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Viktor Kapp1, Héctor Sánchez-Iranzo6, Nadia Mercader6, Lluı́s Montoliu4,5,

Hanns Ulrich Zeilhofer3,7 and Pawel Pelczar1,*

1Institute of Laboratory Animal Science, University of Zurich, Sternwartstrasse 6, CH-8091 Zurich, Switzerland,
2Institute of Neuropathology, University Hospital of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich,
Switzerland, 3Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057
Zurich, Switzerland, 4National Centre for Biotechnology (CNB-CSIC), Darwin 3, 28049 Madrid, Spain,
5CIBERER-ISCIII, Darwin 3, 28049 Madrid, Spain, 6Program of Cardiovascular Development, Department of
Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares Carlos III, calle
Melchor Fernández Almagro 3, 28029 Madrid, Spain and 7Institute of Pharmaceutical Sciences, Swiss Federal
Institute of Technology (ETH) Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

Received July 8, 2013; Revised December 5, 2013; Accepted December 6, 2013

ABSTRACT

Conditional mutagenesis using Cre recombinase
expressed from tissue specific promoters facilitates
analyses of gene function and cell lineage tracing.
Here, we describe two novel dual-promoter-driven
conditional mutagenesis systems designed for
greater accuracy and optimal efficiency of recom-
bination. Co-Driver employs a recombinase
cascade of Dre and Dre-respondent Cre, which
processes loxP-flanked alleles only when both re-
combinases are expressed in a predetermined
temporal sequence. This unique property makes
Co-Driver ideal for sequential lineage tracing
studies aimed at unraveling the relationships
between cellular precursors and mature cell types.
Co-InCre was designed for highly efficient intersec-
tional conditional transgenesis. It relies on highly
active trans-splicing inteins and promoters with
simultaneous transcriptional activity to reconstitute
Cre recombinase from two inactive precursor frag-
ments. By generating native Cre, Co-InCre attains
recombination rates that exceed all other binary
SSR systems evaluated in this study. Both Co-
Driver and Co-InCre significantly extend the utility
of existing Cre-responsive alleles.

INTRODUCTION

Conditional mutagenesis in mice typically employs the
Cre recombinase, which is expressed in a spatially and

temporally restricted manner (1). Distinct Cre expression
profiles result from the transcriptional control exercised
by regulatory elements of well characterized promoters
that are used to drive expression of conventional trans-
genes or of large fragments of genomic DNA that are
routinely used to generate BAC transgenics (2).
Alternatively, the fidelity of expression can be assured
by directly inserting the Cre protein-coding sequence
into a native gene locus using gene-targeting. Cre driver
mouse lines generated with any of these strategies can be
crossed to a wide variety of mice carrying Cre-responsive
alleles. Depending on the responder allele, the Cre driver
can mediate either gene ablation through the removal of
loxP-flanked (floxed) coding sequences or gene activation
caused by the removal of floxed STOP cassettes (1).
Although elegant, conditional mutagenesis approaches
are sometimes limited, as the regulatory elements of a
single gene not always suffice for directing Cre to
distinct subsets of cells in complex organs such as the
brain or the immune system.

One way of enhancing the specificity of conditional
somatic mutagenesis has been the development of the
CreERT2 system, which allows temporal regulation
of recombination through timed administration of
tamoxifen (3). While this approach has allowed
labeling and tracking of cells with increased temporal
precision, it is still limited to cell populations that can
be targeted by a single-promoter strategy. To date two
strategies have been developed to enable dual-promoter
transcriptional control of site-specific recombinases
(SSRs), which can be broadly summarized as binary
SSRs. The Cre reconstitution approach is based on
splitting Cre into inactive polypeptide chains, expressing
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these fragments from two individual tissue-specific pro-
moters and allowing the assembly of active Cre in cells
where the transcriptional profiles of both promoters
intersect. Several Cre reconstitution strategies have
been described. Namely, the spontaneous reassembly
of Cre fragments by a-complementation (4), fusing Cre
fragments to protein dimerization domains to enhance
Cre reassembly (5–8) or covalent reconstitution of Cre
with the help of split-intein-mediated protein trans-
splicing (9). All Cre reconstitution strategies strictly
depend on promoters that allow simultaneous expression
of the inactive Cre fragments. However, another inter-
sectional dual-promoter strategy that combines two or-
thogonally active SSRs, Cre and Flp, allows promoters
with non-overlapping temporal profiles to be used for
restricting reporter expression. The Cre/Flp strategy
employs reporter constructs that carry loxP- and frt-
flanked STOP cassettes in various configurations (10)
to selectively label cell sub-populations. Although
elegant, this approach is generally not applicable to
generate conditional knockout mice since conditional
alleles usually only contain loxP sites that facilitate
removal of exon sequences (1). In addition, frt sites
are now frequently found in conditional alleles as a
result of their assembly by recombineering (11,12),
thus severely limiting the application of Flp-mediated
conditional transgenesis in the mouse and restricting
its use to lineage tracing studies using Cre/Flp-respon-
sive reporter alleles. The phage D6 recombinase Dre
(13) faithfully processes its cognate recognition sites
known as rox sites and does not cross-react with loxP
sites in transgenic mice (14). Thus, Dre represents a
potential alternative to Flp for achieving dual-recombin-
ase conditional transgenesis, however, Cre/Dre-respon-
sive reporter genes have not been reported so far.

In this study, we describe the development of two novel
binary SSR systems with the focus on achieving optimal
binary recombination efficiency. The Co-Driver system is
based on the SSRs Dre and Cre linked in a cascade that
can be expressed from two independent promoters.
Briefly, the Dre recombinase acts as a ‘co-driver’ and
activates the Dre-regulated Cre driver gene, Roxed-Cre,
which in turn leads to Cre-mediated output. The Co-
Driver system not only restricts Cre-specific recombin-
ation to a subset of cells defined by the two promoters
driving SSR expression but more importantly will only
generate output if these promoters are co-expressed or
expressed in a predetermined temporal sequence where
Co-Driver SSR activity precedes that of the driver. This
unique property makes Co-Driver ideal for sequential
lineage tracing studies aimed at unraveling the relation-
ships between cellular precursors and mature cell types.

We also developed a second, complementary approach,
termed Co-InCre, which achieves highly effective Cre re-
constitution promoted by gp41-1 split-inteins (15,16). The
efficiencies of Co-Driver and Co-InCre in recombining
a genomic loxP-flanked reporter were compared to Cre
as well as previously reported Split-Cre systems (6,9). By
using standardized expression constructs and transfections
of a reporter cell line for all binary SSRs in combination
with flow cytometry-based analysis of single cells we could

show that Co-Driver functions on par with current Split-
Cre systems, while Co-InCre significantly improved binary
recombination efficiency by up to 2.5-fold. Constitutively
expressed Co-Driver and Co-InCre triggered extensive re-
combination when introduced into the developing brains
of Ai14 reporter mice (11). Co-Driver also facilitated the
sequential linkage of two expression constructs based
on the human glia-fibrillary acidic protein (hGFAP)-
promoter (17) and the Thy1.2 expression cassette (18),
respectively, which are differentially regulated during neo-
cortical development. The Cre recombination outputs of
the hGFAP-dependent Thy1.2-cascade and the Thy1.2-de-
pendent hGFAP-cascade resulted in fluorescent labeling
of developmentally distinct cell populations thus confirm-
ing the sequential binary recombination mechanism of
Co-Driver. With their high activity and fidelity, both
Co-Driver and Co-InCre show great potential for robust
high-resolution recombination of conditional alleles and
lineage-tracing in transgenic mice.

MATERIALS AND METHODS

Construct assembly

All constructs for constitutive mammalian expression were
assembled using Golden Gate cloning (19) of PCR
products into a pCAG-T7 destination vector. hGFAP
and Thy1.2 expression constructs were assembled using
standard cloning techniques. All cloning strategies can be
provided upon request. Functional plasmids used in this
study have been deposited with Addgene and annotated
sequences of all plasmids are provided in Supplementary
Note 1. hGFAP expression constructs are based on
hGFAP-fLuc (20) (Addgene plasmid 40589). Thy1.2 ex-
pression constructs are based on Thy1 promoter construct
(21) (Addgene plasmid 20736). Codon-optimized SSRs
Bxb1, B3 and KD (Genscript) and gp41-1 and DnaE
split-inteins (IDT) were gene-synthesized. DreO was a
generous gift from C. Monetti. For the construction of
Co-InCre expression plasmids, codon-optimized Cre (22)
(iCre) was split into a N-terminal (aa 19–59) and a C-
terminal (aa 60–343) fragment. Amino acid sequences for
gp41-1N and gp41-1C split-intein fragments (16) were back-
translated using Emboss Backtranseq (http://www.ebi.ac.
uk/Tools/st/emboss_backtranseq/) with mouse codon
usage and fused to N- and C-terminal iCre fragments, re-
spectively. The Roxed-Cre expression plasmid was con-
structed by introducing a rox-flanked STOP cassette
[based on the STOP cassette of the CAG-Floxed ZsGreen
plasmid (11), Addgene plasmid 22798] in between iCre
codons 177 (aa 59) and 180 (aa 60). A single nucleotide
(G) was introduced 50 of the rox-site to create an in-frame
insertion of 33 bp into the iCre open reading frame upon
Dre recombination.

Animals

Ai6 and Ai14 mice (11) were purchased from Jackson
Laboratories, USA, and CD1 mice were purchased from
Charles River, Germany. All animals were maintained in
temperature- and light-controlled rooms (12 light/12 dark,
light on from 6:00 a.m.) with food and water ad libitum.
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All experiments including laboratory animals were
approved by the Cantonal Veterinary Office of Zurich.
The protocol of animal handling and treatment was in
accordance with Swiss Federal and Cantonal regulations
as well as the internal guidelines of the University of
Zurich.

Cell-lines and transfection

Mouse embryonic fibroblast (MEF)-Ai6 were derived
from hemizygous Ai6 reporter mice (11) and immortalized
using standard methods (23). HEK293T and MEF-Ai6
were transfected in a six well format using XtremeGene
9 (Roche) in a 4:1 transfection reagent/DNA ratio.
Individual combinations of recombinase and reporter
plasmids were adjusted to a total DNA amount of 1 mg
using pUC57 as an inert carrier plasmid. For quantifica-
tions, transfections of each distinct combination of
plasmids were repeated three times with each replicate ex-
periment including independent DNA preparations for
each plasmid, independent transfection reagent/medium
preparations and independently seeded cell populations.

Primers

The specific primers used for genotyping of the Ai6
reporter allele (Figure 2D) were Ai6-F, TTTTCCTACA
GCTCCTGGGC; Ai6-R, GGCATTAAAGCAGCGTAT
CC.

Flow cytometry

HEK293T and MEF-Ai6 cells were trypsinized and col-
lected in PBS with 10% fetal bovine serum 24 and 72 h
after transfection, respectively. Cells were analyzed on a
BD LSRII Fortessa. ZsGreen fluorescent protein was
excited using a 488-nm laser and detected using a 525/50
filter. mCherry fluorescent protein was excited using a 561-
nm laser and detected using a 610/20 filter. Single color
controls are shown in Supplementary Figure S8. For
HEK293T, a minimum of 20 000 and for MEF-Ai6, a
minimum of 5000 mCherry-positive events were
recorded. Data analysis was performed using FlowJo
software, and flow plots were processed using Adobe
Illustrator.

In utero electroporation

Uteri of timed-pregnant mothers (CD1, 14.5 days after
mating with Ai14-homozygous males) anaesthetized with
isoflurane in an oxygen carrier (Merial Animal Health)
were exposed through a 2-cm incision in the ventral peri-
toneum. Embryos were lifted through the incision and
placed on humidified gauze pads. DNA (0.5 mg of each
recombinase plasmid and 1 mg of EGFP plasmid) was
injected through the uterine wall into the telencephalic
vesicle using pulled borosilicate needles and a Femtojet
microinjector (Eppendorf). Electric pulses were applied
using 5mm platinum tweezers electrodes (CUY650P5,
Nepagene) and an ECM-830 BTX square wave
electroporator (BTX, Gentronic Inc.). Uterine horns
were then placed back into the abdominal cavity, and

the abdomen wall and skin were sutured using surgical
needle and thread.

Histology and fluorescence imaging

In utero electroporated Ai14-hemizygous mice were
sacrificed at P9-10 and perfused with ice-cold 4% PFA
in PBS. Brains were harvested and post-fixed in 4%
PFA in PBS for at least 4 h on ice. Whole-mount brains
were visually inspected using an Olympus SZX12 stereo
microscope equipped with epi-fluorescence illumination,
and brains with similar-sized areas of EGFP fluorescence
were selected for further analyses. About 50–60 mm thick
coronal brain sections were prepared using a VT 1000S
vibratome (Leica), mounted and imaged using a Fluoview
FV10i confocal microscope (Olympus). Images were pro-
cessed using ImageJ or Imaris (Bitplane Scientific
Software), and panels were arranged using Adobe
Illustrator.

Quantifications and statistical analysis

Recombination efficiency was determined as the percent-
age of mCherry-positive cells showing ZsGreen fluores-
cence. Cre recombination efficiency served as a standard
and all replicates were divided by mean Cre recombination
efficiency thus transforming data to percentage of Cre
recombination efficiency. Standard deviation (SD) was
calculated for transformed replicates and is shown as
error bars in bar graphs. Two-way ANOVA with
Bonferroni post hoc test was used to compare multiple
means. The number of EGFP+ cells and tdTomato+ cells
per coronal brain sections was determined in a single
confocal plane and for each fluorescent channel individu-
ally using the automatic spot detection function with
default parameters (estimated xy diameter=12.4 mm) im-
plemented in Imaris (Bitplane Scientific Software). The
spot detection threshold was manually set using the
‘quality filter’, and detected spots were manually curated
to eliminate spots marking false-positive detected cell
bodies and add spots for false-negative undetected cell
bodies. Based on the proximity of individual spots
marking EGFP+ and tdTomato+ cells, respectively,
EGFP+ tdTomato+ cells were annotated manually and
EGFP/tdTomato co-localization was validated in an
overlay image of the green and red fluorescence channels
(the workflow is outline in Supplementary Figure S9).
Average numbers of cells were calculated for three mice
per group and three coronal sections per mouse. Student’s
t-test (two-tailed) was used to compare two means. For all
statistical analyses, a P-value of <0.05 was considered
significant.

RESULTS

Dre as the optimal Co-Driver recombinase

The basic concept of the Co-Driver cascade requires the
use of a highly active SSR that will operate orthogonally
with Cre. We considered SSRs to be promising Co-Driver
candidates if they fulfilled two essential conditions. First,
the specificity of the SSRs for their cognate recognition
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sites (and the absence of cross reactivity with other SSR
recognition sites) should have been determined previously
and preferentially also validated in a mammalian system.
Second, the Co-Driver candidate and its recognition sites
should not be routinely utilized for cloning or
recombineering of transgenic constructs. Selecting SSRs
by these criteria should minimize the risk of unintended
recombination events when Co-Driver is combined with
currently available transgenic alleles. Following these con-
siderations, we selected four Co-Driver candidates
including the phage recombinases Dre (13,14) and Bxb1
(24–26) as well as the yeast recombinases B3 and KD (27).
We excluded the extensively characterized SSRs Flp and
PhiC31 since a large number of established mouse lines
carry conditional mutagenesis cassettes, which already
contain frt and PhiC31 attB/attP recognition sites (11,12).

To date, no comparative assessment of recombination
efficiency of these SSRs has been performed in a
standardized mammalian system. We therefore systemat-
ically compared their recombination efficiencies relative to
the highly active Cre recombinase. First, we generated
standardized SSR overexpression constructs by fusing all
the codon-optimized SSR protein-coding sequences to an
N-terminal SV40-NLS and a HA-tag to and placing them
under control of a constitutively active CAG promoter
(Figure 1A). B3, KD and Dre are members of the
tyrosine SSR family, whereas Bxb1 is the only representa-
tive of the serine family of recombinases. The recombin-
ation mechanism of tyrosine family SSRs in combination
with their native recognition sites typically favors excision
over insertion reactions, while inversions of DNA are gen-
erally reversible as long as the SSR is present. Serine
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Figure 1. Evaluation of Co-Driver candidate recombinases. (A) Diagrams of standardized SSR-driver and respective reporter plasmids that are co-
transfected with a constitutively expressing mCherry plasmid into HEK293T cells. Transfected cells are mCherry+, and SSR activity is detected for
Bxb1 using an inverted ZsGreen reporter or a STOP-cassette-based ZsGreen reporter for KD, B3 and Dre. Arrowheads indicate the orientation of
individual SSR recognition sites. (B) Flow cytometric analysis of cells 24 h after transfection with Bxb1, KD, B3 or Dre recombinase and respective
reporter constructs (top panels) or reporter constructs alone (bottom panels). Numbers within histograms represent the percentage of transfected cells
showing recombination activity. Insets, scatter plots showing living cells and gating for mCherry+ cells (red rectangle). FI, relative fluorescence
intensities reported in arbitrary units. (C) Quantification of recombination efficiency for Co-Driver candidates. Bars represent the percentage of cells
showing recombination activity in subsets of mCherry+ cells [low, medium (med) or high mCherry expression; gating within the mCherry+ gate is
shown right to bar graph]. Average data of three independent experiments with standard deviation and normalized to 100% Cre average recom-
bination efficiency are shown. KD activity was not detectable (n.d.) in mCherry+ cells except in the mCherryhigh population. Statistics: two-way
ANOVA with Bonferroni post hoc test; n.s., not significant; *P< 0.05; **P< 0.01; ***P< 0.001.

Nucleic Acids Research, 2014, Vol. 42, No. 6 3897

,


family SSRs such as Bxb1, on the other hand, are capable
of carrying out unidirectional excisions and inversions
(28). As our intent was to exploit the DNA inversion
mechanism of Bxb1 to construct a Bxb1/Cre SSR
cascade, we assessed the efficiency of Bxb1 in the
context of a fluorescent reporter construct carrying a
reverse-complementary ZsGreen protein-coding sequence
flanked by Bxb1 recognition sites (Figure 1A). Conversely,
the DNA excision activity of the three tyrosine recombin-
ases was assessed using reporter constructs carrying
ZsGreen preceded by a STOP-cassette flanked by the
cognate recognition sites of the respective SSR.
To ascertain SSR activity, we co-transfected HEK293T

cells with a constitutively expressing mCherry plasmid,
SSR drivers and their respective reporters and measured
single-cell mCherry and ZsGreen fluorescence intensities
using flow cytometry (Figure 1B). In the absence of
SSRs none of the reporter constructs produced any
ZsGreen signal detectable by fluorescence microscopy
(Supplementary Figure S1) and flow cytometric analysis
24 h post-transfection revealed background ZsGreen
fluorescence in <0.5% of cells (Figure 1B). We defined
recombination efficiency as percentage of transfected
(mCherry+) cells showing ZsGreen expression as a result
of SSR activity. To determine recombination efficiencies
in subsets of cells with overall low, medium and high ex-
pression levels we defined three equally sized gates within
the mCherry+ gate covering the full range of mCherry
fluorescence intensities (Figure 1C). Dre recombination
levels were comparable to Cre in all sub-populations
including mCherrylow cells, while B3 reached only 50%
of Cre activity in this population. We could not detect
any KD recombination events above background levels
in this experiment, however, a KD variant with
C-terminal fusion of a PEST sequence (27) showed
residual activity 72 h post-transfection (data not shown).
Bxb1-mediated inversion of the ZsGreen reporter was
only 20% as efficient than Cre-mediated STOP-cassette
excision in mCherrylow cells.
These results prompted us to consider Dre as the

optimal Co-Driver of all SSR tested for constructing a
sequential binary recombinase system.

A Dre-responsive Cre driver design

Having selected Dre as the Co-Driver SSR, we evaluated
several rox-flanked STOP-cassette designs with the aim to
tightly control Cre expression in the absence of Dre. We
adapted two STOP-cassette configurations that were
shown previously to completely block transgene expres-
sion and at the same time facilitated efficient transgene
reactivation upon the removal of the STOP cassette
by Cre recombination. The 3� poly(A) STOP cassette
incorporates STOP codons in all three reading frames
followed by three consecutive SV40 poly(A) sequences
and is part of the Ai6 and Ai14 conditional reporter
alleles (11). The chloramphenicol acetyltransferase
(CAT)-poly(A) STOP cassette is composed of a CAG
promoter, the CAT gene and a poly(A) signal and has
been shown to tightly control multi-copy transgenes
(29). We cloned both rox-flanked STOP-cassettes

upstream of Cre (Figure 2A) and transfected HEK293T
cells with each of these constructs together with constitu-
tive mCherry plasmid, Cre-inducible ZsGreen reporter
and either adding or omitting a constitutive Dre expres-
sion construct (Figure 2B). We observed substantial levels
of loxP-recombination events in the absence of Dre re-
gardless of which rox-flanked STOP cassette was present
upstream of Cre (Figure 2B and C; Supplementary
Figure S2). Similar amounts of leakage were detected,
when Cre was preceded by a b3- or kd-flanked STOP
cassette (data not shown). We hypothesized that the
poly(A) signals of the upstream STOP cassettes allow suf-
ficient transcriptional read-through for translation of Cre
and subsequent loxP-recombination to occur. Therefore,
we devised a strategy that would interrupt Cre expression
at both the transcriptional and translational level. In the
Roxed-Cre construct (Figure 2A), the Cre open reading
frame is interrupted by the 3� poly(A) STOP cassette
between amino acids 59 and 60. Thus, Roxed-Cre gener-
ates an inactive N-terminal Cre fragment (5–9) in the
absence of Dre recombination (and in the case of tran-
scriptional read-through the also inactive C-terminal Cre
fragment). Once the rox-flanked STOP cassette is removed
a Cre variant with an 11 amino acid insertion resulting
from translation of the remaining rox-site is expressed
(Supplementary Figure S4). Roxed-Cre reduced unin-
tended loxP-recombination below detectable levels in all
mCherry+ cells, while appearing to be equally efficient as
Cre when Dre was added to Roxed-Cre transfections
(Figure 2B and C).

Co-Driver recombination of a genomic single-copy
reporter gene

In transgenic mice, Cre is typically employed to recombine
hemizygous reporter genes or homozygous loxP-flanked
conditional alleles. It has been shown that while Cre main-
tains high activity on both plasmid-based and chromatin
targets other recombinase systems such as FLP/frt are
significantly less efficient in processing the latter (30).
To assess Co-Driver performance in an experimental
environment that closely resembles in vivo conditions
we established a MEF cell line that carries a single-copy
Cre-inducible ZsGreen reporter [MEF-Ai6 derived from
hemizygous Ai6 mice (11), Figure 2D]. MEF-Ai6 dis-
played green fluorescence with uniform intensity 72 h
after Cre transfection (Figure 2D) as expected for a
ROSA26-targeted reporter (31). We transfected MEF-
Ai6 with either single or both components of Co-Driver
together with a mCherry construct and assessed recombin-
ation events 72 h after transfection. The correct processing
of the Ai6 allele was clearly evidenced by PCR analysis
(Figure 2D) and ZsGreen fluorescence (Figure 2E;
Supplementary Figure S3) in MEF-Ai6 transfected with
both components, while no recombination was observed
in single component transfections.

Having confirmed that both Co-Driver components are
essential for processing a single-copy Cre-dependent
reporter gene we went on to evaluate the performance of
Co-Driver in relation to Cre and other binary SSR
systems. We first asked how efficiently the Cre variant
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translated from Dre-processed Roxed-Cre (CreRox60-70,
Figure 3A; Supplementary Figure S4) would recombine
the Ai6 reporter. In transfected MEF-Ai6, CreRox60-70 (ex-
pressed from a construct mimicking complete processing
of Roxed-Cre plasmids by Dre) showed a 30–40% lower
recombination activity than native Cre (Supplementary
Figure S4). Since CreRox60-70 seems to be a limiting
factor for overall Co-Driver recombination efficiency, we
explored a different sequential binary SSR configuration
that could generate native Cre as a final output. We
flanked the reverse complementary Cre protein-coding
sequence (rcCre) by Bxb1 recognitions sites, attB and
attP, in inverted orientation (Figure 3A). Thus, expression
of Bxb1 will restore the correct orientation of the Cre open
reading frame by unidirectional inversion.

Besides our attempts to identify the optimal sequential
binary SSR configuration we were also interested in con-
structing a coincidental binary SSR that allows seamless

reconstitution of native Cre. Here, we capitalized on the
recently described gp41-1 split-intein (15,16) to construct
Co-InCre (Figure 3B; Supplementary Figure S5), a coin-
cidental binary SSR akin to the previously described split-
intein-split-Cre (9). gp41-1 exhibits the highest trans-
splicing activity at 37�C of all split-inteins described to
date and does not require any native extein sequences to
catalyze this reaction (15). We cloned Co-InCre as well as
the previously published Split-Cre (6) and split-intein-
split-Cre (9) into our standard expression vector and
compared their recombination efficiency to Co-Driver,
Bxb1-rcCre and native Cre in transfected MEF-Ai6
(Figure 3C). Again, we used flow cytometry to analyze
subsets of mCherry+ MEF-Ai6 with low, medium and
high mCherry fluorescent intensities (Figure 3D).
Not surprisingly, none of the binary SSRs reached

the recombination efficiency of Cre in mCherrylow or
mCherrymed cell populations, however, there were
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significant differences in performance between the individ-
ual systems (Figure 3D). In mCherrylow cells, Co-Driver
and Bxb1-rcCre showed �20% of Cre efficiency, which
was similar to split-intein-split-Cre and slightly above
Split-Cre. Remarkably, Co-InCre was more than twice
as active as any other binary SSR reaching more than
50% of Cre efficiency. Co-InCre also showed the highest
performance in mCherrymed cells with �80% of Cre effi-
ciency. Here, Co-Driver activity was superior to Split-Cre,
while being slightly lower than Bxb1-Crerc and split-intein-
split-Cre. Thus, a considerable gain in efficiency at low
expression levels could be achieved by the seamless
protein trans-splicing of Co-InCre. Bxb1-rcCre, on the

other hand, only permitted an increased SSR activity
relative to Co-Driver in cells with higher expression levels.

Co-Driver and Co-InCre recombination in the developing
mouse brain

The utility of SSRs for in vivo conditional transgenesis
depends on their functionality within rapidly changing
cellular environments during organogenesis or differenti-
ation processes on-going during adulthood. In the de-
veloping mouse neocortex, heterogeneous populations of
progenitor cells residing in the ventricular zone (VZ) and
the subventricular zone start to produce neurons around

Figure 3. Recombination efficiency of Co-Driver and Co-InCre. (A) Sequential binary SSRs Co-Driver and Bxb1-rcCre comprise expression con-
structs for the primary recombinases Dre and Bxb1, which subsequently activate expression of functional Cre by removal of a rox-flanked STOP
cassette or by inversion of attB/attP-flanked reverse complement (rc) Cre, respectively. Rectangles with arrows represent expression constructs and
rounded rectangles represent proteins. (B) Coincidental binary SSRs generate active Cre from split-proteins (Cre-N, aa 19–59; Cre-C, aa 60–343;
white rectangles) fused to protein reconstitution domains (blue rounded rectangles) by GCN4-coiled-coil (cc)-mediated dimerization [Split Cre (6)],
DnaE-mediated protein trans-splicing yielding Cre with inserted non-native amino acids [split-intein-split-Cre, (9)] and Co-InCre reconstituting native
Cre by gp41-1-mediated seamless protein trans-splicing. (C) MEF-Ai6 were transfected with a plasmid for constitutive mCherry expression and either
two plasmids for the expression of both binary SSR modules or a single Cre plasmid. Representative flow plots 72 h post-transfection show the
percentage of transfected cells with recombination activity for sequential binary SSRs and Cre (top) and coincidental binary SSRs (bottom).
Transfected binary SSR systems are indicated on top of the flow plots. Insets show gating for transfected cells. (D) Recombination efficiency,
defined as ratio of mCherry+ cells showing ZsGreen-expression, was determined in subsets of mCherry+ cells with low, medium (med) or high
mCherry FI (gating within the mCherry+ gate is shown in the graph). Binary SSRs with sequential or coincidental mode of action are color-coded in
shades of red, or blue, respectively. Average data of three independent experiments are shown with standard deviation and normalized to 100% Cre
recombination efficiency. Statistics: two-way ANOVA with Bonferroni post hoc test; n.s., not significant; *P< 0.05; **P< 0.01; ***P< 0.001.
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embryonic day (E) 10.5. Corticogenesis proceeds in an
‘inside-out’ fashion, i.e. neocortical layer VI is established
first, followed by layers V, IV and lastly layers II/III (32).
After neurogenesis is completed around E16.5, progeni-
tors start to generate astrocytes and oligodendrocytes
(32,33). Between E12.5 and E16.5, VZ progenitor cells
can be transiently transfected using in utero electropor-
ation of mouse embryos (34,35). Here, progenitors
receive a limited number of plasmid copies, which, upon
cell division, are inherited by daughter cells. While gene
expression from introduced plasmid DNA is remarkably
stable in post-mitotic cells, it is rapidly lost in dividing
progenitors, probably due to the successive loss of the
extrachromosomal plasmids with each cell division.
Therefore, those neural cells born shortly after electropor-
ation will show the highest level of transgene expression,
while those born later only show low levels or no expres-
sion at all. Neurons born before the time point of electro-
poration will not receive any plasmid DNA and as a
consequence will not express the transgene. Depending
on the embryonic stage at which electroporation is per-
formed the progeny of the transfected progenitors will
populate specific cortical layers and express one or
multiple introduced transgenes in the adult brain (34–36).

To evaluate the full recombination potential of our binary
SSRs in vivo, we electroporated CAG-driven Co-Driver or
Co-InCre plasmids together with a CAG-driven EGFP
plasmid into the embryonic (E14.5) brains of Ai14
tdTomato reportermice (11) (Figure 4A).We identified elec-
troporation-positive brain areas in post-natal mice (P9-P10,
Figure 4B) and imaged coronal brain sections for EGFP+

and tdTomato+cells using confocal microscopy (Figure 4C–
F). Confirming our previous observations in transfected
MEF-Ai6 cells, single Co-Driver (Figure 4C) and Co-
InCre (Figure 4E) modules did not trigger any detectable
tdTomato expression over a time period of more than
2weeks following electroporation. Brains of mice
electroporated with binary Co-Driver or Co-InCre showed
extensive tdTomato-fluorescence in the electroporated hemi-
spheres with the vast majority of positive cells being found in
upper cortical layers (Figure 4C and E). High magnification
images revealed that tdTomato-positive cells substantially
outnumbered those that were EGFP-positive (Figure 4D)
indicating that cells, which had received lower amounts of
plasmid and therefore could not produce detectable
amounts of EGFP, were nevertheless able to produce
amounts of Cre that were sufficient for the processing of
the Ai14 reporter gene. In all mice analyzed, gross morph-
ology of the cortex appeared normal. Fluorescently labeled
neurons projected locally to neurons of deeper cortical layers
as well as through the corpus callosum (Figure 4D) toward
distal regions in the contralateral hemisphere. Thus, Co-
Driver and Co-InCre activity was well tolerated by
neuronal populations and their precursor cells in the de-
veloping mouse brain.

Sequential expression of Co-Driver modules in the mouse
neocortex

In a final series of experiments, we asked whether we could
manipulate the output of Co-Driver, i.e. the timing and

cell-type specificity of Cre recombination, by producing
Dre and Roxed-Cre from distinct tissue-specific expression
constructs. To address this question, we cloned Dre and
Roxed-Cre into a hGFAP-promoter (17) cassette and the
Thy1.2 expression cassette (18) to generate hGFAP-Dre,
hGFAP-Roxed-Cre, Thy1.2-Dre and Thy1.2-Roxed-Cre
constructs [Figure 5A, here, Dre was fused to the
porcine teschovirus-1 (P)2A sequence (37) and the blue
fluorescent protein, mTagBFP (38)]. hGFAP-Cre trans-
genic mice express Cre in radial glia, the principal VZ
precursor cells, between E13 and E17 and in the adult
brain in astrocytes but not in neurons or oligodendrocytes
(39). Since radial glia give rise to neurons, astrocytes and
oligodendrocytes, activation of a Cre-dependent reporter
allele in radial glia results in labeling of all three cell
lineages in the adult brain.
In the post-natal mouse neocortex, Thy1.2-driven fluor-

escent proteins can be detected in neurons throughout
cortical layers II–VI (21) and two lines of Thy1.2-
brainbow mice showed expression in astrocytes (40). For
a large number of transgenic lines, Thy1.2-driven trans-
genes have been reported to reach detectable expression
levels in the post-natal brain (18,21,41). However, several
lines of Thy1.2-Cre mice already showed reporter gene
activation during embryonic development (42).
First, we assessed the expression profiles of single

Thy1.2- and hGFAP-driven Roxed-Cre plasmids by
combining each of them with the continuously expressing
CAG-Dre construct (Supplementary Figure S7). In the
post-natal brains of Ai14 mice that were electroporated
at E14.5 with CAG-Dre, Thy1.2-Roxed-Cre and CAG-
EGFP, recombination was restricted to NeuN+ cortical
neurons, which typically also exhibited EGFP fluorescence
(Supplementary Figure S7A). Combining CAG-Dre
with hGFAP-Roxed-Cre resulted in a more extensive
pattern of recombination within and beyond the area of
EGFP+ cells. Here, we observed tdTomato-labeling of
NeuN+ neurons and NeuN� cells morphologically
resembling astrocytes in the cortex and tdTomato+

NeuN� cells in proximity of the corpus callosum
(Supplementary Figure S7B).
We then introduced the Co-Driver pairs, hGFAP-Dre

with Thy1.2-Roxed-Cre (hGFAP!Thy1.2) and Thy1.2-
Dre with hGFAP-Roxed-Cre (Thy1.2!hGFAP), into
the embryonic mouse brain. Confocal imaging of post-
natal coronal brain sections consistently showed reporter
gene activation by both Co-Driver pairs. However, there
was a remarkable difference in the lineage identity and
radial positions of tdTomato+ cells relative to EGFP+

cells for hGFAP!Thy1.2 and Thy1.2!hGFAP electro-
porations, respectively (Figure 5B). In hGFAP!Thy1.2-
electroporated brains the vast majority of tdTomato+cells
stained positive for NeuN (Supplementary Figure S8)
and large numbers of these neurons either showed
EGFP fluorescence themselves or occupied similar ra-
dial positions relative to their EGFP+ neighbors.
Thy1.2!hGFAP, on the other hand, targeted tdTomato
expression predominantly to EGFP� cells with
tdTomato+ NeuN+ neurons occupying positions closer
to the pial surface and tdTomato+ NeuN� non-neuronal
cells residing also in lower cortical layers and in the white
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Figure 5. Sequential expression of Co-Driver components during development of the mouse neocortex. (A) Co-Driver components Dre [fused to the
porcine teschovirus-1 (P)2A sequence and blue fluorescent protein, BFP] and Roxed-Cre were introduced into a human (h)GFAP promoter expres-
sion vector and the Thy1.2 expression vector. E14.5 embryos carrying a single-copy Cre-inducible tdTomato reporter gene (Ai14) were electroporated
with a constitutively expressing EGFP plasmid and either hGFAP-Dre with Thy1.2-Roxed-Cre (white rectangles) or Thy1.2-Dre with hGFAP-
Roxed-Cre (gray rectangles). (B) Representative single-plane confocal images of fluorescence-positive areas within the cortex and MIP of areas in
proximity to the corpus (c.) callosum of post-natal day (P)10 mice are shown (top panel, hGFAP-Dre with Thy1.2-Roxed-Cre electroporations;
bottom panel, Thy1.2-Dre with hGFAP-Roxed-Cre electroporations). Arrow heads denote cells within the cortex that show both EGFP and
tdTomato fluorescence, arrows denote cells with single tdTomato fluorescence. Scale bars, 100mm. (C) Quantification of EGFP-positive cells
(left), tdTomato-positive cells (middle) and tdTomato/EGFP double-positive cells (right) in coronal brain sections. Average data of three animals
and three coronal sections per animal with standard deviation are shown. Statistics: unpaired Student’s t-test; ***P< 0.001.
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matter proximal to EGFP+ fibers of callosal projection
neurons (Figure 5B; Supplementary Figure S8). While
both hGFAP- and Thy1.2-constructs seemed to reliably
produce sufficient amounts of Dre we were unable to
detect BFP fluorescence in post-natal brains (data not
shown) indicating that at the time of analysis the respect-
ive activity of neither promoter was sufficient to generate
detectable amounts of BFP.
To substantiate the qualitative assessment of Cre

recombination patterns, we quantified the numbers of
EGFP+ cells, tdTomato+ cells and EGFP+ tdTomato+

cells in electroporation-positive coronal brain sections
that were randomly selected along the rostral-caudal
brain axis (three brains for each Co-Driver pair with
three sections per brain, Figure 5C). Cell counts per
coronal section were similar for EGFP+ cells
(hGFAP!Thy1.2, 359±130 and Thy1.2!hGFAP,
391±75) and tdTomato+ (120±40 and 117±32),
while there was a significantly higher number of cells
showing cytoplasmic co-localization of EGFP and
tdTomato in hGFAP!Thy1.2 brain sections (96±36
and 18±7). Considering that expression of detectable
levels of EGFP is restricted to cells born shortly after in
utero electroporation was performed (36) these observa-
tions suggest that the Thy1.2!hGFAP Co-Driver pair
targeted reporter gene activation mainly to cells that
were born later relative to the tdTomato+ cells observed
as a result of hGFAP!Thy1.2 Co-Driver activity.

DISCUSSION

The principal aim of this study was to design and validate
binary SSR systems that can integrate the transcriptional
profiles of a wide range of promoters and thus hold the
potential to significantly increase the resolution of genetic
lineage tracing. Co-Driver demonstrates for the first time
the implementation of the sequential lineage tracing
concept by using a cascade of two orthogonally active
SSRs, which we termed sequential binary SSR. This
concept relies on exploiting the temporal activity profiles
of two individual promoters to create a genetic record in a
distinct sub-population of a cell lineage. The generation of
a high fidelity binary SSR system requires the design of
two modules that can only produce the desired output in
combination but not individually. We challenged the indi-
vidual Co-Driver modules Dre and Roxed-Cre in several
biological systems such as transfected cell lines with
plasmid-based or chromosomal Cre-dependent fluorescent
reporters and in the developing brains of Cre reporter
mice without detecting any spurious recombination
events caused by either Dre or Roxed-Cre. Thus, Co-
Driver is essentially an obligate binary SSR, with produc-
tion of functional Dre solely depending on the expression
profile of the Dre-driving promoter, while active Cre is
only produced when two conditions are fulfilled, (i) the
Roxed-Cre gene has been processed by Dre and (ii) the
Roxed-Cre-driving promoter is transcriptionally active.
Tissue-specific promoters and expression cassettes

harbor regulatory elements that exercise control over the
cell-type specificity as well as the timing of gene

expression. We could show that Co-Driver integrates
both tissue-specific and temporal layers of control when
Dre and Roxed-Cre are expressed from two promoters
with non-identical transcriptional profiles. This directional
mechanism of integrating transcriptional activities of two
individual promoters was evident in the developing mouse
neocortex. Here, the combination of hGFAP and Thy1.2
expression constructs targeted activation of a Cre reporter
gene to distinct cell populations depending on which ex-
pression construct harbored Dre or Roxed-Cre, respect-
ively. While hGFAP-dependent Thy1.2-Roxed-Cre
expression restricted reporter gene expression to neurons
that were born shortly after these constructs were
introduced into precursors by in utero electroporation,
Thy1.2-dependent hGFAP-Roxed-Cre expression
resulted in reporter gene activation in later-born neurons
as well as cells of the glial lineages.

Conceptually, sequential linage tracing approaches can
be performed using different classes of promoter pairs to
control the Co-Driver modules including temporally non-
overlapping promoter pairs (Figure 6A and B) and pro-
moters that are both active during a certain period of time
(Figure 6C–E). For two hypothetical promoters with no
temporal overlap in their transcriptional activities, only
the early expression of Dre (Figure 6A) but not the early
expression of Roxed-Cre (Figure 6B) will result in process-
ing of a loxP-flanked sequence (coincidental binary SSRs
cannot produce functional Cre in both scenarios).
Conversely, any form of temporal overlap between two
promoters should facilitate efficient Co-Driver functional-
ity akin to coincidental binary SSRs such as Co-InCre and
earlier published systems (Figure 6C–E).

In terms of versatility, Co-Driver combines the advan-
tages of two classes of previously published binary SSR
systems. Co-Driver relies exclusively on Cre-dependent
alleles to generate a binary output akin to Cre reconstitu-
tion systems (6,9) thus making it compatible with a
plethora of available Cre reporter lines (11,31,40,43),
diphtheria toxin-based responder mice for conditional
cell ablation (44,45) and mice that harbor conditional
knockout alleles (12). However, unlike these complemen-
tation systems that function best when similar amounts of
the two inactive Cre precursor polypeptides are expressed,
the Co-Driver cascade of two highly active SSRs should
better tolerate a mismatch of transcriptional levels
between the two driving promoters in a manner similar
to Cre/Flp systems (10). Conversely, the Cre/Flp
approach facilitates intersectional labeling of cells but
relies on purpose-designed dual-stop-cassette reporters
and thus cannot be combined with currently available
Cre-responsive alleles.

In addition to Co-Driver, we have characterized two
alternative obligate binary SSR systems. First, a binary
SSR cascade could also be constructed using the
alternative SSR pair Bxb1/Cre, which generates native
Cre recombinase upon Bxb1-mediated inversion of
a reverse-complementary Cre expression cassette. Thus,
we provide evidence that construction of sequential
binary SSRs is a generally applicable concept for poten-
tially any combination of SSRs, which exhibit high indi-
vidual recombination efficiencies and do not cross-react
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with each other’s recognition sites. Linking SSRs in series
could, for example, be used to connect several SSR-based
genetic logic circuits (46,47) to obtain higher order logic
devices for synthetic biology applications in bacteria and
mammalian cells. Second, we have constructed Co-InCre,
a coincidental binary SSR system employing highly active
split-inteins to reconstitute a native Cre polypeptide from
N- and C-terminal precursors upon their simultaneous ex-
pression. Co-InCre showed unprecedented activity par-
ticularly in low-expressing transfected cells with a 2.5-
fold increase in recombination efficiency of a genomic
target relative to other binary SSRs tested. The improve-
ment in recombination efficiency of Co-InCre over the
recently published DnaE-based split-intein-split-Cre (9)
most likely results from the combined effects of higher
expression levels facilitated by codon-optimized Cre (22)
sequences together with seamless and faster protein-
splicing activity of the gp41-1 split-intein (15). In combin-
ation with simultaneously active promoters, Co-InCre
most likely provides faster kinetics by reconstituting Cre
on a protein level than sequential binary SSRs, which rely
on two individual recombinases and thus on two subse-
quent cycles of transcription and translation.

Since its discovery, Cre recombinase has been unrivaled
in creating tissue-specific driver lines and most complica-
tions observed in Cre-mediated conditional transgenesis
seem to be related to the choice of promoters and design
of expression cassettes rather than intrinsic Cre SSR
activity (48). Our aim was to generate binary SSRs with
the highest possible activity and therefore we focused
on optimizing recombination efficiency in standardized
model systems that allowed direct comparison with Cre.
This strategy should result in dual-promoter-driven con-
ditional transgenic animals that match the advantageous
characteristics of many Cre driver lines. However, just as

in the case of Cre, not every promoter combination will
result in informative recombination patterns. Conversely,
for certain populations of cells a strategy incorporating
binary SSRs expressed from two intersectional strong pro-
moters might be superior to Cre being controlled by a
single promoter that is specific but low in transcriptional
output.
The need for identifying cell sub-populations with

an increased resolution is highlighted by the continuous
improvements of histological methods (49) and flow
cytometry (50) with the goal to increase the number of
markers that can be analyzed simultaneously. We expect
that high-resolution lineage tracing will complement these
efforts with its unique capacity to create genetic records
of developmental transitions. This will facilitate the infer-
ence of relationships between precursor and differentiated
cells or cells that undergo transdifferentiation processes,
which is difficult to conclude from immunodetection
methods capturing only the current state of expressed
markers. For certain biological questions temporal
control of binary SSR function might be required.
Ligand-dependent variants of all Co-Driver and Co-
InCre components can be created with suitable solutions
reported in the form of CreERT2 (3), DrePBD* (14),
Split-CreERT2 (5) and more recently trimethoprim-
controlled destabilized Cre (51).
Performing binary SSR-based lineage tracing requires

the generation of mice that, including the Cre-responsive
gene, harbor at least three transgenes. Recent advances
in genome editing technologies such as combinations of
ZFN (52–54) or TALEN (55) with plasmid-based target-
ing constructs promise the rapid generation of animals
with targeted integration of Co-Driver or Co-InCre com-
ponents into genomic loci providing suitable expression
profiles. Potentially, a binary SSR founder animal
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Figure 6. Binary Co-Driver and Co-InCre recombinase systems for sequential and coincidental conditional transgenesis. The binary recombinase
components are expressed using two promoters with distinct expression profiles (red and cyan arrows, top right). Hypothetical temporal sequences of
promoter activities within two distinct developmental stages of a cell lineage are shown on the left. Once activated, Cre recombinase processes a
generic loxP-flanked responder sequence (dark gray box, processing is indicated by a linear and a circular reaction product), which could either
represent a floxed exon leading to gene ablation or a floxed STOP cassette resulting in expression of a transgene. Non-overlapping expression
patterns (A, B) result in recombination of loxP sites by Co-Driver only when Dre is expressed first (A). Both Co-Driver and Co-InCre yield
recombination of loxP sites in the case of coincidental promoter activation with similar (C) or different (D, E) durations of transcription from
the individual promoters.
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can be produced in one step by CRISPR/Cas9-mediated
multiplexed genome editing in the mouse embryo (56).
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