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on the mesoscopic scale
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S U M M A R Y
A novel laboratory technique is proposed to investigate wave-induced fluid flow on the meso-
scopic scale as a mechanism for seismic attenuation in partially saturated rocks. This technique
combines measurements of seismic attenuation in the frequency range from 1 to 100 Hz with
measurements of transient fluid pressure as a response of a step stress applied on top of the
sample. We used a Berea sandstone sample partially saturated with water. The laboratory
results suggest that wave-induced fluid flow on the mesoscopic scale is dominant in par-
tially saturated samples. A 3-D numerical model representing the sample was used to verify
the experimental results. Biot’s equations of consolidation were solved with the finite-element
method. Wave-induced fluid flow on the mesoscopic scale was the only attenuation mechanism
accounted for in the numerical solution. The numerically calculated transient fluid pressure
reproduced the laboratory data. Moreover, the numerically calculated attenuation, superposed
to the frequency-independent matrix anelasticity, reproduced the attenuation measured in the
laboratory in the partially saturated sample. This experimental—numerical fit demonstrates
that wave-induced fluid flow on the mesoscopic scale and matrix anelasticity are the dominant
mechanisms for seismic attenuation in partially saturated Berea sandstone.

Key words: Numerical solutions; Creep and deformation; Elasticity and anelasticity; Seismic
attenuation; Acoustic properties.

I N T RO D U C T I O N

Ideally, seismic wave attenuation calculated from field data could
be useful to estimate fluid content and saturation in subsurface
fluid–rock systems. These fluid–rock systems can be hydrocarbon
reservoirs, geologically sequestered carbon dioxide reservoirs, nu-
clear waste repositories or even subsurface domains where partially
molten rocks or rocks and fluids coexist (Mitchell & Romanowicz
1999).

Experimental studies show that rock samples saturated with flu-
ids exhibit higher and frequency-dependent attenuation than dry
samples (Spencer 1981; Paffenholz & Burkhardt 1989; Batzle et al.
2006; Tisato & Madonna 2012; Madonna & Tisato 2013). How-
ever, the physical mechanisms dominating seismic attenuation in
fluid-saturated rocks remain to be identified.

In this study, we performed laboratory experiments using the
broad-band attenuation vessel (BBAV) designed to measure attenu-
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ation at seismic frequencies (0.1–100 Hz, Tisato & Madonna 2012).
We also measured the transient fluid pressure caused by a quick vari-
ation of the compressional stress applied on top of the sample. The
transient fluid pressure was measured at different positions in the
fluid-saturated rock sample. The pressure sensors were introduced
into the sample and recorded pressure variations in a fraction of a
millisecond. Measurements of transient fluid pressure are related to
fluid flow on the mesoscopic scale, which is a scale much larger
than the pore size and much smaller than seismic wavelengths. Our
main objective was to verify whether wave-induced flow of fluid
on the mesoscopic scale may explain the high amplitudes and the
frequency dependence of the measured seismic attenuation. For this
purpose, we computed attenuation and fluid pressure associated
with this attenuation mechanism.

Wave-induced fluid flow on the mesoscopic scale is a physical
mechanism that may yield significant attenuation at seismic fre-
quencies in partially saturated porous media (Pride et al. 2004).
The passing seismic wave induces fluid pressure differences be-
tween regions of different compliances. The resulting pressure gra-
dients induce fluid to flow and, therefore, part of the energy in-
volved in the wave propagation is lost due to viscous dissipation. In
partially saturated rocks, regions having different compliances are
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due to heterogeneities in fluid saturation, accompanied or not by
heterogeneities in the solid frame. In White’s model, a partially sat-
urated rock is approximated by a medium having a homogeneous
solid frame and mesocopic-scale heterogeneities fully saturated with
one fluid and the background fully saturated with another fluid, the
so-called patchy saturation (White 1975).

Dutta & Odé (1979a,b) showed that patchy saturation could be
simulated using Biot’s equations of wave propagation in poroelastic
media (Biot 1962) with spatially varying petrophysical parameters.
Methodologies computationally efficient in calculating attenuation
due to wave-induced fluid flow on the mesoscopic scale have been
recently proposed (Masson & Pride 2007; Rubino et al. 2009; Wen-
zlau et al. 2010; Quintal et al. 2011). These methods are based on
quasi-static tests performed on poroelastic models. Quintal et al.
(2011) proposed to solve Biot’s equations (1941) for consolidation
of poroelastic media for such tests, rather than Biot’s equations
(1962) of wave propagation, as previously done. We followed this
methodology to compute attenuation due to wave-induced fluid flow
on the mesoscopic scale in 3-D numerical models.

We first summarize the techniques employed for laboratory mea-
surements and for numerical modelling. Then, we present labora-
tory measurements of attenuation and transient fluid pressure in
Berea sandstone in four saturation conditions (dry, 62.4, 86.6 and
97.1 per cent water). Measurements for dry conditions are useful
to estimate the matrix anelasticity. Finally, we present numerical
results for attenuation and fluid pressure for a model representing
the sample saturated with 97.1 per cent water, and compare with
laboratory measurements.

Combining measurements of attenuation and fluid pressure, and
using numerical modelling to assist in the data interpretation, al-
lowed concluding that the amplitude and frequency dependence of
seismic attenuation in partially saturated Berea sandstone can be
explained by wave-induced fluid flow on the mesoscopic scale if
the matrix anelasticity is taken into account.

M AT E R I A L A N D M E T H O D S

Laboratory measurements

Sample description and saturation

The cylindrical rock sample is 7.6 cm in diameter and 25.0 cm in
length. Its petrophysical properties are listed in Table 1. We use
the same BS001 Berea sandstone sample employed by Tisato &
Madonna (2012). Madonna et al. (2012) showed that this rock can
be considered homogeneous and isotropic.

The cylindrical sample is placed vertically in the BBAV (Fig. 1).
Water saturation is increased from about 0 per cent to almost
100 per cent by injecting water at the bottom using a pump con-
nected to the pore fluid circuit. For 97.1 per cent water saturation,

Table 1. Physical properties of the solid frame of the rock
sample (e.g. Wang 2000).

Rock sample Berea sandstone

Density of the grains (kg m−3) 2650
Bulk modulus of the grains (GPa) 36
Porosity (per cent) 20
Permeability (mD) 300
Bulk modulus of the dry frame (GPa) 7
Shear modulus of the dry frame (GPa) 4.8

Figure 1. Sketch of the BBAV (Tisato & Madonna 2012). Transient fluid
pressure (P1, P2, P3, P4 and P5) is measured at five points vertically dis-
tributed along the sample. The inset shows how the pore pressure sensors
are placed in the sample.

the injection was one order of magnitude more time consuming (it
lasted about 20 hr) than for lower saturations (about 1–2 hr). Longer
injection might have promoted the migration of air from the bot-
tom to the top of the sample. Saturation is calculated according to
the rock porosity and the volume of water injected into the sam-
ple. This volume is estimated using graduated burettes connected
to the pump. The sample is left at rest for few hours between the
saturation procedure and the measurements. Both the attenuation
and fluid pressure tests were conducted under undrained conditions
(valves of the pore fluid circuit were closed). A detailed description
of sample sealing is given in Appendix A.

Attenuation measurements

We measured seismic attenuation in a partially saturated rock sam-
ple for frequencies ranging from 1 to 100 Hz. The BBAV was cal-
ibrated according to Tisato & Madonna (2012), and it employs the
subresonance method (McKavanagh & Stacey 1974). A sinusoidal
compressive normal stress is applied vertically on top of the sam-
ple and the resulting sinusoidal vertical strain is measured. Subse-
quently, the phase shift ϕ between the applied stress and the resulting
stain is calculated (Nowick & Berry 1972). The attenuation (Q−1)
can be calculated as:

Q−1 = tan(ϕ), (1)
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where Q is the quality factor. Attenuation is in extensional mode
and is related to the complex Young’s modulus (E) as:

Q−1 = Im(E)

Re(E)
(2)

(e.g. Carcione 2007), where Im and Re denote the imaginary and real
parts, respectively. Using the data for applied stress and resulting
strain, we can calculate the real part of the Young’s modulus:

Re(E) = σmax

εmax
cos (ϕ) , (3)

where σmax and εmax are the maximal amplitudes of the sinusoidal
vertical stress and strain, respectively (Lakes 2009).

Fluid pressure measurements

The BBAV was also used to measure transient fluid pressure in the
partially saturated sample. The transient fluid pressure was caused
by a quick variation of the compressional stress applied on top of the
sample, which was an approximate step function. Five pressure sen-
sors, vertically spaced about 4.2 cm, were laterally introduced into
the sample (Fig. 1). Each sensor was introduced through a horizontal
hole drilled to the symmetry axis of the cylindrical sample. We used
an inflatable latex pipe between the sensor cable and the inner wall
of the holes to seal them and avoid introducing a significant amount
of artificial porosity. More detailed technical information about the
sensors, their placement and sealing is given in Appendix B.

Experimental conditions

A confining pressure, Pc, was applied on the sample during both
attenuation and fluid pressure experiments. A compressive normal
stress consisting of a constant static part, σs and a transient part, σt,
was applied on top of the sample. The static stress σs was applied
to keep the top and bottom surfaces of the sample adherent to the
sample holders. The transient stress σt behaves as sinus function in
the attenuation experiments and as an approximate step function in
the fluid pressure experiments. In the latter, σt was applied in less
than 10 ms using a piezoelectric motor to generate a quick variation
of vertical stress (Fig. 1). Transient σt caused a transient vertical
strain εt and a transient fluid pressure, Pf. The state of stress on
the sample can be summarized as follows: σ1 = Pc + σs + σt and
σ2 = σ3 = Pc, where σ1, σ2 and σ3 are the principal stresses, with
σ1 vertical. The magnitudes or limits of the parameters used for this
work are given in Table 2.

We measured attenuation and fluid pressure in the Berea sand-
stone sample at room temperature and approximately room pressure
(Pc in Table 2).

Table 2. Strain and stress conditions for the attenuation and
fluid pressure experiments.

Experiment Attenuation Fluid pressure

Pc (MPa) 0.25 0.25
σs (MPa) 1.1 1.1
σt (MPa) Up to 0.012 Up to 0.12
ε1 Within [1, 2] × 10−6 Within [1, 2] × 10−5

Pf (MPa) At least 0.1 At least 0.1

Numerical modelling

The numerical methodology proposed by Quintal et al. (2011) was
used to compute attenuation due to wave-induced fluid flow on
the mesoscopic scale. Quasi-static creep tests were performed on
poroelastic models by solving Biot’s equations for the consolida-
tion of poroelastic media (Biot 1941). These equations were used in
the displacement–pressure formulation and solved with the finite-
element method (Zienkiewicz et al. 1999). An undrained boundary
condition is mathematically fulfilled (natural boundary condition),
which is possible due to the displacement–pressure formulation (e.g.
eq. B7 in Quintal et al. 2011). The algorithm was validated through
comparison of numerical results with analytical solutions. To solve
our problem for a 3-D model, we used the finite-element commer-
cial software COMSOL Multiphysics (Zurich, Switzerland). We
employed an unstructured mesh composed of tetrahedral elements.

To compare numerical results with laboratory data, we performed
simulations on a cylindrical numerical model representing an ide-
alized version of the rock sample. The applied boundary conditions
were:

(1) An approximate step stress (as function of time) applied on
top of the cylinder.

(2) A fixed bottom, that is, no displacement in the z (vertical)
direction.

(3) The sides are also fixed, that is, there is no displacement in
the x and y directions.

Time-dependent normal total stress and strain in the z direc-
tion, σzz and εzz , respectively, were obtained from the numerical
experiment. Subsequently a first-order time derivative was applied
resulting in the rates σ̇zz and ε̇zz . The stress and strain rates were
then converted into the frequency domain by using a fast Fourier
transform, resulting in σ̂zz and ε̂zz . The complex and frequency-
dependent P-wave modulus was calculated as:

H (ω) = σ̂zz

ε̂zz
, (4)

where ω is the angular frequency (=2π f ). The complex and
frequency-dependent Young’s modulus is calculated as

E(ω) = μ(3H − 4μ)

H − μ
, (5)

where H was obtained with eq. (4), and μ is the shear modulus
of the saturated medium. The attenuation in extensional model can
then be calculated using eq. (2).

Since Berea sandstone has a homogeneous solid frame at meso-
scopic scales (Madonna et al. 2012), only heterogeneities in fluid
saturation were implemented in the numerical model. According to
Gassmann’s equations, when the solid frame is homogeneous the
shear modulus of the saturated medium (used in eq. 5) is equal to
the shear modulus of the dry frame (Gassmann 1951; Berryman
1999). The properties used for the solid frame and for the fluids,
water and air, are listed in Tables 1 and 3. These properties are
given for the conditions at which the laboratory experiments were
performed.

Table 3. Physical properties of the fluids.

Fluid Water Air

Density of the fluid (kg m−3) 1000 1
Viscosity of the fluid (Pa s) 0.001 2 × 10−5

Bulk modulus of the fluid (GPa) 2.2 10−4
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R E S U LT S

Laboratory experiments

The saturation degrees in the Berea sandstone sample were dry (i.e.
0 per cent), 62.4% (±1.8%), 86.6% (±2.4%) and 97.1% (±2.7%)
water. Attenuation measurements in extensional mode for these four
saturation degrees are shown in Fig. 2.

For the dry sample, Q−1 is approximately constant, while Re(E)
increases from about 11.6 to 12 GPa in the bandwidth 1–100 Hz.
These results are in agreement with the nearly constant Q−1 model
(Liu et al. 1976) that predicts a constant Q−1 and a linear increase
of Re(E) in the logarithmic frequency scale. Measurements for Q−1

and Re(E) for the partially saturated samples (with 62.4, 86.6 and
97.1 per cent water) are also shown in Fig. 2. In these cases, Q−1

exhibits a frequency-dependent behaviour, in contrast to Q−1 for the
dry sample.

Transient fluid pressure, caused by a step stress applied on top
of the sample, was also measured for these four saturation degrees
(Fig. 3). In general, we observe that the higher the water saturation,
the greater the fluid pressure. The fluid pressure for the dry sample is
constant and approximately zero. For the partially saturated samples,
the fluid pressure varies significantly with time and, immediately
after the quick variation of stress (t → 0), it is higher at the bottom
of the sample. This suggests that water saturation is also higher at
the bottom of the sample, which was expected because this is where
water was injected. The difference in fluid pressure between two
neighbour sensors (Fig. 4) induces a fluid flow from the zone of
higher pressure towards the zone of lower pressure. As fluid flows
(t → 2 s), the fluid pressure tends to equilibrium. We observed higher
attenuation for higher pressure difference (Fig. 2). This suggests that
wave-induced fluid flow on the mesoscopic scale is a significant

Figure 2. Laboratory measurements of the real part of Young modu-
lus Re(E) and the related attenuation (1/Q) for a dry, a 62.4, 86.6 and
97.1 per cent water saturated.

attenuation mechanism taking place in the sample saturated with
86.6 or 97.1 per cent water.

Numerical experiments

The numerical model was scaled to have the same shape, dimensions
and physical properties as the sample used in the laboratory. The
objective was to compare numerical results and laboratory data for
the case in which the rock sample contains 97.1 per cent water. For
this purpose, we need a fluid distribution within the model that
corresponds to the experimental case. The fluid pressure values,
measured by the five sensors immediately after application of the
step stress (t → 0), were used to obtain the fluid distribution. At
t → 0, sample domains saturated with the ‘incompressible’ and
viscous fluid (water) experienced a higher fluid pressure than air-
saturated domains (Fig. 5a). This is because water has no time
to migrate towards portions at lower fluid pressure (Mavko et al.
2009). A linear relationship between measured fluid pressure at t
→ 0 and water saturation (Fig. 5b) is defined in a way that the total
water saturation in the model is about the same as in the laboratory
(97.1 per cent). Following this linear relationship, we inserted air-
saturated cubic patches in a fully water saturated background to
create models such as that in Fig. 5(c). Number and size of patches
were increased towards the top of the model. The cubic shape was
chosen because it is solved numerically using a small number of
tetrahedral elements. We compared transient fluid pressure resulting
from diverse models with the laboratory measurements. The model
that resulted in the best agreement (Fig. 6) is the one shown in
Fig. 5(c). 120 cubic patches with sides from 2.5 to 10 mm were used
yielding total water saturation of approximately 98 per cent. From
the same simulation as for transient fluid pressure, we recorded
the resulting time-dependent normal total stress and strain in the z
direction and computed attenuation (Fig. 7).

The computed attenuation is only due to wave-induced fluid flow
on the mesoscopic scale. However, we observed non-negligible
frequency-independent attenuation for the laboratory data of the
dry sample. Such attenuation is associated with the solid frame
and assumed to take place also in the measurements for the fluid-
saturated sample (Johnston et al. 1979). To interpret laboratory
data in a fluid-saturated sample, Johnston et al. (1979) assumed
that fluid-related attenuation (1/QFluid) and frame-related attenua-
tion (1/QFrame) are independent and that the total attenuation could
therefore be calculated as

1

QTotal
= 1

QFluid
+ 1

QFrame
. (6)

We followed this assumption. The numerically calculated atten-
uation is taken as the value for 1/QFluid and the mean value of atten-
uation measured in the laboratory on the dry sample for 1/QFrame.
The sum (1/QTotal) was compared to the laboratory measurements
of attenuation in the fluid-saturated sample (Fig. 7). It reproduced
well the laboratory measurements.

Reproducing numerically the transient fluid pressure measured
in the laboratory indicates that energy loss due to fluid flow on
the mesoscopic scale was similar in both numerical and laboratory
experiments. Such attenuation due to fluid flow on the mesoscopic
scale, added to frame-related attenuation, was enough to reproduce
attenuation measured in the laboratory. These results allow inferring
that wave-induced fluid flow on the mesoscopic scale and matrix
anelasticity are the dominant mechanisms for seismic attenuation
in partially saturated sandstone.
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Figure 3. Laboratory measurements of fluid pressure along the sample (positions indicated in Fig. 1) and the respective step forces that were applied on top
of the sample. The data shown are for Berea sandstone in four conditions: dry (green curves repeated in all the plots), 62.4, 86.6 and 97.1 per cent water (blue
curves in the columns on the left, middle and right). The signal looks noisier in the plots on the left because of the different scales of the y-axes.

D I S C U S S I O N

The transient fluid pressure measured in the lower part of the sample
saturated with 97.1 per cent water is about one order of magnitude
higher than in the sample saturated with 86.6 per cent water (Fig. 3).
This is due to a significantly reduced presence of air in the lower part
of the sample saturated with 97.1 per cent water. This reduction in air
saturation was achieved through a long period of pumping (about 20
hr for 97.1 per cent water and 1–2 hr for 86.6 per cent water). On the
other hand, the measurements of attenuation are relatively similar for
samples saturated with 86.6 and 97.1 per cent water (Fig. 2), which
are higher than for the sample saturated with 62.4 per cent water.
Murphy (1982a) observed a similar behaviour for water-saturated
Massilon sandstone: attenuation starts to increase for saturation
around 60 per cent, reaches a maximum around 80 per cent and then,
it decreases approaching fully saturated conditions.

The measurements of Young’s modulus result in values of about
12 GPa for dry and about 7 GPa for partially saturated samples
(Fig. 2). Looking at data measured for saturations below 60 per cent
(not shown here), we observed that a significant increase of the
Young’s modulus occurs below about 10 per cent water saturation.
This effect has been commonly observed and is reported by, for ex-
ample, Murphy (1982b), Knight & Dvorkin (1992), Tutuncu (1992)
and Cadoret (1993). Mavko et al. (2009) summarize their discus-
sions by stating that, for the first few percent of water saturation,
a decrease in the Young’s modulus with increasing water satura-
tion has been attributed to softening of cements (sometimes called
chemical weakening), to clay swelling and to surface effects.

While approximately constant attenuation in dry rocks can be
mainly attributed to friction between grains and/or crack bound-
aries (Walsh 1966; Nowick & Berry 1972; Johnston et al. 1979),

frequency-dependent attenuation is mainly due to fluid flow in the
saturated case (White 1975; Mavko & Jizba 1991; Pride et al. 2004).
Therefore, we employed two phenomenological models, the Nearly
Constant Q (NCQ) model (Liu et al. 1976) and the standard linear
solid (SLS) model (Carcione 2007) to fit the laboratory data (Fig. 2).
The data [Re(E) and Q−1] for the dry sample were successfully fit
using only the NCQ model while the data for the saturated sam-
ple were fit using an arithmetic superposition of these two models
(Appendix C).

Johnston et al. (1979) assumed that the frequency-independent
and frequency-dependent attenuation mechanisms were indepen-
dent and that those taking place in dry rocks also take place in
saturated rocks. Measurements on dry and partially saturated rocks
suggested that the frequency-independent component was due to
matrix anelasticity and the frequency-dependent component was
related to the fluid saturation. Matrix anelasticity includes the in-
trinsic (1) attenuation of matrix minerals and (2) aggregate minerals,
in addition to (3) frictional dissipation due to relative motions at the
grain boundaries and across crack surfaces (Walsh 1966; Johnston
et al. 1979). The intrinsic attenuation of minerals is generally small
(Q−1 < 0.001, Nowick & Berry 1972), while in the whole rock
attenuation is normally much higher (Q−1 ∼ 0.01, Barton 2007).
In our dry sample, Q−1 is about 0.015 at room conditions (Fig. 2).
According to Walsh (1966), friction is probably the major factor
under these conditions. Residual water (at least a mono-molecular
layer) remains in grain boundaries and thin cracks and lubricates
their surfaces. This favours sliding motions to take place even for
low strains of the order 10−6, as in our laboratory experiments.
Attenuation is much lower in water absent rock (e.g. Tittmann
et al. 1975) because sliding is more difficult (Johnston et al. 1979).
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Figure 4. Pressure differences between neighbour sensors (Fig. 1) along
the sample in four saturation conditions: dry, 62.4, 86.6 and 97.1 per cent
water. For convenience, in the three lower plots, the maxima of the curves
for 97.1 per cent water saturation are out of the plot limits but their values
are indicated as ‘max’.

Another case in which attenuation due to friction becomes negligi-
ble is when the rock is subjected to confining pressures high enough
to close all cracks (Walsh 1966).

Our interpretation for the frequency-dependent fluid-related at-
tenuation is different than that of Johnston et al. (1979) because we
study attenuation in a frequency range where a different mechanism
dominates. Johnston et al. (1979) concluded that Biot-type fluid flow
mechanism (Biot 1962), although not necessarily dominating, plays
an important role in the overall attenuation. However, at seismic fre-
quencies, attenuation due to this mechanism is negligible for usual
properties of fluid-saturated rocks (Bourbié et al. 1987). We showed
that the frequency-dependent component of our laboratory data can
be explained with wave-induced fluid flow on the mesoscopic scale.
If this mechanism, together with matrix anelasticity, is responsible
for high values of attenuation (Q−1 ∼ 0.06) at seismic frequencies,
its occurrence in subsurface porous rocks partially saturated with
hydrocarbons (or other fluids) should be further investigated (e.g.
Quintal 2012; Quintal et al. 2012; Rubino & Holliger 2012).

Figure 5. (a) Values of fluid pressure measured in the laboratory at a time
very close to zero (from curves in Fig. 3) at the five locations in the sample.
(b) Water saturation calculated as a linear function of the fluid pressure values
showed in (a). (c) Numerical model having a background fully saturated
with water and cubic patches fully saturated with air, resulting in an overall
saturation of 98 per cent water.

The measurements for attenuation and fluid pressure (Figs 2 and
3) were performed at different strains (Table 2). Thus, we performed
an additional series of measurements to check how this difference
influences results. We measured transient fluid pressure at several
strains for the sample saturated with 97.1 per cent water (Fig. 8).
The fluid pressure increased linearly with strain at the same rate for
different times. This indicates that the fluid flow pattern must be the
independent of strain and, therefore, fluid-related attenuation.

We roughly estimate the fluid pressure resulting from the vertical
strain to understand the stress–strain condition that the saturating
fluids undergo in the laboratory experiments. According to the defi-
nition of compressibility (Jaeger et al. 2007), fluid pressure is given
by:

Pf = Kflεv

φ
, (7)

where φ is porosity (20 per cent, Table 1), Kfl is the bulk modulus of
the effective single-phase fluid and εv is the total sample volumetric
strain caused by the step stress,

εv = 1 − 1

(1 + εν)2 (1 − ε)
, (8)

ε is the vertical strain (ε = 2 × 10−5, Table 2), and ν is the Poisson’s
ratio (Mavko et al. 2009). We consider a Poisson’s ratio ranging
between 0.15 and 0.3 (Zimmerman 1991). The upper and lower
limits of pressure that the fluids might experience are defined by
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Figure 6. Laboratory measurements of fluid pressure (from Fig. 3) and
numerical results for the model shown in Fig. 5(c). The step force that was
applied on top of the numerical model is shown on the top plot. Figure 8. Laboratory measurements of fluid pressure in the five locations

indicated in Fig. 1, at different times, versus vertical strain. The sample was
saturated with 97.1 per cent water.

Figure 7. Laboratory measurements of attenuation for the sample in dry condition and saturated with 97.1 per cent water (from Fig. 1), denoted ‘Lab(dry)’
and ‘Lab(97.1 %)’. Numerical results for attenuation due to wave-induced fluid flow using the numerical model shown in Fig. 5c, denoted ‘Num(97.1 %)’. The
curve denoted ‘Num(97.1 %) & Lab(dry)’ results from summing the numerically calculated attenuation to the mean value of attenuation measured in the dry
sample.
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Figure 9. Interval (minimum to maximum) fluid pressure measured at times
t → 0 s and t = 2 s (shown as red and blue bars), compared with the
predicted fluid pressure (black curves), as a consequence of a vertical strain
of 2 × 10−5, according to the two bounds (Voigt and the Reuss) for the
effective bulk modulus of the fluid. The double lines for each bound are
confidence lines calculated considering a variation of the Poisson’s ratio
between 0.15 and 0.3.

using the Voigt (isostrain) and Reuss (isostress) averaging rules,
respectively, for Kfl in eq. (7):

Kfl[Voigt] =
n∑

i=1

Si Ki , (9)

1

Kfl[Reuss]
=

n∑
i=1

Si

Ki
(10)

(Mavko et al. 2009), where Si is the saturation of the i-th phase
and Ki is the bulk modulus of the i-th phase (Table 3). We compare
the theoretical limits with intervals of fluid pressure observed in
our data (Fig. 9). These intervals are defined by the minimum and
maximum values of fluid pressure for 62.4, 86.6 and 97.1 per cent
water saturation degrees. These minimum and maximum values are
picked at times t ∼ 2 s and t ∼ 0, respectively. We observe that
the intervals are located between the two limits, but much closer
to the Reuss lower bound. Voigt and Reuss limits are associated
with the high- and low-frequency limits, respectively, of the atten-
uation mechanism accounted for in our numerical results. This is
in agreement with our numerical results, since the laboratory data
correspond to the low-frequency side of the attenuation peak in the
numerical curve (Fig. 7).

C O N C LU S I O N S

We performed laboratory measurements of seismic attenuation and
transient fluid pressure in a partially saturated Berea sandstone sam-
ple at room pressure and temperature. Combining these measure-
ments is a new methodology to investigate fluid-related attenuation
in rocks. The laboratory results suggested that wave-induced fluid
flow on the mesoscopic scale is one of the dominant mechanisms
responsible for attenuation in partially saturated sandstone.

Numerical modelling was done to assist in the interpretation of
laboratory data. We used a poroelastic model that represented the
97.1 per cent water-saturated sample used in the laboratory. Tran-
sient fluid pressure computed in this model was equivalent to that

measured in the laboratory and was associated with fluid flow on the
mesoscopic scale. The numerical results for attenuation, uniquely
due to fluid flow, added to a frequency-independent attenuation due
to the solid frame, reproduced well the laboratory data. This con-
firmed that wave-induced fluid flow on the mesoscopic scale is the
dominant mechanism for the frequency-dependent component of
seismic attenuation in partially saturated sandstone.
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A P P E N D I X A : S A M P L E S E A L I N G

Before placing the sample in the BBAV, an aluminum foil was
glued onto the curved surface of the sample. The sample is isolated
from the confining medium (air) by means of a fluorinated ethylene
propylene (FEP) shrink-tube (jacket). Glued aluminum foil and the
jacket did not increase the stiffness of the sample and avoided that
a free-flow boundary was applied to the specimen. In fact, this
multilayer seal impedes that the saturating fluid escapes radially
from the sample while it is vertically stressed (Gardner 1962; Dunn
1986; Yin et al. 1992).

A P P E N D I X B : F LU I D P R E S S U R E
S E N S O R S

To introduce the sensors into the sample, we drilled on the side of
the specimen five holes, 3.8 cm long and 4.2 cm vertically apart
from each other (Fig. 1). The diameter of these holes was 0.5 cm in
the first 3.5 cm and 0.3 cm in the last 0.3 cm. Free space between the
rigid body of the sensor and the inner wall of the placing hole was
reduced by inserting the sensor in a 0.5 by 0.3 cm diameter latex pipe
(Fig. 1). Free space causes artificial porosity which would change
significantly the properties of our rock sample and could host air
during the experiments. Because air is much more compressible
than liquids (Table 3), its presence around the sensors would bias
the signal measured. A clip, made of brass, was applied near to the
sensor-end on the latex pipe to seal the sensor from the inner wall
of the latex pipe. The extremity of the latex pipe on the side of the
external surface of the sample was then not sealed and hydraulically
connected to the confining fluid. In this condition the confining
medium would invade the sample flowing between the external wall
of the latex pipe and the internal wall of the hole making impossible
the measurements. Thus, a brass cone was pushed against the inner
wall of the latex pipe and a plastic ring glued on the sample jacket
(Fig. 1). As soon the confining pressure is increased, the latex pipe
inflates and adheres to the inner wall of the placing hole reducing
the free space.

The fluid pressure sensors (3L_10L_g-1, Keller AG, Winterthur,
Switzerland) are of 3 mm diameter located on the extremity of a
sealed electric cable. They were differential sensors with 200 kPa
full-scale. Their sensitive element laid on the sample axis, that is,
on the end of each placing hole. We utilized ‘zero volume pressure
sensors’ because they do not have internal dead volume and they
allow measuring the pore pressure variation in less than 50 μs. The
acquisition rate was 4 kHz allowing the recognition of a variation
of fluid pressure as fast as 0.5 ms.

A P P E N D I X C : F I T T I N G DATA F O R Q −1

A N D Re(E)

Because the data for Q−1 of the dry sample are frequency indepen-
dent (Fig. 2), they can be approximated with a NCQ model. First we
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use ω0 = 2π rad s−1 (f0 = 1 Hz) to interpolate the measured Re(E)
for the dry sample with the following regression formula:

Re(ENCQ) = a log10(ω) + Re(Eω0 ), (C1)

where a is the best-fit parameter, ω0 is the reference angular fre-
quency and Re(Eω0 ) is the real part of the Young’s modulus at ω0.
The NCQ model allows calculating Q−1

NCQ as a function of Re(ENCQ)
as:

Q−1
NCQ =

(√
Re (E)

Re
(
Eω0

) − 1

)
π

log
(
ω

/
ω0

) , (C2)

which fits well our data, with a standard deviation between Q−1
NCQ

and the measured Q−1 for the dry sample of 0.0023. The interpo-
lation Re(ENCQ) and Q−1

NCQ are shown in Fig. 2 together with the
measurements for the dry sample.

The attenuation measurements for 62.4, 86.6 and 97.1 per cent
water saturation (Fig. 2) are frequency dependent, so they cannot
be simply fit with an NCQ model. However, as a first step, we
calculate Re(ENCQ) and Q−1

NCQ using the NCQ model (eqs C1 and

C2). In this case, Q−1
NCQ gives the minimum value of our measured

frequency-dependent Q−1. Further, the frequency-dependent dis-
persion, Re(	ESLS), was fitted with a SLS model as:

	ESLS = Eω0

(
1 + iωt0

1 + iωtd
− 1

)
, (C3)

where and t0 and td are the best-fit parameters which define the
relaxation times of the SLS model (Carcione 2007; Mavko et al.
2009). The real part of Young’s modulus Re(Efit) was computed
as the sum of the Re(ENCQ) and the dispersion caused by the SLS
Re(	ESLS):

Re(Efit) = Re(ENCQ) + Re(	ESLS). (C4)

According to the Kramers–Kronig relation (e.g. Lakes 2009),
the attenuation generated by the SLS model characterized by the
relaxation times t0 and td are calculated with:

Q−1
SLS = ω(t0 − td )

1 + ω2t0td
(C5)

(Carcione 2007). Finally, the total attenuation that fits our frequency-
dependent data (Q−1

total) can be calculated according to Johnston et al.
(1979):

Q−1
total = Q−1

NCQ + Q−1
SLS. (C6)

This estimate fits well our data, with standard deviations be-
tween the measured Q−1 and Q−1

total, for 62.4, 86.6 and 97.1 per cent
water saturation of 0.0018, 0.0015 and 0.0021, respectively.
Such good fits to the measured Q−1, calculated as functions
of Re(E), show that our datasets for Re(E) and Q−1 obey the
causality principle on which the Kramers–Kronig relations is
based.


