), = 1.

Now we have two ways of computing the multiplicity (p say), with which F^ v

occurs in the set of curves satisfying the condition Co and meeting L and Lo. Indeed,
the intersection multiplicity of L with So at R is equal to the multiplicity of F^ v on So;
hence p = X0.muhSor^ v. On the other hand, Lo, being generic on Q, meets S
transversally at each of its v intersection points with F^ v . Since A = 1, it follows that
p = v.multsr,(>v. Therefore,

Xo. multSo F^ v = v. mults FMi v. (27)

This is the required formula, since we have made the assumption that Xo = 1.

We now introduce the following conjecture.

CONJECTURE (*). The curve F,, v is simple on S.

Indeed it seems reasonable to expect that multsFM v is a (symmetric) function of fx
and v only. To assume multsF^ v = 1 is equivalent to saying that F ^ v occurs with
multiplicity 1 among all the curves Y e Mm that satisfy Co and meet two general
secants L and L' of F^ v in P3. We know from Corollary 3.7 that it is not too restrictive
to impose 2m— 1 points lying on Q. Hence the main difficulty is that the curve F^ v

itself lies on Q; therefore its Chow point might be very special. It is true that, when
Fft v is smooth (i.e. if p. or v is equal to 1), its Chow point is also smooth, since the
normal bundle verifies the Kodaira-Spencer condition hl(jV) = 0. In this case, it may
be possible to use an argument similar to the one used in Lemma 3.6 (with some well-
chosen class of subvarieties S>), in order to prove that mult sFm_1 A = 1. For other
values of p. and v, the conjecture seems difficult to prove; and it would almost certainly
be false if the Chow point of F^ v turned out to be singular on 3/lm.

It is interesting to note that the simplest case of this conjecture already implies that
Xo = 1 (if we assume that So is irreducible). Indeed, it suffices to apply (27) to the curve
r m - i , i (which always exists); we get

Ao.multSoFm_1<1 = m u l t s F m _ l i l = 1.
Hence Xo = 1.

COROLLARY 3.9.1*. mult^F,, v = v.

Proof. This is an immediate consequence of Lemma 3.9 and the conjecture.

COROLLARY 3.10*. (24) and (25) are valid.

Proof. By Lemma 3.8, U is the degree of So. Therefore it is enough to compute the
intersection number of So with a generic line Lo c Q belonging to the same ruling as
Lo. Now the curves F e fflm that satisfy Co and meet Lo and L'o are precisely the curves
FM v of Q that satisfy Co. Moreover, L'o meets FM v in v points, each counting with
multiplicity v, by Corollary 3.9.1. Hence

m

deg(S0)= Z v2A,,v,
v = 1

H + v = m

as required. (25) is proved in the same way.
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4. Determination of A2i 3

A. The Jacobian curve of the associated net

We recall that A2)3 is the number of irreducible rational curves of type (2,3) passing
through nine points PU...,P9 in general position on P1 x P 1 . By Lemma 1.1, the
family of curves of type (2,3) has dimension 11 and genus 2. Those passing through
Pl,...,P9 form a two-dimensional linear system 91 (a net), and we have to find the
number of irreducible curves in the family with two double points somewhere on the
surface. Now every such curve is characterized by its equation, of the form

<D(M0, U, ; v0, vt) = X aapu
avp = 0. (28)

|al = 2
101 = 3

(As usual, ua denotes UQ^U^1, and | a | is the sum a0 + a1.) The net is described by nine
linear relations between the aap. Let /, g, and h be the equations of three generators, so
that a general element of 91 is described by an equation of the form
O = A/+ fig + vh = 0, for some - l , ^ v e C . The curves F through P l 5 . . . ,P9 are
therefore in one-to-one correspondence with the points (A, /*, v) e P2. Those having (at
least) one double point on P 1 x P 1 correspond to the points of some curve M c P2. In
§4B we shall characterize M by determining its degree, its genus, and its class. We first
have to study another curve J <= P1 x P1, which is defined as the locus of double
points of the curves F in our net. J is characterized analytically as follows: let us
consider a general curve F e 9t. We may assume that F has no double points in the
closed set uovo = 0. In the affine set Ao o (u0 # 0, v0 # 0), in which we write u = u1/u0

and v = vl/v0, the equation of F reads

O(u, v) = (A/ + W + vh)(u, v) = 0, (29)

where /, g, and h are of degree 2 in u, and 3 in v. The curve F has a double point at
(u, v) e Ao o if and only if

(30)

where f'u denotes the derivative of / with respect to u. This system of three
homogeneous linear equations has a non-trivial solution if and only if

f'u 9'u K

f'v 9'v K

f 9 h

= 0. (31)

This is the equation of a curve Jo a Aoo. Its closure J a P1 x P1 is called the Jacobian
curve of the net generated by/, g, and h. It is easy to see that J is of type (4, 7), i.e. its
equation is bihomogeneous, of degree 4 in u, and 7 in v. Indeed, since/and/'„ are of
degree 2 in u, andf'u is of degree 1, (31) would appear to be of degree 5 in u. As a matter
of fact, the leading coefficient is identically zero, for it comes from the leading
coefficients of the polynomials in the determinant; and if we multiply the first row by
\u, we find the same leading coefficients as in the third row. Similarly, for v, we find
that the degree is 7, and not 8. One can write the coefficients of degrees 4 and 7 (in u
and v respectively) and check that, under the genericity assumption we have made,
they do not vanish (cf. also [6, formula (III, 42)]).
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LEMMA 4.1. The locus of double points of the curves F2,3 in the net $1 determined by
nine generic points P l 5 . . . , P9 0/ P1 x P 1 is an irreducible curve J, of type (4,7), with
exactly nine ordinary double points—one at each base-point Pi—and no other
singularities.

Proof. The derivative of (31) with respect to u is

ft g'u
J v gv

f 9

K
K
h

+
ft
f"

J uv

f

9'u

9"uv

9

K
Kv
h

+
ft g'u K
ft g'v K
ft g'u K

(32)

(where the last determinant is equal to 0), which obviously vanishes at the Ph since
f=g = h = 0 there. The derivative with respect to v is similar; hence the P, are
singular on J. Taking second derivatives of (31), we can easily see that J can have a
cusp or a triple point at P, only if the (unique) curve of the net with a double point at P,
has a cusp or a triple point there, or if all the curves of $1 have a fixed tangent at P,.
Hence the P, are ordinary double points of J, since they are assumed to form a generic
set. To complete the proof, it suffices to show that J has no other singularities. This
will automatically imply that J is irreducible, for it is easy to see that any reducible
curve of type (4, 7) with ordinary double points at all the P, would also have some
other singularities elsewhere. (J cannot be the union of a curve of type (1,1) and one of
type (3,6)—nine intersections—because the P, do not lie on a conic r l t l . ) That J has
no other singularities than the P, is an immediate consequence of the genericity of the
base set, via the following classical lemma, which is easily proved analytically (see [2,
L.3, Chapter 2, §21, pp. 175-176]).

LEMMA 4.1.1. P is a singular point of J only if one of the following conditions holds:
(i) P is a base point of the net;

(ii) P is at least a double point for all curves of^l passing through it;
(iii) P is a singularity of higher order of some curve of the net;
(iv) P is a cuspidal point for one of the curves, and all curves through it touch the

cuspidal tangent.

B. The curve of moduli

Instead of eliminating X, n, and v from (30), we could equally well have eliminated u
and v, thus obtaining the equation of the curve M c P2(A, fi, v), whose points
represent the curves having at least one double point somewhere on P1 x P1 . We shall
not carry out the process of elimination explicitly, because all we need to know is that
the system of equations (30) defines a birational correspondence E between M and the
Jacobian curve J:

E

Indeed, given almost any (A, /z, v) € M, there exists a point (u, v) e Ao o such that (30)
holds; hence (u, v) e J. Besides, for almost all (A, \x, v) e M, this is the only double
point of the associated curve F 2 i 3 ; hence q is birational. Conversely, given
an arbitrary point (u, v) on J n A 0 0 , there exists a curve with equation
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O = Xf +ng + vh = 0 for which (30) holds. And this curve is unique, by genericity
(otherwise we would be in Case (ii) of Lemma 4.1.1). This implies that all the fibres of p
consist of one point; hence both E and M are irreducible. As a matter of fact, p is even
an isomorphism. By the Zariski main theorem, this has to be checked only above the
singular points of J. Suppose h = 0 is the equation of the curve of 91 on which P, is
double. Then f'ug'v—f'vg'u does not vanish at P, (otherwise, all the curves of 91 would
have a fixed tangent at P,) and (30) yields an explicit formulaf for p~l in a
neighbourhood of P,-:

-K
-K

g'u
t 3

/: -K
f'v -K

f
J u
f'v

g'u

g'v
(33)

j v ~nv Jv gv j

Hence p is an isomorphism, as asserted.

LEMMA 4.2. Let S e J and T = qop~l(S) e M. Suppose S is not one of the base
points P,. Then the set of curves F e 91 passing through S is mapped (via (29)) into a line
<f c P 2 , which is tangent to a branch of Mat T. IfS is one of the base points Pl5 then the
same assertion holds for the set of curves F e 91 which are tangent to one of the two
branches of J at S.

Proof. A line / through T corresponds to a linear pencil 2 contained in 91. The
intersections of / with M correspond to the singular curves in the pencil. Their
number <5 is given by formula (8) in § IB. Suppose T is smooth on M. Then saying that £
is tangent to M at T means that the curve F e 91 which is associated with the point
T G P 2 must be counted twice in the enumeration. When does this happen? Enriques
and Chisini [2, L.3, Chapter 2, §20, pp. 160-167] present a long discussion of the
matter, which leads to the following conclusion: the double point S off is a fixed point
of the pencil, i.e. 2 consists precisely of the curves F e 91 that pass through S. This
proves the lemma when T is smooth.

The case in which Tis singular on M is more subtle. One must remember that d is
not so much the number of singular curves in the pencil, rather it is the number of
double points belonging to curves in the pencil. Indeed a curve with two double points
must be counted twice in the enumeration. Hence M has three types of singularities:
double points corresponding to the base points Ph or to curves having two double
points; cusps corresponding to the cuspidal curves of the net 91. All these cases can be
handled with the results of [2, loc. cit.j. Another approach would be to reduce to the
preceding case by blowing up some points on P1 x P 1 , since the problem is essentially
local in nature.

Let us now consider a curve F2 3 c P1 x P1 with two double points Sl5 S2 e J. The
image T = q o p~ l(Si) = q ° p~{(S2) is a double point of M with two distinct branches.
Indeed, it follows from Lemma 4.2 that T can have two identical tangents only if all
curves F'2>3 through St also pass through S2. But both F 2 3 and F'2 3 pass through the
nine points P{,..., P9; moreover, S{ and S2 are double on F2 3; hence the intersection
number of these two curves should be at least 13. This is impossible, since
(F2 3.F'2 3) = 12 and F'2 3 can be chosen irreducible (there are only finitely many
reducible curves of type (2, 3) through nine generic points of P1 x P1).

Similarly, the images q o p~ i(Pi) of the P, are ordinary double points ofM, but M also
has a certain number of cusps, which correspond to the ramification points of q.

t Set v = 1 in the first two equations (30) and apply Cramer's rule.
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LEMMA 4.3. The curve M is irreducible, with degree 20, geometric genus 9, and class
8. Therefore it has 162 double points, among which are 114 nodes and 48 cusps. Nine of
the nodes are the images of the base points P, of the net, and nine correspond to some
reducible curves (of the form r 2 i 2 + r O i l ) . The remaining 96 nodes are in one-to-one
correspondence with the irreducible curves of genus zero that belong to the net.

Proof. We have already shown that M is irreducible. Since it is birationally
equivalent to J, it has the same geometric genus, namely pa(J) — 9 = 18 —9 = 9, for J
is of type (4, 7) and has nine ordinary double points (Lemma 4.1). The degree of M is
its intersection number with a generic line in the plane. Hence it is equal to the number
<5 of singular curves in a general linear pencil contained in 91. In Lemma 1.3 we saw
how to compute this number: (F2 3)2 = 12, pa(F2 3) = 2 by Lemma 1.1; and formula
(8) yields <5 = 20.

Finally, we must evaluate the class of M. This is the number of tangents we can
draw to M from a generic point T e P2. Let F2 3 e 91 be the curve which is associated
with T. If £ is tangent to M at qop~l(S), it follows from Lemma 4.2 that S e F2 3.
Hence S e F2,3^ J4 7. But a line drawn from T through a double point of M is not to
be considered a tangent. The 9.2 = 18 intersections of F with J at the base points P,
must therefore be discounted and S varies in a set of 26-18 = 8 points. This shows
that the class of M is equal to 8.

From what we know of E, it is clear that the curve M has double points only, which
are either nodes or ordinary cusps. Let <5 be the number of nodes, and K that of cusps.
By the Pliicker formulae we have

19 18
— d-K,

8 = class(M) = 20.19-2<5-3K.

Hence K = 48 and 5 = 114. We have already seen that the nine base points Plt ...,Pg

correspond to nodes of M. The other nodes correspond to curves F2 3 6 91 with two
double points, but among them nine are reducible. They are composed of a quartic of
genus 1 through eight of the P, and a straight line through the ninth point. These are
the only reducible elements of the net.

REMARK. What do the 48 cusps correspond to? We shall not need this fact, and so
we refer to [2, pp. 179-180] for details: among the curves of 91, a finite number have a
cusp somewhere o n P ' x P 1 . These are the cusps of M. Their number happens to be
equal to 24 times the geometric genus of a generic curve in the net (hence 48 in our case).
Enriques and Chisini assert that this simple formula holds with great generality for all
kinds of nets.

COROLLARY 4.4. A2i3 = 96.

This is formula (1). This method of proof can also be used to find some estimates for
the other A/( v. Indeed let N = (/i— l)(v— i); this is both the arithmetic genus of F^ v

and the dimension of the linear system 9J1 we are interested in. The curves Fft v

through P,,. . . , P2llI_i are in one-to-one correspondence with the points of IP*. Those
having at least one double point somewhere on P1 x IP1 are mapped into the points of
some hypersurface M a PN. This variety M contains a flag of multiple subvarieties,
which are associated with curves Ffl v having more than one double point. In order to
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evaluate A ^ , we have to find the number of N-fold points on M and to discount,
among others, those associated with some reducible curves F^. It is worth noting
that M is not an arbitrary hypersurface in PN: one can easily determine its degree and
some other invariants. Moreover, for N > 2, it is always rational, since it is
birationally equivalent to P ^ x P ^ P * " 3 (the curves with a double point at
S € P 1 x P1 form a linear system of dimension N — 3).

As an illustration, let us look very briefly at the number A2 4. In this case, the
variety of moduli M is a rational surface in P 3 . Its degree is equal to 28, as follows
again from formula (8). Its class is equal to 5, because the Jacobian of a net containing
a prescribed pencil {Af + fig} normally has singularities only at the base points of the
net (Lemma 4.1.1), i.e. at the intersection points of the two curves/and g (but the
eleven fixed points of the web 2R have to be discounted). The rank (i.e. the class of a
plane section) of M is equal to 14, as can be seen by an argument similar to the one
used in Lemma 4.3: (F2 4 . J 4 10) —11.2 = 14. Finally, the geometric genus of a plane
section is equal to pg(J

r
4i 10) = 27 —11 = 16. From this we see that M has a nodal

curve of degree 263 and a cuspidal curve of degree 72. By a classical formula in the
theory of surfaces [9, #627; or 7, Theorem 4; also 6, formula (V, 83)] we find that M
has at most [^.263.(28-2)] = 2279 triple points; hence

2,4
2279. (34)

This is only a rough estimate. A very careful study of the surface M is in order if we
want to find the true value of A2 4. For instance, the nodal curve is not irreducible: it
contains at least eleven straight lines, which correspond to divisors of the form
r2,3 + r o , i o n P11 x P > 1 (there are oo1 curves of type (2, 3) through Pl,...,P10; the line
F o ! contains the remaining point P n ) . Moreover, each of these lines contains twenty
triple points of M (by formula (8) again). Hence A 2 4 should not exceed 2000 or so.
But it is not our purpose to complete the determination of A 2 4 . We only wanted to
point out that there is a very rich structure associated with the hypersurfaces of
moduli. The following question appears as the natural outcome of this discussion.

PROBLEM. Find a good upper bound (depending on the degree and some other
invariants of M) for the number of (non-isolated) N-fold points of a hypersurface
M e PN.

Added in proof. A recent paper of I. Vainsencher {Trans. Amer. Math. Soc, 267
(1981), 399-422) sheds some further light on the calculations of §4. In particular,
Vainsencher gives a proof, in a more general context, of Caporali's formula, mentioned
in the Remark following Lemma 4.3. In fact, for a general net of curves F lying on an
arbitrary smooth surface Y, it follows from his formula (8.6.3) that the number of cusps
is equal to 24 (pa{F) + pa(Y)).

Furthermore, Vainsencher's formula (8.3) implies that A2 4 = 640. Indeed, the
number of curves in the web 2)i having three double points is equal to 860 (apply (8.3)
with Y = P1 x P1 and M ~ F2 4). But one must subtract the 220 reducible curves, of
the form F2 3 + F o A with a double point on F2 3. Of course, applying Theorem 1, we
obtain Pi2 = 16+*4A2>4 = 2576.
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