
Partial Applicative Theories and Explicit
Substitutions

THOMAS STRAHM, Institutfiir Informatik und angewandte Mathematik,
Universitdt Bern Langgassstrasse 51, CH-3012 Bern, Switzerland.
Email: strahm@iam.unibe.ch

Abstract
Systems based on theories with partial self-application are relevant to the formalization of constructive mathematics
and as a logical basis for functional programming languages. In the literature they are either presented in the form of
partial combinatory logic or the partial A calculus, and sometimes these two approaches are erroneously considered
to be equivalent. In this paper we address some defects of the partial A calculus as a constructive framework for
partial functions. In particular, the partial A calculus is not embeddable into partial combinatory logic and it lacks
the standard recursion-theoretic model. The main reason is a concept of substitution, which is not consistent with
a strongly intensional point of view. We design a weakening of the partial A calculus, which can be embedded into
partial combinatory logic. As a consequence, the natural numbers with partial recursive function application are a
model of our system. The novel point will be the use of explicit substitutions, which have previously been studied in
the literature in connection with the implementation of functional programming languages.
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1 Introduction

Partial applicative theories form the basis of various formal systems for constructive math-
ematics and functional programming. Feferman introduced in [6] and [7] partial applicative
theories of operations and classes in order to give a logical account to Bishop's style of con-
structive mathematics (BCM). More recently, Feferman's systems of explicit mathematics were
used to develop a unitary axiomatic framework for representing programs, stating properties
of programs, and proving properties of programs. The programs considered are taken from
functional programming languages, which are mainly based on the untyped A calculus. Im-
portant references for the use of systems of explicit mathematics in the context of functional
programming are Feferman [8, 9, 10], Jager [16, 17] and Marzetta [22, 23].

As far as the explicit representation of a theory with partial self-application in the previous
literature is concerned, people either took partial combinatory logic or the partial A calculus
(without the rule f) as the applicative basis. The former possibility was chosen in [2, 6, 7,
11, 16, 17, 23, 28], the latter in [8, 9, 10, 22]. At first sight, these two approaches seem to
be completely equivalent, and sometimes they are treated as such in the literature. But they
are only equivalent in the presence of a total logic, since then A calculus (without f) can be
embedded into combinatory logic and vice versa. For a detailed discussion of the total case
also in the context of reductions, the reader is referred to Hindley [14], and Hindley and Longo
[15].

The situation changes drastically if one considers a partial application operation. Then the
partial A calculus (without £) is no longer embeddable into partial combinatory logic. This
is due to the fact that the coding of A abstraction in the context of partial combinatory logic
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is more complicated than usual. The modified definition of A does not permit one to push a
substitution 8 inside an abstraction (Xx.t), a principle, which is valid for the partial A calculus
for obvious reasons. For example, the terms (Xx.y)[zz/y] and (Xx.zz) are not equal in par-
tial combinatory logic. Hence, the stronger concept of substitution in the partial A calculus
makes its embedding into partial combinatory logic fail. For the same reason, the standard
recursion-theoretic model of partial combinatory logic is no longer a model of the partial A
calculus. Recently, Pezzoli [Private communication] even proved that there is no (reasonable)
recursion-theoretic interpretation of the partial A calculus at all.

As a consequence, it is not possible to determine proof-theoretical upper bounds of applica-
tive theories based on the partial A calculus by means of the recursion-theoretic model, as can
be done for the corresponding systems based on partial combinatory logic. Although the up-
per bounds of those systems can be determined by formalizing a total term model (cf. Jager
and Strahm [18]), the adequacy of the partial A calculus as a constructive framework for par-
tial functions is seriously put into question. The system simply does not seem to have any
reasonable models with a perspicuous constructive meaning that are truly partial. Not only
the recursion-theoretic model but also other partial models of partial combinatory logic do
not have their counterparts as models of the partial A calculus.

In the following we propose a modification of the partial A calculus, which can be embedded
into partial combinatory logic via a natural embedding. As a consequence, this weakened form
of the partial A calculus has all the partial models which we have for partial combinatory logic.
In particular, it is possible to determine upper bounds of systems of explicit mathematics based
on our modified version of the partial A calculus using the recursion-theoretic model.

The novel point of our system will be the use of explicit substitutions. According to this
approach substitution is no longer a notion of the metalanguage, but an operation axioma-
tized in the theory under consideration. If t,s\,... ,sn are terms and 9 is the substitution
{si/xi,..., sn/xn} then tO is no longer an abbreviation in the metalanguage for the term t
with the variables x, simultaneously replaced by the terms s;, but a purely syntactical object.
The evaluation of 6 has to be described by appropriate axioms or rules. So it is possible to pro-
vide a very controlled process of substitution. In particular, substitution can be axiomatized
in a way that is consistent with the recursion-theoretic model and partial combinatory logic,
respectively. Hence, a substitution 6 can no longer be pushed inside an abstraction (Xx.t).

The theory of explicit substitutions has been treated in the literature before, but from a dif-
ferent point of view. The main work has been done in the context of implementation of func-
tional programming languages, and application in those systems is always total. The very con-
cern of the present work, however, is to study a partial application operation. A key reference
for the previous work on explicit substitution is the paper by Abadi et al [1]. Further inves-
tigations are presented in Curien [4], Curien et al [5], Hardin and L£vy [13] as well as in
Lescanne and Rouyer [20].

Recently, Martin-L6f [21 ] introduced a calculus of explicit substitutions in connection with
his intuitionistic theory of types, which is worked out in Tasistro [26].

Let us briefly sketch the procedure of these investigations. In Section 2 we first introduce
partial combinatory logic CLP and the (usual) partial A calculus Ap (without £). In particu-
lar, we recapitulate Beeson's logic of partial terms. After having sketched some interesting
partial models of CLP, we discuss the substitution problems, which prevent the embedding of
Ap into CLP, and we give Pezzoli's result mentioned above. In Section 3 we give a detailed
formulation of the system Apcr, which is a modification of Ap by explicit substitutions. The
system incorporates an adaptation of Beeson's logic of partial terms to the framework of ex-
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plicit substitutions, and rules to evaluate substitutions, of course. We further show that Xpcr
is embeddable into CLP via a natural embedding and that CLP is also contained in Apcr via
the standard embedding. In Section 4, finally, we study the reduction relation on Xpcr terms
corresponding to the system Apcr. We give a long and tedious proof for the Church Rosser
property of this relation.

We finish this introduction by mentioning that recently Stark (manuscript in preparation)
has established a natural relationship between the XV(T calculus and the programming lan-
guage SCHEME.

2 The systems CLP and Xp

Let us first define partial combinatory logic CLP and the usual partial A calculus Ap, without
the rule f. The language of CLP includes an infinite list of object variables (in the metalan-
guage: x, y, z, f, g,h,u,v,w,...), constants k and s (partial combinatory algebra), the binary
function symbol o (application), the equality symbol =, the symbol I (defined) and the usual
prepositional connectives and first-order quantifiers. The language of Ap contains the same
symbols except that k and s are replaced by the abstractor A.

The terms of CLP and Ap (in the metalanguage: r, s,t,...) are given by the following def-
initions.

DEFINITION 2.1 (CLP terms)

1. Every variable is a CLP term.
2. k and s are CLP terms.
3. If s and t are CLP terms, then (s o t) is a CLP term.

DEFINITION 2.2 (Ap terms)

1. Every variable is a Ap term.
2. If t is a Ap term, then (Xx.t) is a Ap term.
3. If s and t are Ap terms, then (s o t) is a Ap term.

In the following we write (st) for ( s o t ) . Additionally, we adopt the convention of asso-
ciation to the left, i.e. M2^3 • • -tn stands for (.. . ( (Ma)^) . . . t n ) . Finally, we often write
(Xxi .. .xn.t) instead of Aii.(Ai2-(- • • (Ain-*) • • •))•

The formulas of CLP (in the metalanguage: A, B, C,...) are defined in the obvious way.

DEFINITION 2.3 (CLP formulas)

1. If s and t are CLP terms, then (s = t) is a CLP formula.
2. If t is a CLP term, then t\. is a CLP formula.
3. If A and B are CLP formulas, then -'A, (AvB), (AAB) and (A -> B) are CLP formulas.
4. If A is a CLp formula, then 3xA and VxA are CLP formulas.

The formulas of Ap are defined in exactly the same way as the CLP formulas.
If £ is a term of CLP or Ap, then fvaiit) denotes the set of free variables of t. As usual,

t[s\/xi,... ,sn/xn] is the term t in which the free occurrences of xx,... ,xn are simultane-
ously substituted by Si,..., sn. If t is a Ap term, then in the case of variable collisions bound
variables have to be renamed. Analogously,/var(yl) and A[si/x\,..., s n /x n ] are defined.

DEFINITION 2.4

1. {A «• B) := ((A -> B) A (B -> A)).
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2. (t~s) := ( ( U V s | ) - K = s).

Together with the axioms stated below it will become clear that (t ~ s) is equivalent to

(U A si A t = s) V (->t\. A -.s|),

i.e. ~ is a partial equality relation as it is used, for example, in a recursion-theoretic frame-
work.

In the following we give the axioms and rules of inference of the systems CLP and Ap, re-
spectively. The logic of both CLP and Ap is the classical logic of partial terms due to Beeson
[3, 2]. It corresponds to E+ logic as it is discussed in Troelstra and van Dalen [27]. All our
results also hold if intuitionistic logic is chosen as a basis of CLP and Ap, respectively.

DEFINITION 2.5

The system CLP is formulated in the language of CLP, and contains the following list of axioms
and rules of inference.

A. Propositional logic

(1) Some complete axiom schemes of classical propositional logic

B. Quantifier axioms

(2) VxA A < | -4 A[t/x]

(3) A[t/x] A U -> 3xA

C. Equality axioms

(4) x = x t = s -¥ s — t t = sAs = r - t t = r

(5) ti=siAt2 = Si-

D. Strictness axioms

(6) xl
(7) ti=t2-+tilAt2

(8) k | s | sxyl

E. Partial combinatory algebra

(9) kxy ~ x
(10) sxyz ~ xz(yz)
E Rules of inference

3xA ->• B A-* VxB

In the inference rules (12) x does not appear free in the conclusion.
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DEFINITION 2.6

The system Ap is formulated in the language of Ap and contains the same axioms and rules of
inference as CLP except that the strictness axioms (8) are replaced by

(Ax.t)l

and the axioms of a partial combinatory algebra are replaced by the /3 axiom

(fi) (\x.t)y~t[y/x].

It is important to notice that in the system Ap we do not have the partial analogue of the rule

(0.
t — S

^ Xx.t = Xx.s'
The principle (£) induces a weak form of extensionality, which is not consistent with the
strongly intensional character of (indices of) partial functions as met, for example, in a
recursion-theoretic framework. Formally, this means that it is a priori hopeless to embed A
calculus into combinatory logic in the presence of (f). Moreover, the absence of (£) is in ac-
cord with most implementations of A calculus based languages: functions are considered as
values, and are only evaluated when arguments are fed in. As already mentioned in the intro-
duction, A calculus without (£) in the context of a total application operation is discussed in
[14] and [15].

Nevertheless, we will shortly address fully extensional versions of CLP and Ap, respec-
tively, i.e. we will consider the strong extensionality axiom (Ext),

(Ext) Vx{fx~gx)->(f = g).

Let us briefly sketch some models of CLP. As we are mainly interested in partiality, we will
only discuss truly partial models. Of course, there are many models of CLP where application
is a total operation, e.g. each model of the A calculus is a model of CLP. In the following we
give two partial models of CLP.

The recursion-theoretic model PRO. The universe of the model PRO of partial recursive
operations consists of the set of natural numbers w. Application o is interpreted as partial re-
cursive function application, i.e. x o y means {x}(y) in PRO, where {x} is a standard enu-
meration of the partial recursive functions. It is easy to find appropriate interpretations of k
and s such that the axioms of a partial combinatory algebra are satisfied. PRO provides a nat-
ural example of a domain where objects may be programs as well as inputs to programs. The
model underlines the constructive and operational character of applicative theories.

The normal term model CNT. This model is based on standard notions of term reduction
for combinatory logic, i.e. kfit2 reduces to t\ and st^h reduces to txhfatz). The universe
of CNT consists of all closed CLP terms in normal form, k and s are interpreted by themselves,
and t\ o t-x means lnFirst{t\t2)- lnFirst{t\t<{) denotes the uniquely determined normal term s
provided that t\ 12 can be reduced to s according to the leftmost minimal strategy, InFirstfa £2)
is undefined otherwise. Using the leftmost minimal strategy, at each stage of a reduction se-
quence the leftmost minimal redex is contracted, where a redex is called minimal, if it does not
contain any other redexes. It is necessary to use the leftmost minimal strategy in order to be
consistent with the strictness axioms of CLP. The model CNT provides us with another inter-
esting operational semantics of CLP. For a detailed description of CNT the reader is referred
to Beeson [2], p. 119.
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As we will see below, the models just described cannot be made into models of the system
Ap in a reasonable way. This is due to a stronger concept of substitution, which is inherent in
the partial A calculus Ap.

Our next aim is to code A abstraction in CLP: We have to be careful in defining it in the
context of the logic of partial terms, because we want Xx.t to be defined for each term t. As
we will see below, this modified A abstraction will have very unpleasant properties as far as
substitution is concerned.
DEFINITION 2.7 (A*x.t)
For each term t of CLP a term X*x.t is denned by induction on the complexity of t.

1. If t is the variable x, then X*x.t :— skk.

2. If t is a variable different from a; or a constant, then X*x.t := kt.

3. If* is the term (M 2 ) , then X*x.t := s(A*x.ii)(A*x.i2).

LEMMA 2.8

We have for all CLP terms t and s:

\.fvar{X*x.t) =fvar(t) \ {x}.

2. CLP h X'x.ti.

3. CLP h (X*x.t)x ~ t.

4. CLP t- si -> (A*xi)s =i t[s/x].

PROOF. (1M3) are proved by induction on the complexity of t. (4) is a direct consequence
of (3). I

In the context of a total logic, one normally defines X'x.t := kt, if x £ fvar{t). So we
have, for example, A*x.(yz) = k(yz). The example shows that Xx.ti does not hold for the
usual definition of A abstraction.

As already mentioned, the A abstraction of Definition 2.7 behaves very badly as far as sub-
stitution in A expressions is concerned. For a usual A abstraction we have

(Xx.t)[s/y] = Xx.t[s/y), (*)

provided that i / y and x £ fvar{s). This property (which we only need for s | in a partial
setting) fails for the A* defined above: we have, for example, (X*x.y)[zz/y] = k(zz), but
X*x.zz — s(kz)(k.z).

The fact that the substitution property (*) does not hold for the A abstraction of Definition
2.7 is not just a technical inconvenience, but has rather strong consequences for the system Ap

as a constructive framework for partial functions. Since (•) trivially holds in Ap, the standard
embedding of Ap into CLP fails. As a consequence, the CLP models PRO and CNTdescribed
above do not translate into models of Ap.

An illustrative consequence of the stronger substitution concept of Ap is a very weak form
of (£), which is derivable in Ap. Let s, t be Ap terms, and x be a variable with x &fvar(s) U
fvar{t). Then it is easy to see that the principle

s = t —¥ Xx.s = Xx.t (••)

is derivable in Ap only from (/?) and the fact that equality respects application. For (s = t)
implies (Xy.Xx.y)s ~ (Xy.Xx.y)t, and hence we can conclude by the /3 axiom

Ax.s = (Ay.Ax.y)s = (Ay.Ax.y)t = Ax.t.



Partial Applicative Theories and Explicit Substitutions 61

Note that in the argument above, we pushed the substitutions [s/y] and [t/y] inside the ab-
straction (Xx.y). The principle (••) can be considered as an extremely weak form of exten-
sionality, and therefore, it has to be rejected from a strongly intensional point of view.

We have seen above that the A abstraction of Definition 2.7 does not yield a recursion-
theoretic interpretation of Ap. The question arises whether it is possible to find another en-
coding of A in the model PRO satisfying the substitution property (•). It is easily checked
that all A encodings known from the literature (cf. Kleene [19], p. 344) do not validate (*),
and all attempts to define another such A failed.

Very recently, Pezzoli (private communication) found an elegant formal argument showing
that the existence of a recursion-theoretic interpretation of Ap which has a partial recursive
term evaluation function contradicts the undecidability of the halting problem.

THEOREM 2.9 (Pezzoli)
It is not possible to make the partial recursive functions model PRO of CLP into a model of
the partial A calculus Ap in such a way that the term evaluation function f(t, p) ~ ||t||p, for t
a Ap term and p an assignment of variables, is partial recursive.

PROOF. Let us assume that we can make the partial recursive functions into a model of Ap

such that \\t\\p is partial recursive. By (4) of Lemma 2.8 and the substitution property (•) we
know that Ap proves

(zz)i -> (Xxy.x){zz) = Xy.zz,

which immediately yields

(zz)i -> Xw.((Xxy.x)(zz)) = Xwy.zz (* • *)

by the principle (•*) mentioned above. Now consider \\Xw.((Xxy.x)(zz))\\p — ap and
||Aurt/.zz||,, = bp, which are defined for every p since A abstraction is always defined. By
(• • *) we have ap = bp whenever {p(z)}(p(z))l; if {p(z)}(p(z))ti then ap must be an in-
dex of the always undefined function and bp an index for the constant function n H+ || Xy.zz\\p,
so in this case ap ^ bp. However, by hypothesis, we can compute ap and bp, and therefore,
we can decide whether {n}(n) J.. This is not possible. I

The following corollary is immediate from the fact that PRO is a model of CLP.

COROLLARY 2.10

There is no recursive encoding of A in CLP validating (•).

It should be stressed that the problems described above completely disappear in the pres-
ence of the extensionality axiom (Ext). In particular, (•) holds in CLP + (Ext).

LEMMA 2.11

We have for all CLP terms t, s and all variables x, y such that x / y and x &fi>ar(s):

CLP + (Ext) h s | ^ (X*x.t)[s/y) = X*x.t[s/y].

PROOF. Assume si. By Lemma 2.8 we have (X*x.t)x ~ t and (X*x.t[s/y])x ~ t[s/y]. Since
si and i / j / w e can conclude that

(X*x.t)[s/y}x ~ t[s/y] ~ (X*x.t[s/y])x,

which by (Ext) and s I (i.e. {Is}) immediately implies the claim of the lemma. I
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As an immediate consequence of this lemma we obtain the following theorem, which is also
stated in Moggi [24].

THEOREM 2.12

The systems CLP + (Ext) and Ap + (Ext) are equivalent with respect to the standard embed-
dings.

3 The system \pa
In the following, we introduce the system Ap<x, which is a modification of the system Ap by
explicit substitutions. The language of Ap<7 is an extension of the language of Ap by the set
brackets {, }, the slash / and commas. The new symbols will be used in order to form finite
sets of variable bindings, i.e. substitutions.

The terms (in the metalanguage: r,s,t,...) and substitutions (in the metalanguage: 6,CT,T,

• • •) of Aper are given by a simultaneous inductive definition.

DEFINITION 3.1 (Ap<r terms and AP(T substitutions)
1. Every variable is a Ap<x term.
2. If t is a Ap<T term, then (Xx.t) is a Ap<r tenn.
3. If s and t are Aper terms, then (s o t) is a Aper term.
4. If t is a Ap<r term and if 8 is a Apcr substitution, then (td) is a Xpa term.
5. If h,..., tn are Aper terms and if x\,..., xn ait variables with X{ ^ Xj for 1 < i < j <

n, then { £ i / z i , . . . , tn/xn} is a Xva substitution.

In the following we will often write t9o instead of {t6)a.
The formulas of Ap<r are defined in exactly the same way as the formulas of Ap, e.g. we

have an atomic formula ti for each Ap<r term t. In the following we often speak of terms,
substitutions, and formulas instead of \pcr terms, Ap<r substitutions, and Ap«r formulas.

We again want to stress the difference between t[s/x] and t{s/x}. In the first expression
substitution is an abbreviation in the metalanguage for the term t with all free occurrences of
x replaced by s. t{s/x}, however, is a purely syntactical object where the substitution {s/x}
can only be evaluated by means of appropriate axioms to be described below.

We will often use the following abbreviations.

DEFINITION 3.2

Let 9 = {h/xi,... ,tn/xn} and 8' - {si/xi,... ,sn/xn} be substitutions and let r be an
arbitrary term. Then we define:

\.dom9 := {xi,...,xn}.

2.91 •= * i 4 A - - - A i n 4 .
3.9~8> := h ~ sx A • • • A tn ~ sn.

4. t/x • 8 := {t/x} U 9~x, where 9~x is 6 with a possible binding for x deleted, i.e. t/x • 8
denotes the update of 8 by {t/x}.

5. e := {} (the empty substitution).

The set of free variables_/var(t) of a Ap<r term t is computed in the obvious way. For reasons
of completeness we give the exact inductive definition below.

DEFINITION 3.3 (Jvar{t))
1. If t is the variable x, thenfvar(t) := {x}.
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2. Iff is the term (Ai.s), then fvar{t) := fvar{s) \ {x}.

3. If t is the term (tit2), thenfvarit) := fvar[t{) \Jfvar[ti).

4. If < is the term (s0) and0 = {si/xi,.. .,sn/xn}, then

fvar{t) := (frar{s)\domO) U \Jjvar(si),

where / = {i : 1 <i <n and i ; €/var(s)}.

Oncejvar(t) is defined, we have/var(j4) as the set of free variables of a Apcr formula A in
the usual way. We will sometimes use the notation 0 ft for the substitution 0 with all variable
bindings s/y deleted for y £fvar(t).

In the sequel we define a Apcr formula A6 for each Ap<r formula A and each Xpcr substi-
tution 0. The definition is by induction on the complexity of A.

DEFINITION 3.4 (A9)

1. If A is the formula (s = t), then A0 is the formula (50 = td).

2. If A is the formula t4-> m e n AB is the formula t6\..

3. If A is the formula -<B, {B V C), (B A C) or (B -> C), then A6 is the formula -•(BO),
{Bd V C0), (£0 A C0) or (50 -> C0), respectively.

4. If A is the formula 3xB or VxB, then 40 is the formula E3y (B[y/a;]0) or
Vy (B[j//x]0) respectively, where y is a 'fresh' variable.1

The composition of two substitutions 0 and a is defined in the usual way.

DEFINITION 3.5

Let0 = { t i / x i , . . . ,tn/xn} andcr = {s i /y i , . . . , s m / y m } be substitutions. The substitution
da is obtained by deleting all variable bindings of the form Si/yi in the set

i,..., tna/xn, ai/yi,..., sm/ym},

such that y; = i , for a 1 < j < n.

Now we are ready to give the exact formulation of the system Xpcr. The logic of Ap<x is an
adaptation of Beeson's logic of partial terms to the framework of explicit substitutions. The
novel point of this axiom system compared to the system Ap are the substitution axioms (E),
which incorporate rules to evaluate substitutions step by step. Furthermore, an extended form
of the 0 axiom in the context of explicit substitutions is given.

DEFINITION 3.6

The system Ap<r is formulated in the language of Ap<r and contains the following list of ax-
ioms and rules of inference.

A. Propositional logic

(1) Some complete axiom schemes of classical propositional logic

B. Quantifier axioms

(2)
1 B[y/x] is the formula B, where each free occurrence of x is replaced by y in the usual sense. The exact definition

of B[y/x] is straightforward, but tedious.
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(3) A9A9l^>3xA (X = xi,...,xn; dom9 = [x]

C. Equality axioms

(4) x = x t = s —> s = t t = s A s = r—¥t = r

(5) 11 = s\ A tj = «2 —*•

(6) 9~9' -H6~ t9'

D. Strictness axioms

(7) x I
(8) t\ = t% —̂  ^i 4* A £2 4-

£. Substitution axioms

(10) a;0 ~ ( (t/x G 0)
(11) (ts)9 ~ (t9)(s9)

(13) t(s/x-9)~t9 (xgfvar(t)Udom9)

(14) t e~<

f! )3 axiom

(15) (Xx.t)9y~t(y/x-9)

G. Rules of inference

(17)

In the inference rules (17) x does not appear free in the conclusion.

It should be observed that among the substitution axioms (E) we do not have an axiom which
allows us to push a substitution 9 inside an abstraction (Ax.i). This is exactly what we want
to prevent Terms of the form (Xx.t)9 can only be resolved if applied to another object, say y.
This is reflected in the extended (3 axiom (15), where an interleaving substitution 9 is allowed.
If 9 is the empty substitution e then we have the usual /? axiom.

Weak A calculi (i.e. A calculi without (£) or substitution under A) with explicit substitu-
tions have been considered in the literature before. These include Curien's Xp calculus [4],
the conditional weak theory XcTcw in Curien et aL [5] as well as the weak theory Xaw of [5].
The main difference (among other minor differences) between Xp, Xacw. Xaw and Xpcr lies in
the fact that application in the former three calculi is always total, whereas the main concern
of the Xpcr calculus is to model a partial application operation. As we argued in the previous
section, such a partial A calculus must not allow (£) and substitution under A in order to be
consistent with the intended recursion-theoretic interpretation.

LEMMA 3.7

We have for all terms t, s and all substitutions 9:
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1. Ap<r I- si -> (Xx.t)s ~ t{s/x}.

2. XP(T r- s | -> (Xx.t)6s ~ t(s/x • 6).

3. Xpcr htO~t (dom6nfvar(t) = 0).

PROOF. By easy reasoning in Xpcr. I

In the following we give an embedding ( ) C L of the system Ap<x into partial combinatory
logic CLP. This embedding is made possible by a careful concept of substitution in the system
\pcr corresponding to substitution in CLP. As an immediate consequence of this interpretation
we have that the recursion-theoretic model PRO and the normal term model CNTare models
of Apo\ This makes Xptr into a system with a reasonable computational and constructive
meaning.

Let us first define a CLP term tCL for each Ap<r term t. The definition is by induction on the
complexity of t.

DEFINITION 3.8 (tCL)

1. If t is a variable, then tCL := t.
2. If< is the term (Ai.s), then <CL := (X*x.sCL).
3. I f i i s the term (t^a). then *CL := {t^%L).

4. If t is the term (sO) where 6 = {si/xi,..., sn/xn}, then tCL is the term
sCL[sc

1
Llxu...,sc

n
Llxn}.

Once ( ) C L is defined for terms of Ap<r, the translation for formulas is uniquely determined
by the requirement that it commutes with =, 4-, the logical connectives, and the quantifiers.
Hence, we have a CLP formula ACL for each Ap<T formula A. From the definition of {•)CL it
is immediate that fvar{tCL) =Jvar{t),fvar{Ac^) =fvar(A), andA{ti/xi,... ,tn/xn}

CL =

We are ready to state the embedding theorem.

THEOREM 3.9

We have for all Ap<r formulas A:

\p(j\- A = > CLP I- A
CL. 2

PROOF. By induction on the length of a proof of A in Apcr. The propositional axioms do
not cause any problems, of course. Also the quantifier axioms are easily handled using the
properties of ( ) C L mentioned above. The equality axioms are trivial, and in order to establish
the translation of (Xx.t) I one makes immediate use of Lemma 2.8. The substitution axioms
are easily verified, too. The extended 0 axiom (15) is treated in exactly the same way as in
the proof of Lemma 2.11. Finally, it is trivial to check the inference rules. I

In the sequel we show that Ap<r also includes CLP by giving an embedding ( ) A from CLP into
Apcr. We first give the translation ( ) A for terms of CLP.

DEFINITION 3.10 (tx)

1. If £ is a variable, then tA := t.

2. If £ is the constant k, then tx :— Xuv.u.
2 Notice that the converse of this theorem does not hold. To see this, take, for example, for A the formula x —

y -y Xz.x = Xz.y.



66 Partial Applicative Theories and Explicit Substitutions

3. If t is the constant s, then tx := \uvw.uw(vw).

4. Iff is the term (ti*2), then tA := {txtx).

For formulas, ( ) A is given in the obvious way, i.e. (•)* commutes with =, 4-, the logical con-
nectives, and the quantifiers. Again it is obvious thatfvar(tx) = fvar(t) and fvar{Ax) =

LEMMA 3.11

We have for all CLP terms t and s:

Xp<r h t[s/x]x ~ tx{sx/x).

PROOF. By straightforward induction on the complexity of t. Essential use is made of the
substitution axioms, in particular axiom (13). I

COROLLARY 3.12

We have for all CLp formulas A, and for all CLP terms t:

Xpcr h A[t/x}x *» Ax{tx/x).

PROOF. By an easy induction on the complexity of A using the above lemma. I

LEMMA 3.13

1. Xpcr h (key ~ x)A.

2. Xpa h {sxyz ~ xz(yz))x.

3. Xp<r\-{sxyl)x.

PROOF. We only prove (1). The proof of (2) and (3) is similar. As we will see, essential use
is made of the extended /? axiom (15). First of all we have

(Xuv.u)x ~ (Xv.u){x/u), (1)

which by axiom (15) immediately implies

(Xuv.u)xy ~ (Xv.u){x/u}y ~ u{x/u,y/v}. (2)

Furthermore, we have

u{x/u, y/v} ~ x. (3)

This finishes the proof of our claim. I

LEMMA 3.14

We have for all CLP formulas A:

CLP h A => Xpa\-Ax.

PROOF. By induction on the length of a proof of A in CLp. Again the prepositional axioms
are trivial. Thetranslationof the quantifieraxioms is provable in Xpa by Corollary 3.12. The
same corollary also helps in establishing the equality axiom (6). The strictness axioms (9)
and the axioms for a partial combinatory algebra were already treated in Lemma 3.13. The
inference rules of CLP readily translate into inference rules of Xpcr. I
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TTie converse of the above lemma also holds.

LEMMA 3.15

We have for all CLP formulas A:

Apo- \-Ax = » CLp h A.

PROOF. We define a modification (•)* of the translation (-)CL from Ap<r into CLP. (•)• is de-
fined in the same way as (•)CL, except that it uses the more complicated coding A* of A ab-
straction instead of A*. The term X'x.t is inductively defined as follows.

1. If t is the variable x, then X'x.t := skk.
2. If t is a variable different from x or a constant, then X'x.t := kt.

3. If t is the term (sx), where s € {y, k, s, sy} and j / ^ i , then X'x.t := s.

4. If t is the term (Ma), and if (3) does not apply, then A'x.t := s(A#x.£i)(A*x.*2).

One easily verifies that (kA)* = k and (sA)* = s. As an immediate consequence we have
(tA)* = t and (Ax)* = A for all CLP terms t and all CLP formulas A, respectively. Further-
more, Lemma 2.8 holds for A*, too. In particular, we have X'x.t i for all CLP terms t. We can,
therefore, establish Theorem 3.9 for (•)* instead of ( ) C L . Hence, we have

Apo-1- A = > CLp I- A'

for all AP(T formulas A. Now the claim of the lemma immediately follows from the fact that
(•)• is the inverse of ( ) A , as we have mentioned above. I

Here is the final embedding theorem.

THEOREM 3.16

We have for all CLp formulas A:

CLp I- A <̂ => Apo- h Ax.

PROOF. Immediate from the previous two lemmas. I

4 Confluent reductions
Once we have introduced the system Ap<r, it is natural to study the corresponding reduction
relation on Ap<r terms. We now define a binary relation > on Ap<r terms, which reflects a
directed equality relation for the system Xp<r. > is defined inductively as follows.

DEFINITION 4.1

The relation > between Ap<r terms is generated by the following clauses (1)—(13).

A. Identity

(1) t>t

B. P reductions

(2) (Ax.*)s t> t{s/x}
(3) (Ax.i)0s > t(s/x • 6)
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C. Substitution reductions

(4) xB > t (t/x G B)

(5) (ts)6 > (t6)(sB)

(6) (t0)a > t(Ba)

(7) t(s/x B)>tB (x <£fvar{t) U domB)

(8) te > t

D. Structural rules

(9) t > s =J> r(t/x • 6) > r(s/x • B)

(10) 11> s = * tB > sB

(11) 11> s = $ • rt > rs

(12) t> s =$> tr > sr

E. Transitivity

(13) * > s, s > r =S> t > r

Notice that we have to state two clauses for 0 reduction, since (2) is no longer derivable from
(3) in the context of reductions. Furthermore, it should be observed again that we do not have
the rule (f),

( 0 t>s

K ' Xx.t > Xx.s

among the structural rules (D).
REMARK 4.2

We want to stress that the reduction relation > does not take into consideration partiality in
\pcr. Hence, > rather corresponds to a total version of Xpcr. This is, however, in complete
analogy to the system CLP, where truly partial term models are constructed using special re-
duction strategies of a total reduction relation (cf. the model CNT on p. 59), and partiality is
reflected by non-terminating reduction sequences. Summarizing, > provides a general term
reduction framework giving rise to partial and total term models for Xpcr.

In the following >a denotes the restriction of > to substitution reductions only, i.e. t >a s
holds if and only if there is a derivation of t > s according to the above clauses, which does
not use (2) and (3). Analogously, >p is the restriction of t> to 0 reductions. Finally, we write
t > J s if t > s is derivable from (2)—(12), i.e. >x denotes one step reduction. The relations
t>£ and >j, are defined in the same way.

In the sequel we want to show that > satisfies the Church Rosser property. As usual, this
will guarantee that all terminating rewrite sequences yield identical results, i.e. we will have
uniqueness of normal forms. All attempts to find a direct proof for the confluence of > failed.
In particular, parallelization does not seem to work in order to show confluence of Xpcr. In-
stead we will make use of an interpretation technique due to Hardin, which was identified in
[12]. This method has subsequently been used several times in order to show confluence for
systems of explicit substitutions.

A first step towards the proof of the Church Rosser property for > is to show that >CT is
Church Rosser. In order to apply an old result by Newman [25], we establish that >* is weakly
Church Rosser and wellfounded.
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LEMMA 4.3

>£. is weakly Church Rosser, i.e. we have for all terms t, ti,ti: If t >\ ti and t >^ t j , then
there is a term t3 such that *i t>a t3 and t2 ><r h-

PROOF. One shows by a straightforward, but tedious induction on the length of a derivation
of t >]j ti that for all t t>* i2 there exists a t3 such that tx t>a t3 and £2 >a t3. I

In order to prove that t>* is wellfounded, we define a measure function * from the \pa
terms and \va substitutions to w.

DEFINITION 4.4

1. If t is a variable, then #(£) := 1.
2. Iftistheterm(Ax.s), then *(t) := 1.
3. I f*istheterm(ti t2) , then#(t) := *(<i) + *(t2) + 1.
4. Iff is the term (s6), then* (t) := $(s) • (*((9) + 1).
5. If 0 is the substitution { t i / i i , . . . , tn/xn}, then $(5) := #(*i) + 1- *(fn) + 1.

Notice that *(t) > 0 for all terms t and <!>(#) > 0 for all substitutions 0, e.g. we have
*(e) = 1. The composition (8a) of two substitutions 9 and IT is bounded as follows w.r.L *$.

LEMMA 4.5
We have for all substitutions 6 and a:

< tf (0) • ($(<r) + 1).

PROOF. By an easy calculation.

We are ready to prove that * is strictly decreasing on >^.

LEMMA 4.6

We have for all terms t and s:

PROOF. By a straightforward induction on the length of a derivation of t I>* s. Let us only
discuss the substitution reduction (6), i.e. t = (r9)a and s — r(9a) for some term r. Then
we have

1) • (tf (a) + 1) > *(r) • [*{0) • (*(a) + 1) + 1].

But #(r ) • [$(0) • (tf (a) + 1) + 1] > #(r) • [#(0a) + 1] by the previous lemma. The claim
is proved, since #(r ) • [9(9a) + 1] = V(r(9a)). I

COROLLARY 4.7
t>* is wellfounded.

Together we have established the following theorem.

THEOREM 4.8
>a is Church Rosser.

PROOF. The theorem is immediate from Lemma 4.3 and Corollary 4.7 and a result by New-
man [25] saying that a reduction relation, which is weakly Church Rosser and wellfounded
satisfies the full Church Rosser property. I
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COROLLARY 4.9

Every Xper term has a unique substitution normal form.

In the following we denote the substitution normal form of a term t with £(£). A substi-
tution 0 = {ti/xi,..., tn/xn} is in substitution normal form, if for all t with 1 < i < n
the term U is in substitution normal form. Analogously, £(#) denotes the substitution normal
form of a substitution 0.

As a further step towards the Church Rosser property of > we make use of a relation >^n ,
which corresponds to (3 reduction on terms in substitution normal form, i.e. terms satisfying

E(t) = t. We define >^m via its "parallel" version •— >̂, i.e. >pa will be the transitive closure

of i— .̂ Then the Church Rosser property of •—^ carries over to >pn by a well-known diagram

chase. For notational convenience we define t—^ on substitutions, too.

DEFINITION 4.10

The relation i—^ between Apcr terms and Xpa substitutions in substitution normal form is
simultaneously generated by the following clauses (l)-(6):

A. Terms

(3) s As' , 0^0' =• (\x.t)6s^Z(t(s'/x-6'))

B. Substitutions

(6) U i-=> si,..., tn A sn = * {tl/xi,...,tnlxn}>-

DEFINITION 4.11

Let >/JB be the transitive closure of t— .̂

LEMMA 4.12

1. If t A t' then we have T,(t8) A E(*'0') for all 9 A ff.

•2. HO ̂ 9 ' then we have £(0(7) ^ S(0'cr') for all a ̂  a'.

PROOF. (1) and (2) are proved simultaneously by induction on the complexity of t and 6, re-
spectively. I

The next lemma says that •—^ is Church Rosser on terms and substitutions.

LEMMA 4.13

1. If t •—̂> <i then for all 11—^ tj there is a £3 such that <i >—̂  £3 and £2 •—^ £3.

then for all 0 ̂ S 02 there is a 63 such that 0i ^ 03 and

PROOF. We prove (1) and (2) simultaneously by induction on 11—^ t\ and 0 •—^ 9\, respec-

tively. Let us first prove (1). According to t •—^ ti we can distinguish the following five cases:

(1) t ̂ » £1 is i ̂ > t. Then we can choose t3 := t2.
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(2) t t - A t i is(Ai.r)si—^ E (r { a'/z}) and is a consequence of a H-^>a'. According to 11—^ £2

we can distinguish the following two subcases:

(2.1) i n - ^ t 2 is (Xx.r)si—^(Xx.r)s" and is a consequence of sn -^a" . By the induction

hypothesis there is a term a'" with a' A a'" and a" A a'". If we take t3 := E(r{a'"/a;})

then obviously t2 •—~> ^3- By the previous lemma we also have t\ t—̂> £3.

(2.2) £ ^ » £2 is (Az.r)a ^ E(r{a"/i}) and is a consequence of a n^> a". By the induc-

tion hypothesis there exists a term a'" with a' A a'" and a" A a'". Let t3 be £(r{a'"/z})-

Using the previous lemma one easily verifies t\ 1—^ t3 and t2 1—^ £3.

(3) £ A ^ is (Az.r)0a A E( r (a ' / i • 0')) and is a consequence of a A a' and 9 A 9'.

According to £1—̂¥ £2 we can distinguish the following two subcases:

(3.1) i i-̂ S- <3 is (Aa;.r)0a A(Az . r )0"a" and is a consequence of 9 A 9" and a ̂ S a". By

the induction hypothesis there are a'" and 6'" with s'^s'", s" &> s'" and 0'&>0"',

s,i ^ Q,,, I f w e tak& t3 ._ Y,{r{s'"lx • 9'")) then obviously t2 ^ S t3. By the fact that

s'/x •

(3.2)

the induction hypothesis there are a'" and 6'" with s'^s'", s" &> s'" and

,,, I f w e tak& t3 ._ Y,{r{s'"lx • 9'")) then obviously t

s'/x • 91 H-^ s'"/x • 9"' and the previous lemma we also have <i H-^ t3

By the induction hypothesis there are a"' and 0'" with a' A a'", a" A a'" and 9' J±> 9'",

Q" th> 0"'_ Let t3 := E(r(a'"/i • 9'")). Then, by the previous lemma, we have h &. t3

and t2 A t3, since a ' / i • 0' A a" ;/i • 5'" and s"/x • 9" A a'"/i • 0'".

(4) t A t i is (Xx.r)9^{\x.r)9' and is a consequence of 9^9'. Then t A < 2 is

(Xx.r)9 *-^(Xx.r)9" and is a consequence of 91—^ 0". By the induction hypothesis there

is a 9'" with 9' ̂  9'" and 9" ̂ > 9'". The claim holds for £3 := (Xx.r)9m.

(5) £ i—^ £i is rs •—^ r 'a ' and is a consequence of r H-̂ > r ' and a •—̂> a'. According to £ i—^ £2

we can distinguish the following three subcases:

(5.1) £i—^>£2 is ra>—^r"a" and is a consequence of ri—^r" andai—^>a". By the induction

hypothesis there are terms r'" and a'" with r' A r'", r" A r'" and a' A a'", a" A a'".
The claim immediately follows for £3 := r'"s'".

(5.2) £1—^£2 is (Aa;.r")ai—^ E(r"{a"/z}) and is a consequence of a 1—^ a". By the indue-

tion hypothesis there is an a'" with a' 1—̂  a'" and a" •—^ a'". Furthermore, it is clear that

r = r' = (Xx.r"). Ifwetake£3 := E(r"{a"'/z}) then obviously £1 A £3. By the previous

lemma we also have £2 >—̂  £3.

(5.3) £ 1—^ £2 is (Xx.r")0s 1—^ Y.{r" {s" /x-9")) and is a consequence of a t-A a" and#»-A 0"

By the induction hypothesis there is ah a"' with a' •—^ a'" and a" •—^ a'". Furthermore, r t—^ r'

has the form (Xx.r")9i—^(Xx.r")9l and is a consequence of 0 ^ 0 * . By the induction hy-

pothesis there is a 0"' with 0' A 0"' and 0" A ff". If we take t3 := E(r"(a'"/i • 9"'))

then obviously ti 1—̂> ^3. By the previous lemma we also have t2 1
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This finishes the proof of (1). The proof of (2) is straightforward. Assume 9 >—^ 0i and 81—^ #2

where

6> = {t1/xu...,tn/xn},

02 = {s'1/xi,...,a'Jxn}

and U i—^ s», tj i—^ sj for 1 < i < n. By the induction hypothesis there are terms »\ with

Si I—^>n and sj t—^r; for 1 < i < n. If we take 03 := { r i / ^ i , . . . ,rn/xn}, then we

immediately obtain 0\ i—^ 03 and 02 •—^ ^3. I

The proof of the Church Rosser property of >pn is complete.

THEOREM 4.14

>£n is Church Rosser.

PROOF. By the previous lemma, H A is Church Rosser. By Definition 4.11, >^_ is the tran-

sitive closure of i—=>, which, by a simple diagram chase, implies that >pn is confluent, too. I

The last step towards the Church Rosser property of > is to show that

t t>p s = •

holds for all Xpcr terms t and s. Then the confluence of > will be an immediate consequence.
In order to establish the above claim, we have to define another intermediate relation, the re-
duction relation i—h

DEFINITION 4.15

The relation i—> between Ap<r terms and Apcr substitutions is given by the following clauses
(1H8):

A. Terms

(1)

(2) (Xx.t)s i A t{s/x)

(3) ^

(4)

(5) (As =̂

(6) tAs =>

(7) (As =* (rAsr

B. Substitutions

(8) tX l > S i , . . . , t n l >-Sn

The relation i—»• can be considered as an extended form of one step 0 reduction, where
substitutions can be reduced in parallel.
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LEMMA 4.16

We have for all terms t and s:

PROOF. We prove the claim by main induction on \t(t) and side induction on the complexity
of t. According to the structure of t, we can distinguish the following four cases:

(1) t is a variable. Then the claim is trivial.

(2) t is the term (Xx.t1). The claim is trivial, too.

(3) t is the term (tit2)- According to 11—> s we can distinguish the following four subcases:

(3.1) 11—> s is tit-i i—> t[t2 and is a consequence of ti i—> t^. By the side induction hy-
pothesis we have E(*i) >/?„ S(t'i). This implies

(3.2) t\—> s is tit2 i—> ht2 and is a consequence of ti i—• t^- Tm's c a s e *s treated in the
same way as (3.1).

(3.3) t i-A s is (Ai.r)r' i - ^ r{r'/x}. Then we have

E((Az.r)r') = E(As.r)E(r') = (Ax.r)E(r') >^n E(r{E(r')/a;}) = S(r{r ' /x}).

(3.4) <i-^->s is {\x.r)9r' JUr(r'/x • 0). First assume that fvar{Xx.r) ndom6 ^ 0. Then
we have for & := 6\{\x.r)

E((Az.r)0r') = (Ai.r)E(«')E(r#) >pn E(r(E(r')/a: • E ^ ) ) ) = E ( r ( r ' / i • 0)).

The case./var(Aa;.r) D dom6 = 0 is treated in a similar way.

(4) t is the term (t'6). According to the structure of t' we can distinguish the following four
subcases:

(4.1) t' is the variable x. Then s is of the form x8', where 9i—>0'. If x & domO then
= x = Ti{x6') and there is nothing to prove. Therefore, assume r/x G 6, r'/x G 6'

—)
we have
and r i—> r' for some terms r and r'. Then it is x8 t>\ r and by the main induction hypothesis

(4.2) t 'istheterm(Az.i"). Then s is of the form (Xx.t")9', where 9 « A 6'. Iffvar{Xx.t")n
dom9 = 0 then E((Az.t")0) = Ai.t" = T,((Xx.t")9') and there is nothing to prove. Other-
wise, by the side induction hypothesis, we have

E((Az.t")0) = (Xx.t")(6 \(Xx.t")) >{3a(Xx.t")(9'\(Xx.t")) = E((Ai.(")^).

(4.3) il is the term (t'it'2). According to t?9 \—> s, we can distinguish the following five sub-
cases:
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(4.3.1) t'91-^+5 is (t'xt?2)9 JU(t?lt?2)B and is a consequence of t[i-^t'{. Then it is
(tif2)6 t>* {t'iO)(t'26) and by the main induction hypothesis we have

(4.3.2) t'91-^ s is (ti«2>^ ^( t i t i , ' )^ andis a consequence of t2 >-̂ + tj,'. This case is treated
in the same way as (4.3.1).

(4.3.3) £'0^sis(«itf,)0i^(*i^)^andisaconsequenceof0i-^0'. Thenitis
(t'^e t>l {t'i6){t^B) and by the main induction hypothesis we have T,(t[9) >p,
and
T,(t'29) >0n E(t'29'). This implies

(4.3.4) ifd^s is ((Az.r)r')0'-^>r{r7z}0. First assume thatyvar(Ax.r) D dom9 ^ 0.
Then we have for 6' := 6\(\x.r)

E(((Arr.r)r')(9) = (Aa;.r)E(«;)E(r'fl) > ^ E(r(E(r'0)/x • E(fl'))) = S(r{r'/x}0).

The case/var(Ax.r) D domd = 0 is treated in a similar way.

(4.3.5) t'0 A s is ((\x.r)ar')9>-^r(r'/xcr)6. Let us first assume that we have/var(Aa:.r)n
dom(pO) 7̂  0. Then we obtain for p := (aO) \(Xx.r)

Z(((\x.r)ar')6) = (Az.r)E(p)E(r'0) >Pn E(r(E(r'^)/x • E(p))) = E(r(r'/z • a)9).

The case/var(Aa;.r) D dom(o6) = 0 is treated in a similar way.

(4.4) t' is the term (t"a). Since t"aO >l t" (ad) we can apply the main induction hypothesis
to t"(a0). According to t'9 >—)• s we can distinguish the following three subcases:

(4.4.1) t'9 H A S is t"o91-£+ t"cr9' and is a consequence of 9 ̂  9'. Then, by the main in-
duction hypothesis, we have

(4.4.2) t'51—> s is t"a& i—> t"a'9 and is a consequence of a i—^ CT'. This case is treated in
a very similar way to (4.4.1).

(4.4.3) t'91-^-> s is t"o91-^+ f'trtf and is a consequence of t" i-A t"'. Then, by the main
induction hypothesis, we have

V{t"oO) = WifS)) >Pa T.{t'"{pB)) = W'aff).

This finishes the proof of our claim. I

Since t >jj s trivially implies t \—> s, we obtain the following corollary.

COROLLARY 4.17
We have for all terms t and s:
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COROLLARY 4.18

We have for all terms t and s:

t>s => £(*)>£„ E(s).

PROOF. Assume t > s. Then there is a sequence of terms t\,..., tn so that we have t\ =
t,tn = s and for all 1 < i < n

In the first case we have E(£i) = E(£j+1) and in the latter, by the previous corollary,
E(£<) >pn £(<<+i). Together we immediately get E(<) >pit E(s), since >£„ is transitively
closed. I

We are ready to prove the confluence of >.

THEOREM 4.19

> is Church Rosser.

PROOF. Let t, t\ and <a be Ap<r terms and assume that

t>ti and t> t2. (1)

Then the previous corollary immediately implies

/jn E(*i) and E(«) >*. E(«2). (2)

By Theorem 4.14 we know that >pa is confluent, hence there is a Ap<r term s in substitution
normal form satisfying

E ( t i ) > ^ s and E(t2) > ^ s. (3)

Since >^= C >, we obtain from (3)

E(ti) > s and E(t2) > s, (4)

which immediately implies

*i > E(ti) > s and £2 > E(i2) > s. (5)

The claim is established. I

5 Conclusion

We have addressed some defects of the partial A calculus Ap as a constructive framework for
partial functions. The drawbacks of Ap become even more perspicuous in the light of Pezzoli's
theorem (cf. Theorem 2.9). We have proposed a modification Ap<r of Ap by explicit substi-
tutions. The system Ap<r is embeddable into partial combinatory logic CLP, and therefore,
inherits all its models. In particular, Ap<r has a standard interpretation in terms of ordinary
recursion theory. We have studied a reduction relation for Ap<r and we have established a
confluence result. The reduction relation gives rise to direct constructions of term models for
Ap<r. The detailed constructions will be discussed later.
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As already mentioned, the theory of explicit substitutions has been treated before, primar-
ily in connection with the implementation of functional programming languages. The main
reference on weak calculi of explicit substitutions is [5]. In contrast to our approach, not only
equality between terms, but also equality between substitutions has been axiomatized in most
of the previous work on explicit substitutions (an exception is [20]). Although this can eas-
ily be achieved, the systems have much more axioms, and we think that—especially from
a foundational point of view—the real concern is to axiomatize and control the notion of a
substitution applied to a term, whereas equality between substitutions can be treated in the
metalanguage. Furthermore, the previous systems of explicit substitutions are mainly term
rewriting systems, ana1—this is the main difference to our Aper calculus—application in those
systems is always total. The very purpose of our work, however, was to study questions of
substitution in the context of partiality, and to design a more perspicuous version of the par-
tial A calculus, which has natural partial models and is equivalent to partial combinatory logic.

The question arises, why should one use a fairly complicated system like Apcr at all, instead
of the formally more simple partial combinatory logic C Lp. We think that Xp<r has advantages
over CLP. The main reason is that in the system CLP, the intuitive clarity of the A notation
is completely lost. Additionally, many mistakes in the literature concerning substitution in
CLp suggest that it is also worth having an explicit treatment of substitution as in Ap<x. We,
therefore, think that Xpa can serve as an adequate applicative basis for systems of explicit
mathematics.

As already mentioned in the introduction, Stark (manuscript in preparation) has recently
given a very natural relationship between the programming language SCHEME and the Ap<r
calculus. In his approach, partiality of Apcr is essential. The results of Stark give further evi-
dence for the foundational significance of the Apcr calculus.
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