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Review

Synovial fibroblasts: key players
in rheumatoid arthritis

L. C. Huber, O. Distler, I. Tarner1, R. E. Gay, S. Gay and T. Pap2

Rheumatoid arthritis (RA) is a chronic autoimmune-disease of unknown origin that primarily affects the joints and ultimately

leads to their destruction. The involvement of immune cells is a general hallmark of autoimmune-related disorders. In this

regard, macrophages, T cells and their respective cytokines play a pivotal role in RA. However, the notion that RA is a

primarily T-cell-dependent disease has been strongly challenged during recent years. Rather, it has been understood that

resident, fibroblast-like cells contribute significantly to the perpetuation of disease, and that they may even play a role in

its initiation. These rheumatoid arthritis synovial fibroblasts (RASFs) constitute a quite unique cell type that distinguishes

RA from other inflammatory conditions of the joints.

A number of studies have demonstrated that RASFs show alterations in morphology and behaviour, including molecular

changes in signalling cascades, apoptosis responses and in the expression of adhesion molecules as well as matrix-degrading

enzymes. These changes appear to reflect a stable activation of RASFs, which occurs independently of continuous exogenous

stimulation. As a consequence, RASFs are no longer considered passive bystanders but active players in the complex

intercellular network of RA.

In this review, we summarize and discuss recent research that
highlights the role of synovial fibroblasts in the pathogenesis
of rheumatoid arthritis (RA). Since rheumatoid arthritis synovial
fibroblasts (RASFs) mediate most relevant pathways of joint
destruction, molecular insights into these cells constitute an
important target for novel therapeutic approaches that inhibit
the destruction of cartilage and bone in RA.

In industrialized countries, alterations in lifestyle and hygiene
during the last century have shifted the spectrum of diseases from
infectious to autoimmune-related disorders. It is unclear, however,
whether this tendency towards autoimmunity is due to a true
increase in these diseases or to an increased awareness and better
diagnostic tools [1]. In this context, RA represents one of the most
common autoimmune-related diseases, affecting as much as 1%
of Western populations. It is a chronic polyarticular disorder
that manifests primarily as a painful inflammation of the synovial
tissues of joints, tendon sheaths and bursae. The progressive
destruction of the articular cartilage is one of the hallmarks of
the disease and determines the outcome of RA in most affected
individuals.

RA is a systemic disorder, and it is commonly accepted that
it emerges from a variable combination of individual genetic
predisposition, environmental factors (such as potential but
unproven infectious agents) and dysregulated immune responses
[2–5]. While the aetiopathogenesis is only partially understood,
the involvement of immune cells and their respective pro-
inflammatory mediators is a common hallmark of RA as of all
systemic autoimmune disorders [4, 6–8]. In addition, the rheuma-
toid synovium harbours a special cell population, known as
activated RASFs, that is engaged in the initiation and perpetuation

of RA and thus distinguishes RA from other inflammatory
disorders of the joints. These cells appear to be in the centre of
the local pathogenic events, and there is growing evidence that
activation of RASFs (e.g. by responses of the innate immune
system) is an early step in the development of RA. Once activated,
RASFs produce a variety of cytokines, chemokines and matrix-
degrading enzymes that mediate the interaction with neighbouring
inflammatory and endothelial cells and are responsible for the
progressive destruction of articular cartilage and bone. In this
scenario, the production of cytokines and chemokines within the
rheumatoid synovium would help to recruit T cells, macrophages
and neutrophils, which, in turn, attract more inflammatory cells
and, ultimately, enhance the activated state of the RASFs and
of osteoclasts [9]. Taken together, various direct and indirect
mechanisms contribute to the progressive destruction of articular
cartilage and adjacent bone [10, 11]. Direct mechanisms consist
of the attachment of fibroblasts to the underlying cartilage by
up-regulation of cellular adhesion molecules (CAM) and the
destruction of articular cartilage by production of matrix-
degrading enzymes [10], while indirect mechanisms govern the
differentiation of macrophages into osteoclasts, for example
through up-regulation of receptor activator of nuclear factor
kappa B ligand (RANKL) [12–14].

Synovial cell activation

RASFs are characterized by a round, large pale nucleus
with prominent nucleoli, indicating very active RNA metabolism.
Of interest, RASFs can be expanded in cell culture over
several passages, and, in addition, they escape contact inhibition.
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These changes are often referred to as those of a tumour-like
transformation [15] since they result in aggressive and invasive
behaviour of RASFs in the adjacent cartilage and bone [16].

Recent evidence indicates the involvement of Toll-like receptors
(TLRs), which are key recognition structures of the innate
immune system, at an initial stage of synovial activation [17].
Hypothetically, microbial components or endogenous ligands,
such as RNA from necrotic cells within the synovial fluid [18],
activate RASFs through TLR signalling and lead to the
up-regulated expression of pro-inflammatory cytokines and
chemokines [19]. These factors would then result in the attraction
and accumulation of immune cells in the synovium and, through
a stimulatory loop, to chronic inflammation.

Such cytokines, together with growth factors, thus play an
important role both in the continuous stimulation of RASFs
towards aggressive behaviour as well as in the crosstalk between
RASFs and other cell types in the synovium. Prominent examples
include well-characterized cytokines like tumour necrosis factor
alpha (TNF�) and interleukin (IL)-1, and also more recently
described mediators like IL-15, IL-21R [20] and IL-22 [21]. One
of the master cytokines that essentially trigger inflammation and
joint destruction is certainly TNF�. Systemic over-expression of
TNF as achieved in the TNF transgenic mouse model (hTNFtg
[22]) appears to be sufficient to initiate chronic synovitis, cartilage
destruction and, finally, bone erosion [23]. These findings are
also confirmed by the clinical efficacy of TNF-blocking agents.
However, a substantial number of patients receiving TNF blockers
lack a clinical response, indicating that other, TNF-independent,
pathways of inflammation and joint destruction exist in RA.
Therefore it appears that the destructive properties of RASFs are
not merely the response to continuous stimulation by inflamma-
tory mediators but constitute intrinsic features of these cells.
This notion has mainly been derived from studies in the severe
combined immunodeficient mouse (SCID) co-implantation model
[10, 11]. This animal model for RA was developed to investigate
several aspects of an affected human joint under controlled
conditions in vivo. Briefly, human RASF and fresh human cartilage
are co-implanted together with an inert sponge under the kidney
capsule of SCID mice. The SCID mice have severe defects both in
cellular and humoral immune responses and, thus, are not able to
reject these implants. When the implants are removed, usually after
a period of 60 days, it is, therefore, possible to study the molecular
mechanisms of interaction of synovial fibroblasts and the human
cartilage as well as to assess the cartilage destruction histologically.
As an obvious advantage of this model, both processes occur in
the absence of inflammatory cells or other pro-inflammatory
mediators [10, 24]. However, as with every animal model, the
extrapolation of these data to human RA patients is difficult,
thus limiting direct conclusions.

Angiogenesis is another histological hallmark of inflamed
synovial tissue. It occurs already in early states of RA, which
may be asymptomatic. Several pro-angiogenic factors are
expressed by RASFs, in particular IL-8, vascular endothelial
growth factor (VEGF), basic fibroblast growth factor (bFGF) and
TGF� [25]. In concert with RASF-derived chemokines (including
MCP-1, MIP-1�, MIP-3� and RANTES), and different cytokines
such as IL-15 and IL-16 (a potent chemoattractant for CD4þ cells)
in the RA synovium, it has been hypothesized that T cells and
macrophages expand into the synovium in an antigen-independent
way. Both the up-regulation of adhesion molecules and the
granzyme/perforine system of T cells could lead to diapedesis
through the vascular basement membranes into the synovium [26].
Since histomorphological studies have demonstrated that
neoangiogenesis and infiltrations of mononuclear cells lead to a
hyperplastic lining layer, these cells are probably also involved
in the disease process, showing the importance of the functional
cross-talk between immune cells and RASFs. In this context,
an interesting observation has been made most recently.
Microparticles are small, membrane-bound vesicles, which are

released from stimulated T cells and macrophages. Immune
cell-derived microparticles activate synovial fibroblasts in a dose-
dependent manner to release matrix metalloproteinases, pro-
inflammatory cytokines and chemokines [27]. The accumulation
of microparticles from various cellular origins in the synovial
fluid [28] may thus contribute to the individual course of the
disease, and the shedding of microparticles may represent an
alternative stimulus in the complex cell–cell interaction of the
pathogenesis of RA.

Attachment to and destruction of extracellular matrix

There are some direct consequences of the activation of RASFs: the
up-regulation of adhesion molecules, enabling the strong interaction
of fibroblasts with the extracellular matrix, which culminates
in the destruction of cartilage and bone. The attachment of RASFs
to the articular cartilage is the first step of synovial invasion and
is mediated by the up-regulation of adhesion molecules on the
surface of RASFs. Adhesion molecules are responsible for the
anchoring of fibroblasts to the extracellular matrix of the articular
cartilage, namely collagen type II and various glycosaminoglycans.
Integrins constitute a large family of transmembrane cell-matrix
adhesion molecules that are composed of two heterodimeric
glycoproteins (� and � subunits). In the context of RA, integrins
of the �1 subfamily play an important role. In particular, �3, �4
and �5 [formerly known as very late antigens (VLA) 3–5] are most
prominently involved as the partner to �1 [29–31]. Integrins
mediate the attachment of RASFs to fibronectin-rich sites of the
cartilage [30] and, in addition, also to collagens and cartilage
oligomeric matrix protein (COMP). The latter is a component of
the hyaline cartilage that is mainly produced by chondrocytes
and synovial fibroblasts. However, integrins are much more than
just mechanoceptors that attach the cell to its surroundings.
By activating intracellular signalling pathways, integrins mediate
the contextual response of cells to the extracellular matrix. Upon
adhesion of RASFs, integrins as well as other important adhesion
molecules such as the vascular adhesion molecule (VCAM)-1
interact with signalling cascades that regulate the early cell cycle
and the expression of matrix metalloproteinases (MMPs) [32].
In this regard, galectin-3 is up-regulated in RASFs after cell
adhesion to COMP and thus contributes to inflammation and
inhibition of apoptosis [33]. Similarly, c-fos [a component of the
activator-protein (AP)-1 complex] and the proto-oncogene c-myc,
which are both expressed within the RA synovium [34–40], were
shown to be up-regulated by integrin-mediated cell adhesion [41].
Together with other key molecules, these pathways play a pivotal
role in tissue destruction of articular cartilage, the most crucial
event involved upon activation of RASFs. Tissue degradation
essentially contributes to the progressive loss of joint function.
Tissue degradation comprises the following major pathophysio-
logical phenomena: growth, spreading and invasion of inflamed
synovial tissue, and destruction of cartilage and bone. All these
processes have a common underlying mechanism, namely the
degradation of extracellular matrix, which is mediated by matrix-
metalloproteinases (MMPs) [42], cathepsins [43] and an activated
plasmin system [44].

MMPs are zinc-containing endopeptidases that are involved
most prominently in tissue remodelling. Their catalytic activity is
finely counter-regulated by the activity of endogenous inhibitors,
the tissue inhibitors of matrix metalloproteinases (TIMPs).
MMPs also act as important regulatory molecules on cytokines
and adhesion molecules. Pro-inflammatory cytokines, growth
factors and matrix molecules induce the expression of MMPs
via transcriptional activation. The specific effects of different
cytokines on the expression of individual MMPs, though, are
highly variable and depend on the induced type of MMP, the cell
type and the signal transduction pathway. AP-1 binding sites
have been found in the promoter region of all MMPs [45],
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and thus AP-1 appears to play a pivotal role in the transcriptional
activation of MMPs. In addition, some of theMMP promoter sites
contain binding sites for NF�B [46, 47] and signal transduction and
activation of transcription (STAT) [48]. Upstream of these
transcription factors, all three stress- and mitogen-activated
protein kinases (SAPK/MAPK), namely the extracellular
regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38
kinase, are highly active in chronic synovitis and also involved in
the regulation of MMP expression [49]. Thus, different disease-
relevant MMPs such as gelatinases (MMP-2 and MMP-9) and
MT1-MMP are regulated by factors that mediate their effects
through the ras proto-oncogene [50, 51]. Recently, gene transfer
with dominant negative (dn) mutants of Raf-1 and dn-c-Myc
demonstrated the relevance of the Ras-Raf-MAPK pathway for
the activation and invasive behaviour of RASFs [52].

In addition to metalloproteases, other classes of enzymes such as
cysteine and aspartyl proteases are involved in rheumatoid joint
destruction. The cysteine proteases cathepsin B [43] and L [53, 54]
are of special interest, and cathepsin K has also been implicated
in the matrix degradation by RASFs [55]. Cathepsin B directly
facilitates the degradation of ECM proteins, including fibronectin,
collagen types I and IV and laminin [56]. Cathepsin B also activates
other enzymes, including MMPs as well as soluble and receptor-
bound forms of the serine protease urokinase plasminogen
activator (uPA) [56–58]. MMPs and uPA have been shown to
modulate the proteolytic cascade that mediates ECM degradation
[59]. Cathepsin L cleaves collagens type I, II, IX, XI and certain
proteoglycans. The expression of both cathepsin B and L has been
demonstrated in RASFs at sites of invasion into cartilage and
bone [43, 54]. Thus, stimulation of RASFs by pro-inflammatory
cytokines, such as TNF� and IL-1 [60, 61], and the expression of
proto-oncogenes lead to the release of cathepsins. For example,
stable expression of constitutively active Ras resulted in increased
levels of cathepsin L [62]. In addition, other proteases, such as
thrombin, have been demonstrated with inflammation in RA joints
induced by the secretion of IL-8 and the recruitment of leucocytes,
which release cathepsin B into the synovial fluid [63].

Cell cycle, regulators and transcription factors

The ultimate cause of the activation of RASFs is still not well
understood, thus limiting both our insights into the pathogenesis
and the development of novel drugs. However, it has been well
established that the altered morphology and the aggressive
behaviour of RASFs mirror specific alterations in the transcription
of disease-relevant genes and in intracellular signalling pathways,
including alterations in apoptotic cascades. These changes
comprise up-regulation of several proto-oncogenes as well as
down-regulation or functional silencing of potentially protective
tumour suppressor genes. Such events might explain the activation
of the rheumatoid synovium. Figure 1 provides an overview
of altered molecular players in RASFs

Synovial hyperplasia appears to be caused at least in part by the
impairment of apoptosis in RASFs and synovial macrophages.
Deficient apoptosis and, thus, prolonged survival of RASFs results
from up-regulated anti-apoptotic molecules like bcl-2, sumo-1
(sentrin-1) and FLIP (Fas-associated death domain-like
interleukin 1� converting enzyme inhibitory protein), especially
at sites of synovial invasion into cartilage and bone [64–67].
In addition, alterations in the levels of expression and function of
the tumour suppressor PTEN (phosphatase and tensin homologue
deleted from chromosome 10) have been found in RASFs. PTEN
is functionally involved in cell cycle arrest and apoptosis—and
mutations in PTEN are found in a wide range of human cancers
[68]. Compared with normal synovial tissue, in which PTEN is
homogeneously expressed, examination of cultured RASFs
showed that only 40% of cells expressed PTEN. In RASFs
invading cartilage virtually no expression of PTEN was found,

suggesting that the synovial hyperplasia in RA is due to defective
apoptosis [69]. In this context, the tumour suppressor p53 and
its downstream molecule p21 have also been investigated. The
expression rate was generally found to be low (<5%) but was
increased in cells that were invading the articular cartilage,
suggesting that p53 could be induced in cells at sites of cartilage
invasion, thus rendering the cells a selective advantage [70].

Various studies have revealed high transcription of immediate
early genes in RASFs, for example egr-1 [35, 37] and fos [36, 38],
as well as proto-oncogenes such as jun [36, 38] and myc [52]. The
high expression of fos and jun, which are involved in the formation
of the AP-1 transcription factor, appears to be mediated through
upstream oncogenes like ras, scr and raf. These oncogenes, in turn,
are activation molecules for mitogen-activated protein kinase
(MAPK) pathways. MAP kinases, in particular p38, can be
activated by inflammatory cytokines (e.g. IL-1 and TNF�) and
are thought to regulate processes involved in apoptosis and
proliferation. However, certain members of the MAPK family
are also activated by cytokine-independent mechanisms. L1
elements are mobile genetic elements that have been shown to
act as retrotransposons and are widely distributed within the
human genome. In this regard, it was demonstrated that functional
L1 elements induce the MAP kinase p38� (also known as stress-
activated kinase 4, SAPK4). p38� then induces the production
of MMP-1 [71], MMP-3 [72], IL-6 and IL-8 [73]. From these data,
it can be concluded that RASFs are not only stimulated by
pro-inflammatory cytokines but also by a cytokine-independent
pathway through the activation of p38� [74]. This notion is
supported by reports on a number of RA patients who show
progression of disease under TNF-blocking biologicals, even when
combined with immunosuppressive drugs.

The ubiquitously expressed transcription factor nuclear factor
kappa B (NF�B) is also highly activated in RASFs [75, 76]. NF�B,
composed of DNA-binding heterodimers, is normally retained
in the cytoplasm by its natural counterpart, I�B. In response to
different factors, I�B proteins are phosphorylated, polyubiqui-
nated and finally undergo protein shredding by the 26 proteasome
[77]. This process results in the nuclear translocation of NF�B,
enabling it to bind to the promoters of target genes such as IL-6,
IL-8 and cyclooxygenase-2. However, NF�B not only regulates
pro-inflammatory genes but also both the transcription of
adhesion molecules and matrix-degrading enzymes [47]. In addi-
tion, activation of NF�B increases the synthesis of the urokinase-
type plasmin activator (uPa), which has been associated
with activation of some of these enzymes [59, 78–80]. Moreover,
it has been suggested that NF�B negatively regulates the
aforementioned tumour suppressor PTEN thus promoting cell
survival [81]. Upstream of NF�B, two I�B kinases (IKK1 and -2)
regulate I�B activity [82]. These enzymes are activated by the Akt
serine–threonine kinase, thus decreasing the activity of pro-
apoptotic proteins and increasing the activity of anti-apoptotic
proteins [83].

Perspectives

Since earlier observations in arthritides of MRL-lpr/lpr mice
and the description of apparently transformed synovial cells by
Fassbender [15] have suggested that in the pathogenesis of RA
at least two cellular mechanisms [84] are operating, it has became
clear through studies in the SCID mouse model [10] that the
synovial fibroblasts are important players in rheumatoid joint
destruction. Subsequent work by Kuchen et al. [71] supported
the concept of a cytokine-independent pathway of fibroblast-
mediated joint destruction (Fig. 2). Consequently synovial
fibroblasts have lost their role as innocent bystanders in
the pathogenesis of RA, and it has been understood that due
to their active involvement in orchestrating cellular cross-talk
and mediating intracellular cascades, they represent an important
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target for novel therapeutic approaches to the inhibition of joint
destruction.

Our insights into the molecular patterns of RA are still
limited. But the exponential development in the field of molecular
biology and its techniques has shed light on the different
mechanisms of the disease. The development of biologicals, in
particular the introduction of TNF�-blocking agents into everyday
clinical practice by Maini et al. [85] was a milestone in
the therapy of RA. These drugs have been supplemented by

novel anti-cytokine therapies. For example, encouraging results
have been achieved by early clinical trials with antibodies against
IL-6R [86] and IL-15 [87], whilst application of IL-17 receptor
IgG fusion constructs [88] and IL-18-binding proteins [89] are
promising in animal models. Therapeutic strategies beyond
cytokine targets include the recent use of CTLA4Ig, a fusion
protein that interferes with the binding of CD80/CD86 to the
MHC-independent T-cell surface molecule CD28 preventing its
activation [90], as well as rituximab (monoclonal antibodies
against CD20) that was originally applied in non-Hodgkin’s
lymphomas [91]. More recently, Edwards et al. [92] confirmed
these promising data in patients with active RA despite metho-
trexate treatment, showing that two infusions of rituximab, alone
or in combination with either cyclophosphamide or continued
methotrexate, provided significant improvement in disease symp-
toms. These findings also indicate that the destructive activity
of RASFs during the disease process is not completely independent
of the immune system.

Moreover, the remarkable advances which have been achieved
in the field of gene transfer (reviewed in [93]) towards the
development of novel therapies for arthritic diseases are based
both on our growing insights in the pathogenesis of RA, as well as
on progress in using gene transfer methods both to validate known
molecular targets and to discover novel pathways.

Finally, three principal approaches can be suggested for the
future when thinking about fibroblasts as potential targets in order
to abolish their potential for joint destruction: (i) interfering with
the stimulation by inflammatory cytokines; (ii) modulating
molecules that regulate apoptosis or proliferation; and (iii) direct
inhibition of distinct matrix-degrading enzymes such as matrix
metalloproteinases and cathepsins.

The main effort of research has focused on the role of pro-
inflammatory cytokines, and thus virtually all biologicals in use are
designed to interfere with the inflammatory pathway as described
above. On the other hand, transcription factors, modulated proto-
oncogenes and tumour suppressors are also of potential thera-
peutic interest in the case of RASFs. In this regard, using an
inhibitor of proteosomal degradation (as is already in use for the
treatment of multiple myeloma [94]), thus preventing activation of
NF�B, as well as introducing a therapeutic vector construct over-
expressing I�B, might be a feasible approach [95]. Genes regulating
the cell cycle are another option for novel therapeutic strategies.
For example, over-expression of cyclin-dependent kinase inhibi-
tors such as p21 resulted in markedly reduced cellular growth of
RASFs [96] and the co-transfection of RASFs with dominant
negative mutations of the proto-oncogenes raf and myc reduced
both the growth and invasiveness of these cells [52]. To interfere
with the destructive potential of RASFs, over-expression of jun D
(an antagonist of the ras proto-oncogene) inhibited the prolifera-
tion of fibroblasts by blocking the ras-mediated transformation
of RASFs [97]. In the same context, jun D inhibited the formation
of AP-1 thus directly down-regulating the expression of matrix-
degrading enzymes. While most clinical trials of MMP inhibitors
have yielded disappointing results, perhaps due to lack of
selectivity [98], direct gene targeting of membrane-type (MT)-
MMP-1 [99], cathepsin L [54] and the plasmin system [44] has
shown promising results. So did the adenoviral over-expression
of human TIMPs, in particular TIMP-3, reducing the
invasiveness and bone-resorbing activity of RASFs both in vitro
and in vivo [100].

Gene therapy in RA is still far from clinical use, but in order to
perform functional genomics its powerful techniques should be
used to explore important pathomechanisms and disease-relevant
gene sequences.

The authors have declared no conflicts of interest.
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